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Abstract—This paper deals with the problem of virtual ma-
chine placement in hybrid cloud situation from an economic
and QoS perspectives. Because excessive investment of resources
in cloud computing environment will result in resources waste,
and too few resources can generate QoS issues. This paper
uses a game theory model to describe the problem and find
the balance between these contradictions. Based on this model,
a virtual machine placement algorithm for scheduling virtual
resources is proposed. Compared to the traditional game theory,
our LBOGT algorithm proposes a game between tripartite sides:
users, individual providers and provider groups. Experiments
show that our proposed algorithm reduces physical machines
energy consumption by 6.16%, and increases by 10.6% in profit
provider under the premise of users’ QoS.
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I. INTRODUCTION

From the point of view of security and cost, if a small
and medium-sized enterprise only needs to meet the needs
of its internal personnel, and its business on the data center
does not need to be open to the public, this company can
build its own private cloud. However, sometimes high-intensity
workload for some reason can suddenly usher, and the local
private cloud resources cannot normally meet the needs of all
the new requests. At this time, the solution for this company
is to rent cloud resources from other cloud providers in order
to complete their tasks. In this way, the company uses both
its own private cloud and the public cloud of other providers,
thus combining into a hybrid cloud.

Over time, cloud computing develops more towards the
direction of hybrid cloud and cloud alliance [1]. A single
cloud provider is largely constrained by the market because
of limited cloud resources, limited market radiation range,
and limited system throughput. The cloud computing model
as an economic model is dependent on the market, so small
and medium cloud computing providers join forces with each
other to form an alliance [2], [3]. Due to the change of this
model, the game participants in the traditional game model
are limited to users or a single cloud computing provider,
and fail to reflect the collective interests of the entire hybrid
cloud, which is flawed from the perspective of game theory.
At the same time, as a hybrid cloud collective, it cannot reflect
the collective interests well. The income of a collective is not
simply to ensure the income of all the individual units to meet
the maximum collective revenue.

Therefore, this paper proposes an improved game theory
model: taking cloud computing users, a single cloud computing

provider, and an aggregate of multiple providers as game
theory participants, each representing its own interests. At
the same time, under certain conditions, the two are also
conflicting interests, and they need to fight for their own
interests through games. Among them, cloud users hope that
the response time of services is short and the quality of task
completion is high, so they need more cloud resources. From
the one hand, a single cloud computing provider hopes that its
own interests are high, so it needs to reduce the investment of
resources and maintenance costs. On the other hand, a provider
group hope that cloud users will be satisfied with the service,
and hope to increase the income of the entire group and reduce
expenditure.

To sum up, this paper focuses on developing a virtual
machine (VM) placement algorithm in a hybrid cloud environ-
ment. This scheme can describe the relationship between users,
cloud resource providers and hybrid cloud systems composed
of providers. The scheme comprehensively considers the QoS
requirements of users and the benefits obtained by the provider,
as well as energy consumption of the system. Finally, this
paper proposes a VM placement algorithm based on this game
theory to ensure user QoS and improve resource utilization.

II. LITERATURE REVIEW

From the perspective of providers and users, cloud com-
puting is a dynamic process, and its management is a very im-
portant issue. For cloud computing providers, the management
of cloud resources is very important for the 3 levels of services
(IaaS, PaaS, SaaS) to ensure service-level agreements (SLA)
[4], standardization, security, high availability, high energy
consumption ratio, and resources utilization maximization.

From user’s point of view, cloud computing services are
divided into two stages [5]. The first one is the pre-processing
stage, in which users are faced with the selection of cloud
computing services. The second stage is a stage of continuous
interaction with providers or cloud computing management,
where users need to monitor the performance of their own
services. Users will consider whether to continue to use the
service or purchase other services according to their own
evaluation results. User’s QoS and system performance are
considered by Calheiros et al. [6]. They designed a predictive
load balancing model using queuing theory, and the virtual
machine deployment is determined by using QoS target and
predicted load. Different QoS requirements analysis for various
users is provided by Xu et al. [7]. They proposed a multi-
dimensional QoS scheduling strategy based on multi-workflow
in cloud environment. According to this model, the task flow
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is scheduled to meet the preferences of different users. Starting
from the needs of users, Bardsiri and Hashemi [8] designed
various QoS indicators for service providers, and established a
user QoS evaluation model according to these QoS indicators.
The similarity of trustworthiness in the cloud environment is
studied by Pan et al. [9] to find trusted adjacent services and
predict missing QoS values by enhancing similarity of trusted
services. Recently, Farzai et al. [10] considered the bandwidth
as QoS indicator and proposed a hybrid genetic algorithm
for minimizing power consumption, resource wastage, and
bandwidth. The proposed method demonstrated high potential
of scalability for large problem instances. In order to meet QoS
requirements, Jing et al. [11] proposed a QoS-aware scheme
based on a Particle Swarm Optimization (PSO) algorithm.
Recently, Aloufi et al. [12] This paper discusses how cloud
computing provides users with QoS by presenting the concept
and characteristics of cloud computing and how machine
learning techniques can be applied to resource management. In
particular, this survey highlighted the advantages of utilizing
machine learning to schedule forthcoming requests in order
to achieve QoS and save energy. Edinat et al. [13] reviewed
several previously proposed models that have been utilized in
the literature to improve QoS and proposed a model based on
Deep Reinforcement Learning and an enhanced DRL agent.

Load balancing is a difficult and an important problem
in cloud computing. It’s directly affects resource utiliza-
tion, thereby affecting the profitability of cloud computing
providers. References [14], [15] used live migration of virtual
machines as an optimization goal to reduce energy consump-
tion. A multi-objective ant colony optimization algorithm has
been proposed by Fang and Qu [16] in order to balance
simultaneously the load among the physical machines and the
internal load of machines. Recently, a machine learning-based
approach has been proposed by Ghasemi and Haghighat [17]
for the same problem. A survey on load balancing algorithms
and their classification is provided by Xu et al. [18].

Currently, there are currently two main methods to reduce
the energy consumption of cloud computing: Dynamically
adjust power consumption of physical server CPUs to save
power; Turn off unnecessary services or energy-consuming
resources in the cloud computing system to save power. In this
way, Sotomayor et al. [19] suspended relatively low-priority
tasks to reduce power consumption. Chen et al. [20] proposed
power saving approaches by shutting down unnecessary virtual
machines according to server load balancing. Recently, energy
consumption in cloud computing environment has attracted
more researchers [21]–[25].

III. METHODOLOGY

A. Member Interests in Hybrid Cloud

Due to the internal heterogeneity of the hybrid cloud
system, resource management and scheduling difficulties of
this system are greatly increased. There are many different
cloud providers in a hybrid cloud system. After analyzing
users needs, it is also difficult for the hybrid cloud to submit
the analysis results to different providers. Furthermore, each
provider must satisfy user’s QoS requests. In order to ensure
these requests, it is necessary to limit or even reduce the num-
ber of user task requests per unit time. However, the reduction

of the number of processing tasks will reduce the profit of the
provider. To deal with this contradictory relationship between
user and provider, we need to build a game model.

This paper assumes that a provider in the hybrid cloud
virtualizes physical resources through the hypervisor, and
virtual resources will be provided to users in the form of virtual
machines. The provider accepts a user’s task application and
finds that the remaining local resources are not enough to meet
the user’s needs, and cannot suspend or close tasks and virtual
machines using local resources. At this time, the provider will
have to follow some scheduling rules. Forcibly shut down some
virtual machines, or the provider can transfer this local request
to other providers in the hybrid cloud through the hybrid cloud
management system, and use resources of other providers in
order to complete the local request by outsourcing [26]. The
final benefits are managed and distributed uniformly by the
hybrid cloud system.

B. Solution Design

Hybrid cloud faces security, price, benefit distribution and
other issues [27], [28]. To build a stable hybrid cloud system,
we first need to establish a stable provider portfolio, then con-
duct business modeling, and finally develop a virtual machine
deployment solution. Therefore, the design focus of this paper
is divided into three parts:

1) Hybrid cloud group member selection model: A sta-
ble system must be stable internally, and all internal
members of the system can bring benefits to the
group. Therefore, the benefits of members in the
group are greater than the benefits of running alone.

2) A game model: It is an economic model that can
reflect the interests of multiple parties, can quantify
and describe the relationship between QoS problem,
interest problem and energy consumption problem of
the hybrid cloud system. In addition, it can partici-
pate in solving the virtual machine deployment and
revenue problems of the hybrid cloud. This paper
adds a player to the traditional game-theoretic model,
the individual resource provider, in order to make
the model more flexible and able to safeguard the
interests of all providers.

3) A virtual machine placement algorithm: It’s an opti-
mization algorithm proposed according to the game
model. The purpose is to satisfy the user’s QoS and
improve resource utilization.

The overall design of the system is depicted in Fig. 1.

IV. GAME MODEL BUILDING

A. Metrics used by the Model

1) Stable Hybrid Cloud Membership - Pareto Optimization:
Pareto optimization is an economic concept proposed by the
Italian economist Vilfredo Pareto. Pareto optimization means
that there are no losers in a change in a model, and at least
one member can profit.

A cooperative game needs to meet a precondition, that
is, to follow the principle of Pareto optimization. For game
participants, the global benefit of the entire game must be
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Fig. 1. Hybrid Cloud Virtual Machine Deployment Diagram.

greater than the benefit obtained by each player acting alone.
Considering the stability of the hybrid cloud, there is a similar
nature. Members of a stable team portfolio will not gain higher
benefits if they leave the team to act alone or join a new team.

2) Hybrid Cloud Member Benefit Distribution Principle -
Shapley Value: Shapley value refers to the fair distribution of
the overall benefit according to the contribution value of mem-
bers to the group. The Shapley value of a member represents
the average expected contribution value of the member to the
group.

Let I = {1, 2, ..., n} be a set, any subset S of I corresponds
to a function V (S), if it satisfies:


V (∅) = 0

V (Si ∪ Sj) ≥ V (Si) + V (Sj)

Si ∩ Sj = ∅
∀Si, Sj ∈ I

(1)

Then [I, V ] is called the n-player cooperative game, and V
is the characteristic function of the game. V (S) is the payoff
of the cooperative strategy.

Here, Xi(i = 1, 2, ..., n) is used to denote the income that
member i in I should get from the maximum benefit V (I)
of cooperation, and X = (X1, X2, ..., Xn) is the allocation of
the maximum benefit in the cooperative strategy and satisfy:

n∑
i=1

Xi = V (I)

Xi ≥ V (i);∀i = (1, 2, ..., n)
(2)

Then, the Shapley value can be written as
X = (X1, X2, ..., Xn) where:

• Xi =
∑
s∈Si

W (|s|)[V (s)− V (s/i)]

• W (|s|) =
(n− |s|)!(|s| − 1)!

n!

• Si is all subsets of I that contain i

• |s| is the number of elements in the subset

• W (|s|) is the weighting factor.

Shapley value is used in this paper to measure the
provider’s contribution to the team, that is, how much the game
player can add to the entire team combination when the game
player joins the provider combination scheme. The higher the
contribution value, the higher the benefit value allocated to
the cloud provider. If the Shapley value is negative, it means
that the provider’s joining cannot increase the benefits of the
alliance, and its joining will not be considered. The Shapley
value of the cloud provider can be calculated by Eq. 3.

ϕi(v) =
∑
S⊆RP

|S|!(|RP | − |S| − 1)!

|RP |! [v(S ∪ {RPi})− v(S)]

(3)

where the cloud provider set is denoted by RP =
{RP1, RP2, ..., RPn}(n ∈ {1, 2, ..., N}), v corresponds to the
characteristic function V of the game in the Shapley value, and
the calculation method is shown in formula Eq. 4. A hybrid
cloud is defined as a combination of providers, denoted by S,
where S ⊆ RP and S > 1.

B. Principles of Member Selection in Hybrid Cloud

The cloud computing service provider in this paper is not
a single one, but a combination of several cloud computing
providers. The choice between a group of providers and a
single provider outside the group is a two-way street, with
a single provider choosing whether to join the group, and
the group considering whether to allow a single provider to
join. The specific selection model of a single provider is not
considered in this paper. This is because a single provider
considers whether to join or not, and needs to integrate its own
situation and whether the agreement between the two parties
is beneficial to itself. There are too many variables to discuss.
Therefore, the group composed of cloud computing providers
needs to be stable, and the average revenue of a single provider
is beneficial to the team, mainly satisfying the following points:

1) First, determine whether the resources owned by all
providers in the provider team can meet the con-
straints of the system on resources.

2) For all providers in the group, the benefits obtained
by joining the group must be higher than the benefits
obtained by operating alone. In this way, during the
operation of the group, no provider will consider
withdrawing the group, so that this group is a stable
combination.

3) If the team’s combination scheme is optimal, on
the premise of satisfying the above two points, a
combination of providers needs to be selected. The
average income obtained by this combination scheme
is the highest, which can not only satisfy resource
constraints and user QoS, but also guarantee the
maximum benefit of members.

Users need to pay according to their own tasks and QoS
preferences when purchasing cloud computing services. When
providers consider service pricing, they need to price each
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resource used by users separately. The final price is calculated
from the price of resources offered by a single provider.
The price of k-type resources in the hybrid cloud S can be
calculated by Eq. 2, where δ is a price correction parameter.

pricekS = eδ|S| · pricekp (4)

Let Rk be the number of various resources in a hybrid
cloud S, then the total profit profit(S) per unit time of the
cloud S can be calculated by Eq. 5.

profit(S) =
∑
k

pricekS ·Rk (5)

Assume a stable hybrid cloud combination scheme
S = {RP1, RP2, ..., RPS}, the physical machine of all avail-
able resources is {m1

1, ...,m
1
M1 , ...,mk

i , ...,m
S
1 , ...,m

S
MS},

a physical machine can be represented by mk
i , where

1 ≤ i ≤ Mk, Mk is the number of available
physical machines provided by the cloud provider RPk,
the remaining available resources on each physical
machine mk

i can be represented by a resource vector
#»

R(mk
i ). The tasks submitted by users {1, 2, ..., U} are

numbered from 1 to N , and each task corresponds to a
virtual machine. The set A = {A1

1, ..., A
u
x, A

u
y , ..., A

U
N}

represents all virtual machine allocation policies
of the resource scheduling center, where Aun =
(Aun(m1

1), ..., Aun(m1
M1), ..., Aun(mk

i ), ..., Aun(mS
1 ), ..., Aun(mS

MS ))T ,
Aun(mk

i ) = (aun1(mk
i ), ..., aun2(mk

i ), ..., aunZ(mk
i )) represents

the number of resources allocated to task n on the physical
machine mk

i .

C. Hybrid Cloud Group Member Selection Model

The cloud resource provider in the hybrid cloud is a set, and
there are multiple providers. Therefore, according to this set,
multiple different subsets can be formed. These subsets are
different composition methods of multiple providers, which
means that some providers can be included in the hybrid
cloud, and some cannot be included. So, we need to judge
which providers can be included in the hybrid cloud and bring
benefits to the whole. There are two main ways to judge:

1) Stability: A hybrid cloud is called stable, when
any provider in the hybrid cloud benefits more if it
leaves the cloud [29]. It can also be said that this
hybrid cloud is the best choice for this provider.
Generally speaking, the providers in a stable hybrid
cloud should be mutually beneficial, and the providers
should exist more in the form of cooperation rather
than competition, and their competitors are outside
the cloud system. A stable hybrid cloud should also
bring more user resources to all providers, and users
are more inclined to use the hybrid cloud rather than
the system resources provided by a single provider.
Fig. 2 shows the filtering process of a stable hybrid
cloud combination scheme, in which Pareto optimiza-
tion means that each member of the combination
scheme brings positive benefits to all other members.
At the same time, the income obtained in the group is
also higher than from not participating in the group.

Pareto optimization 

filter

Unstable combination Stable combination

Fig. 2. Filter a Stable Provider Portfolio.

2) Fairness: A provider in the hybrid cloud hopes
that the system is fair, which refers to the fairness
of processing user requests, that is, the fairness of
scheduling, and the fairness of benefit distribution.
Each member should be fairly assigned tasks, and
then the corresponding benefits should be distributed
according to the completion of the tasks. The distribu-
tion of benefits in this paper is based on the Shapley
value.

A hybrid cloud cooperation game can be expressed as
G = aP, v, where aP is all available providers RP in the
hybrid cloud, v is the characteristic function, for a provider
combination S. Then, this paper defines its characteristic
function as v(S) as follows.

v(S) =

{
0; (insufficient total resources)

profit(S); (total resources met)
(6)

When v(s) is 0, it means that the hybrid cloud combination
S is not feasible. Firstly, according to Eq. 6, we select
the provider combinations that satisfy resource constraints,
and then judge the overall benefits of these hybrid cloud
combinations. The final total benefit is uniformly distributed
by the contribution value calculated by the Shapley value. The
contribution ability of the provider, that is, the ratio of ϕi(v)
to the total contribution is the measure. Then, the benefit value
that each provider can obtain in the hybrid cloud combination
scheme S is calculated as follows.

valuei(S) =
ϕi(v)∑

RPx∈S
ϕx(v)

· v(S) (7)

The value of each provider’s benefits when not participating
in the group is:

valuei =

{
0 ; (Available resources meet demand)∑
k

pricekS ·Rk ; (Available resources don’t meet demand)

(8)

The hybrid cloud combination scheme S is said to be
stable, if valuei(S) > valuei; ∀RPi ∈ S

D. User QoS Indicators in Game Model

Since the primary goal of cloud computing services is to
ensure user QoS, it is necessary to model and evaluate user
QoS preferences. Therefore, the user QoS indicators in this
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paper consist of the following five elements: Response time,
cost, system availability, reliability and trustworthiness.

The user QoS indicators in a hybrid cloud environment
are represented by a vector {Q1, Q2, Q3, Q4, Q5}, in which
all QoS indicators are in the [0, 100] interval. Each indicator
corresponds to a weight, which is determined according to
the user’s QoS preference and the type of service purchased
when the user signs an SLA with the provider. The user’s
QoS preference and the type of service purchased will affect
the division of QoS indicators. The weight value of QoS is
also represented by a set of vectors {w1, w2, w3, w4, w5}.
Therefore, according to the above analysis, the overall QoS
index of the service purchased by the user can be expressed by
Eq. 9, where {q1, q2, q3, q4, q5} corresponding to the response
time, cost, system availability, reliability, and trustworthiness,
respectively.

QoS =

5∑
i=1

wi · qi (9)

One of the most important QoS indicators is service
response time [30]. The computation amount of a task can
be estimated from the task type submitted by the user and the
environment variables combined with the historical data. It is
then calculated according to the computing power PC(mk

i )
of the virtual machine assigned to the user. The response time
estimation for the user task is as follows.

RTn =
Wn

PC(mk
i )

(10)

From the user’s point of view, the shorter the response
time, the better. This paper unifies the response time q1 =
100 − RTn/Q1. It can be seen that the longer the response
time, the less q1.

From the provider’s point of view, the provider hopes to
maximize its own benefits, but high cost will affect the user
experience. The resource pricing in this paper is represented
by priceSk , from which the cost required by the user is:

Cost(rn) =

K∑
k=1

rnk · priceSk (11)

In this paper, in order to reflect the cost problem of the
provider, when the resource price is less than a certain value,
the user’s QoS experience is certain and will not increase
because of this. Therefore, the user service cost is divided into
two levels. In the interval [0,marku], the user QoS index q2 is
set to 100, and in [marku, Q2], the higher the service charge,
the lower the q2 value. The normalized q2 can be represented
by Eq. 12.

q2 =

100 ; if Cost(rn) ≤ marku
100− Cost(rn)−marku

Q2 −marku
; if marku < Cost(rn) ≤ Q2

(12)

Since there are no specific data studies on effectiveness,
reliability and trustworthiness in QoS, these three are not

studied in depth in this paper. The three settings are as follows:
The availability and reliability are mainly obtained by referring
to the running status of the server in the historical data. The
credibility can use the user’s historical evaluation and the
system itself to set the evaluation of the previous service
completion.

The above three parameters q3, q4, q5 give QoS ratings
respectively according to the evaluation results. Then, the three
indicators are unified according to the first two parameters,
respectively, corresponding to a certain value in the interval
[0, 100], representing the scoring result of this attribute.

E. The Proposed Game Theory Model

The game theory model in this paper mainly considers the
relationship between the following three in the cloud comput-
ing environment: cloud service users, a single provider, and a
group of multiple providers. The purpose of using game theory
is to use a model that can describe the interests of the three
parties at the same time. This model must be objective, and
can adapt to different applicable occasions through parameters
adjustments. For example, in some occasions, it favors user
QoS, and in some cases, it favors resource utilization, that
is, multiple providers. Based on the above analysis, the game
theory model in this paper establishes three optimization goals
according to three stakeholders: user QoS optimization, server
resource utilization optimization, and system maintenance cost
optimization.

According to the relevant introduction above, we first estab-
lish the resource constraints of a hybrid cloud combination, and
then establish the combination model of resource providers,
and calculate the optimal provider combination through the
constraints and the overall revenue value. Then a tripartite
game model is established to calculate the overall total revenue
of the system. The hybrid cloud game model in this paper
is represented by a quadruple {Players,Req,A, Utility} as
follows:

1) Players are players in the game, that is, users who
submit resource requests, the hybrid cloud, and the
providers in the hybrid cloud.

2) Req is the resource request matrix formed by the task
submitted by the user.

3) A = {Au|u = 1, 2, ..., U} represents the deployment
placement scheme of virtual machines allocated to
users in the system.

4) Utility is a global revenue function. The utility
describes the total revenue that can be obtained by
the entire system of a virtual machine deployment
solution. The larger the value, the better.

Utility is divided into three parts according to three stake-
holders, the first part is user QoS and has been introduced
above. Then, the calculation method of the revenue value
representing the resource utilization of the provider group is
introduced. For a stable provider combination S, there are
N tasks ready to be allocated at a certain time, and the
virtual machine resource vector corresponding to the task is
#»rn. The initial total resource vector on physical machine mk

i

is
#     »

TM(mk
i ), utl(m

k
i )

t (calculated as in Eq. 13) is the utilization
rate of resources of type t on physical machine mk

i , and
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the average utilization rate of the resources on the physical

machine is utl(m
k
i
)

t .

utl
(mk

i )
t = 1−

Rt(m
k
i )−∑

n
x
(mk

i )
nt

PMt(mk
i )

(13)

where Rt(mk
i ) represents the number of resources available

on physical machine mk
i , x(m

k
i )

nt is the number of resources
of type n allocated to the task on physical machine mk

i ,
and PMt(m

k
i ) represents the total number of resources t on

physical machine mk
i .

The portion of the global benefit that represents the
provider’s interests is:

MTi =

K∑
k=1

ωPk ·NP
k · valuePk (14)

where valuePk represents the unit price of the correspond-
ing resource, NP

k represents the usage of the corresponding
resource, and ωPk represents the price correction parameter of
the corresponding resource. So the global revenue of the game
is calculated by Eq. 15.

Utility = α·

N∑
n=1

QoSn

N
+β·

MN∑
y=1

MTy

MN
+(1−α−β)·

MN∑
i=1

utl(m
k
i
)

MN
(15)

where MTy is the revenue of a single cloud resource
provider.

In order to ensure the fairness of the three benefits, the
three parts of the above equation can be normalized. From
Eq. 15, it can be seen that the relationship between the three
optimization objectives can be balanced by adjusting the value
of the tripartite interest weights α and β.

V. VIRTUAL MACHINE PLACEMENT ALGORITHM

A. Load Balancing Optimization in Physical Servers

When a cloud computing system creates a virtual machine
on a physical server, because both are multi-dimensional
resources, it cannot guarantee that the proportion of virtual
machine resources matches the resource ratio of the physical
machine. For example, the CPU resources may have been
fully occupied by the virtual machine, but there are still a
lot of memory resources left; or the memory resources are
fully allocated but the CPU resources are still left. This part
of the remaining resources will not be able to continue to
be allocated, resulting in resource fragmentation and waste
of resources. Therefore, for the sake of load balancing, the
proportion of resources allocated to virtual machines should
preferably be similar, so that resource fragmentation is not easy
to generate. Thus, ensuring balanced operation of each physical
server, reducing energy and resource waste, and improving
utilization. Thereby, the system throughput can be increased
at the same cost.

Because cloud users have various needs, in general, cloud
resource providers will also provide virtual machine cus-
tomization functions for cloud users, so the virtual machine
requests of cloud users received by the hybrid cloud system
will be various. The proportion of various resources in the
machine is also uneven. First of all, if it is assumed that
the resource ratio of all virtual machines is the same, then
each physical server can ensure the load balancing of virtual
machine resources. Therefore, this paper proposes an algorithm
for load balancing optimization as follows:

1) When the hybrid cloud system is initialized, virtual
machines with large difference in resource ratio are
preferentially allocated, so that virtual machines with
different resource ratios can complement each other’s
deficiencies.

2) When the hybrid cloud is running, if there is a new
virtual machine assignment task, the Nash equilib-
rium of game theory is used to calculate whether to
start a new physical server or not.

3) When the hybrid cloud is running, if a virtual ma-
chine needs to be shut down, the Nash equilibrium of
the same calculation game theory determines whether
to carry out the migration work and migration target
of other virtual machines.

We calculate the average resources Res of physical servers
as a reference standard for the proportion of virtual machine
resources as follows.

Res = {PE,Mem,Store}T

=


n∑
i=1

PEi

n
,

n∑
i=1

Memi

n
,

n∑
i=1

Storei

n


T

(16)

where PE represents the number of processor cores corre-
sponding to the physical server, Mem represents the amount
of memory, and Store represents the number of external
storage memory. The amount of resources required by a virtual
machine can also be expressed as V Res.

The skewness of virtual machine resources is calculated
from the Euclidean distance between virtual machine resources
and physical machine resources as follows.

V V arit =

√
(V PEi − PE)2 + (VMemi −Mem)2 + (V Storei − Store)2

∀i = (1, 2, ..., n)
(17)

The first step of the optimization algorithm is initialization.
In this step, for each virtual machine to be created and its
corresponding candidate physical machine, the utility value
Utility is calculated and sorted. All physical machines are
initially marked as inactive. This optimization problem is
solved using a greedy algorithm. Assuming that an optimal
deployment scheme for n − 1 virtual machines has been
obtained, the optimal deployment scheme for the n virtual
machine is to find a corresponding running state physical
machine to ensure that the available resources are sufficient to
create the virtual machine, and the benefits value is maximized.
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The best physical machine that satisfies the conditions is
directly enabled at the beginning. After several iterations of
creation, the available resources on the best physical machine
selected may not be enough to create the n virtual machines.
At this time, the physical machine needs to make a decision,
to determine whether it is necessary to delete some received
virtual machines to make room to create new ones. The selec-
tion order is to delete from the maximum skewness between
the virtual machine resource type and the total resources of the
physical machine until the available resources are sufficient to
create a new virtual machine.

The decision on whether to choose to replace a virtual
machine is based on the utilization rate corresponding to the
least used resource type (Eq. 18) on the physical machine
before and after replacement. If the utilization rate increases
after replacement, it means that the replacement is beneficial
and the virtual machine can be replaced.

utl
(mk

i )
min = min

t
{utl(m

k
i )

t }

= min
t

1−
Rt(m

k
i )−∑

n
x
(mk

i )
nt

PMt(mk
i )


(18)

B. Algorithm Flow

Based on the above analysis, this paper proposes a game
theory-based load balancing optimization algorithm (LBOGT).
The idea of the algorithm: When placing virtual machines in
the hybrid cloud system, it first obtains the resource infor-
mation of the applied virtual machines from the application
list. Next, the resource skewness of each virtual machine is
calculated according to the resource information, and sorted
in descending order of skewness. Then, put them in the
vmlist table and wait for the system to schedule. The system
sequentially fetches the virtual machines to be scheduled from
the vmlist, and calculates the virtual placement position with
the greatest benefit according to the global revenue Utility.
When the virtual machine is placed, there may be insufficient
physical machine resources. At this time, calculate whether to
migrate the virtual machine according to Eq. 18. If the virtual
machine needs to be migrated, it is treated as a new virtual
machine to be deployed. Otherwise, apply for new physical
resources.

The detailed process of the LBOGT algorithm is given in
Fig. 3.

Begin
Get the VM

application form

Calculate
skewness and
sort vmlist

Get PM having
max(Utility)

Calculate the
revenue value
of each PM

Get VM having
max(vmlist)

Sufficient
resources ?

VM migration
algorithm

Deploy and
replace VM

Deploy VM Migrate ?

Request new
physical resource

Check VM
request form

Resources
application
successful ?

Insufficient
physical resources

End

Form empty?

No

Yes

Yes

No

Yes

No

Yes

No

Fig. 3. LBOGT Algorithm Flowchart.

VI. EXPERIMENTAL RESULTS

This section will validate the aforementioned provider team
member selection model and our proposed virtual machine
placement algorithm based on load balancing optimization
(LBOGT). This paper uses CloudSim [31] to build a cloud
computing simulation experimental environment, and uses
JAVA programming to test the algorithm. CloudSim is an open
and extensible simulation framework that integrates modeling,
simulation and experimentation into one cloud computing envi-
ronment for experiments. The physical machine configuration
in this paper is shown in Table I. Then, simulate 24 hours of
data from a hybrid cloud data center. Our proposed algorithm
LBOGT is compared to Inter Quartile Range (IQR), Median
Absolute Deviation (MAD), Static Threshold (THR) and Game
Theory (GT) algorithms.
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A. Selection of Hybrid Cloud Group Members

TABLE I. HYBRID CLOUD SYSTEM RESOURCE CONSTRAINTS

Attributes Ranges

Number of physical machines (host) [400, 1000]
Number of processor (CPU) cores [1600, 32000]

Processor (CPU) frequency [0.50GHz, ∞]
Physical machine memory size [6400GB, 128000GB]

Physical machine external memory size [400TB, 10000TB]

There are currently 5 providers to be selected. The proces-
sor of the providers are Intel Xeon of the following models:
E5-2620, E5-2603, E5-2609, E7-4807, E7-8837. The number
of virtual machine requests is 800, and other configurations
are shown in Table II.

TABLE II. THE CANDIDATE PROVIDERS OF THE HYBRID CLOUD SYSTEM

Provider Number of
CPU cores

CPU
frequency

RAM size External
storage

size

CPU unit
price

RAM unit
price

External
storage

unit price

Price
correction
parameter

δ

1 1680 2.10GHz 8960GB 560 0.01 0.004 0.06 1.02140275
2 1280 1.80GHz 10240GB 640 0.008 0.003 0.06 1.16487403
3 1560 2.40GHz 8320GB 520 0.008 0.002 0.07 1.05145024
4 1680 1.86GHz 8960GB 560 0.015 0.003 0.05 1.13123516
5 1920 2.66GHz 15360GB 480 0.015 0.004 0.05 1.19472345

Based on the constraints shown in Table I, the configuration
properties made up of all provider combinations are now
calculated. There are a total of 5 providers, excluding the 5
possibilities of a single provider, then a total of 26 different
provider combinations are possible.

From Table III, it can be seen that it is not that the
more providers, the greater the average revenue value. This
is because when a provider with a poorly configured physical
server joins, the team will have an evaluation of the newly
added provider’s configuration, and a poorly configured server
may affect all user experiences. Therefore, it is necessary to
select an optimal combination among all combinations. This
combination needs to meet the resource constraints of the
team, and the average host revenue should be the highest. The
average host revenue value refers to the team’s total revenue
evenly distributed to each host.

TABLE III. RESTRICTIONS RESULTS

Provider
combination

Total number
of hosts

Total core Total memory Total external
storage

Restrictions

1,2 600 2960 19200 1200 -
1,3 540 3240 17280 1080 Insufficient hosts
1,4 560 3360 17920 1120 Insufficient hosts
1,5 520 3600 24320 1040 Insufficient hosts
2,3 580 2840 18560 1160 Insufficient hosts
2,4 600 2960 19200 1200 -
2,5 560 3200 25600 1120 Insufficient hosts
3,4 540 3240 17280 1080 Insufficient hosts
3,5 500 3480 23680 1000 Insufficient hosts
4,5 520 3600 24320 1040 Insufficient hosts

1,2,3 860 4520 27520 1720 -
1,2,4 880 4640 28160 1760 -
1,2,5 840 4880 34560 1680 -
1,3,4 820 4920 26240 1640 -
1,3,5 780 5160 32640 1560 -
1,4,5 800 5280 33280 1600 -
2,3,4 860 4520 27520 1720 -
2,3,5 820 4760 33920 1640 -
2,4,5 840 4880 34560 1680 -
3,4,5 780 5160 32640 1560 -

1,2,3,4 1140 6200 36480 2280 -
1,2,3,5 1100 6440 42880 2200 -
1,2,4,5 1120 6560 43520 2240 -
1,3,4,5 1060 6840 41600 2120 -
2,3,4,5 1100 6440 42880 2200 -

1,2,3,4,5 1380 8120 51840 2760 -

In order to calculate the total revenue for each provider
group, firstly we calculate the pricing of all system resources
according to Eq. 4. The price correction parameter δ in the

formula are obtained according to the resource evaluation of
the resource provider as shown in Table II. The total value
of the group’s income is calculated by Eq. 5, and the final
calculation results are shown in Table IV.

TABLE IV. GROUP INCOME STATEMENT

Provider
combination

CPU pricing Memory
pricing

External
storage
pricing

Total team
revenue

Average
hosting
revenue

1,2 0.00982699 0.00377042 0.06587525 180.53017618 0.30088363
1,3 0.00934619 0.00313097 0.06721474 156.97679288 0.29069776
1,4 0.01189442 0.00373966 0.05892296 172.97365957 0.30888153
1,5 0.01432433 0.00452347 0.06056971 224.57098009 0.43186727
2,3 0.00882057 0.00287075 0.07155513 161.33542275 0.27816452
2,4 0.01173446 0.00344753 0.06367146 177.33228943 0.29555382
2,5 0.01448011 0.00426519 0.06553975 228.92960995 0.40880287
3,4 0.01108883 0.00277221 0.06476609 153.77890613 0.28477575
3,5 0.01365808 0.00383868 0.06694615 205.37622665 0.41075245
4,5 0.01589270 0.00426856 0.05802687 221.37309333 0.42571749

1,2,3 0.00933849 0.00326628 0.06821110 249.42119591 0.29002465
1,2,4 0.01118396 0.00365055 0.06291186 265.41806259 0.30161143
1,2,5 0.01301146 0.00421863 0.06412122 317.01538311 0.37739927
1,3,4 0.01079012 0.00322069 0.06357714 241.86467929 0.29495693
1,3,5 0.01253676 0.00390646 0.06491364 293.46199981 0.37623333
1,4,5 0.01408585 0.00421931 0.05916692 309.45886649 0.38682358
2,3,4 0.01058763 0.00304101 0.06667357 246.22330915 0.28630617
2,3,5 0.01249127 0.00373481 0.06809592 297.82062967 0.36319589
2,4,5 0.01416845 0.00403925 0.06254709 313.81749636 0.37359226
3,4,5 0.01363098 0.00371653 0.06321842 290.26411306 0.37213348

1,2,3,4 0.01048640 0.00329758 0.06534985 334.30908231 0.29325358
1,2,3,5 0.01189721 0.00380811 0.06636202 385.90640283 0.35082400
1,2,4,5 0.01315573 0.00404879 0.06223136 401.90326952 0.35884220
1,3,4,5 0.01279173 0.00379602 0.06270749 378.34988622 0.35693385
2,3,4,5 0.01277394 0.00366354 0.06515995 382.70851608 0.34791683

1,2,3,4,5 0.01224430 0.00373649 0.06437356 470.79428924 0.34115528

It can be seen from Table IV that the best combination
that meets the constraints is the provider combination (1, 4,
5). The revenue of the host unit reached 0.38682358, and the
average revenue of team members was the largest.

B. QoS Performance Test

The QoS performance test mainly compares IQR, MAD,
THR, GT and LBOGT algorithms. In the comparison process,
this paper sets the parameters α and β of Eq. 15 to 0.8 and 0.1,
respectively, which can clearly reflect the QoS improvement
of LBOGT algorithm. IQR, MAD, and THR algorithms are all
built-in algorithms in CloudSim simulation software, which are
used as reference in this paper.

THR algorithm is a short-answer threshold algorithm with
fast algorithm speed and poor optimization results. Since IQR
algorithm only tries to optimize the discrete degree of the
deployment results during the virtual machine deployment
process, the interquartile range of the deployment results is
as small as possible, so that the load balance of the virtual
machines can be guaranteed to a certain extent. IQR algorithm
is a rough state optimization of the overall result, it is not
specific to each physical machine, so the result is still far from
the optimal solution. MAD algorithm weakens the individual
extreme values in the deployment process, thereby ensuring
the load balancing effect of most virtual machines. It is a
deployment scheme that sacrifices a few and satisfies the
overall deployment scheme. MAD sacrifices the performance
of a few virtual machines. The optimization result also has a
certain distance from the optimal solution.
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Fig. 4. Task Response Time Comparison.

From Fig. 4, it can be seen that the response time of
LBOGT and GT algorithms is shorter, because compared with
other reference algorithms, LBOGT and GT consider all QoS
preferences of users, including five preference attributes of
QoS, so the response time is better. Compared to GT, LBOGT
increases the optimization of virtual machine deployment.
Therefore, the performance of LBOGT’s response time is
slightly better than that of GT, and the effect is increased by
2.3%, because the response time of the system to tasks when
there is not too much pressure is similar.
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Fig. 5. SLA Violation Rate Comparison.

From Fig. 5, it can be seen that the SLA violation rate
of the LBOGT model is 0.01% lower than that of GT model.
This is because when the virtual machine placement algorithm
is executed, there is an optimization process for LBOGT to
select a virtual machine. The algorithm first selects virtual
machines with larger resource skewness for deployment. In
this way, virtual machines whose skewness can compensate
each other can be deployed to a server as much as possible
during the deployment process, so that the server can achieve
load balancing. It reduces server resources waste, optimizes
resource allocation, and allows users’ tasks to be better exe-
cuted. The higher the value of α in the utility function (Eq. 15),
the higher the user’s QoS weight is, so the game model will
consider the user’s QoS more. The smaller the α, the higher
the individual provider’s income, because the provider and the
user have conflict of interest to a certain extent. The provider
expects low cost and high income, while the user expects low

consumption and high QoS. In the utility function, the lower
the α and β, the higher the resource utilization of the hybrid
cloud system, which can reduce resources waste and reduce
maintenance costs. The other three algorithms have higher
SLA violation rate values because they do not consider too
much user QoS.

C. Power Consumption Performance Test

Before testing the power consumption performance of the
LBOGT algorithm, it is necessary to set α and β parameters
of Eq. 15 to 0.1. The performance of the algorithms in term
of power consumption is presented in Fig. 6.
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Fig. 6. Power Consumption Comparison.

Fig. 6 shows that LBOGT has great advantage in power
consumption, saving 6.16% of energy than GT algorithm.
Because there is a virtual machine optimization selection
step in the process of LBOGT algorithm compared to GT.
The virtual machine deployment order can be optimized to
achieve better load balancing effect, thus reducing the waste
of resources. On the other hand, LBOGT considers that there
will be new requests during the operation of the hybrid cloud
system, so there will be dynamic addition of virtual machines.
LBOGT will also optimize the newly added virtual machine
requests, so it is also conducive to the best deployment.

In the following, it is the comparison of the benefits of
our proposed LBOGT algorithm and the traditional game
theory-based algorithm GT. The comparison here refers to
the income value obtained after pricing various resources
when modeling the provider’s interests. The income value is
not added to the unit when setting it. It is a relative value
and is used as the global income of the game theory. For
judgment and comparison, see Table IV for details. Since the
LBOGT algorithm has made improvements to the deficiencies
of GT algorithm in the management of virtual machines to be
deployed, and the provider’s profit has been considered when
formulating the global profit function of the game, it can be
seen from Fig. 7 that the improved LBOGT algorithm can
bring greater benefits. This benefit is more obvious when the
task request is larger. Indeed, when the number reaches 1600,
the benefit value increases by 10.6%.
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VII. CONCLUSION

This paper considers the problem of virtual machine place-
ment problem in hybrid cloud situation from the perspective of
economics and QoS. In order to coordinate user QoS and cloud
resource utilization, a game theory model of a three-party
game is established, and the relationship between the three
parties is reflected through a game’s profit function. Finally,
a virtual machine placement algorithm based on game theory
and load balancing optimization is proposed. The algorithm
mainly selects the virtual placement position through the game
theory revenue function, and optimizes the placement order of
the virtual machine through its resource application ratio. The
experimental results show that our proposed LBOGT algorithm
can coordinate and balance user QoS and cloud computing re-
source utilization. When the number of executed tasks reaches
1600, the cloud computing revenue is 10.6% higher than that
obtained by the traditional game theory method.

Several various adjustments, testing, and experiments have
been left to be completed in the future. More virtual machine
placement objectives can be investigated in the future, in
particular SLA-aware placement schemes.
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