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Abstract—Volumetric reconstruction from one or multiple
RGB images has shown significant advances in recent years, but
the approaches used so far do not take advantage of stereoscopic
features such as distance blur, perspective disparity, textures,
etc. that are useful to shape the object volumes. Our study
is to evaluate a convolutional neural network architecture for
reconstruction of 1283 voxel models from 960 pairs of stereoscopic
images. The preliminary results show an 80% of coincidence with
the original models in 2 categories using the Intersection over
Union metric. These results indicate that good reconstructions
can be made from a small dataset. This will reduce the time and
memory usage for this task.
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I. INTRODUCTION

Voxel Reconstruction is a wide field of research within
computer vision. It is currently getting more attention thanks to
the appearance of high-resolution RGB-D and stereo cameras.
This field has benefitted from the development of machine
learning neural networks, which have allowed volumetric
reconstruction to obtain promising advances both for single-
image and multiple-image cases. This reconstruction takes
pictures from real or synthetic 3D objects and obtains a model
made of voxels. Voxels are the 3D equivalent of the 2D pixels;
this means that voxels are mainly indivisible blocks of position
and color data, that can be put together and broken down. Such
properties are important for applications like robotic vision,
particle simulation, or volume comparison.

Computer vision itself offers multiple opportunities for
further development since it is still a budding topic to deal
with due to the gap between the information provided by
the pixels and the interpretation that can be given to that
information. Current volumetric reconstruction methods based
on Convolutional Neural Networks (CNN) have achieved
significant progress in the quality of the results, however
reconstructions are made usually under good conditions that
are rarely replicated in reality: multiple views, good lighting,
and definition, or extensive datasets. They also don’t make
any use of depth information provided by stereoscopic vision.
Stereoscopy is a vital function for human beings for depth
perception. It gives good information about volume and depth
mainly from depth cues like accommodation, focus, occlusion,
linear and aerial perspective, relative size, density, and motion
parallax [1]. Much of this information is present in only one of
the ocular perspectives through the so-called monocular depth,
but it is the complementation that allows a better perception,
through the binocular depth.

Current approaches for 3D reconstruction tasks have been
obtained mainly under optimal conditions and multiple view-
points, which is often not possible in real situations. On the
other hand, while single-image reconstruction methods have
also made improvements, they rely on intensive pretraining
and large datasets to estimate the hidden parts and fill in
the volume.These datasets are usually formed by images with
simple and unique objects; this is good for techniques testing
but it has limited practical applications. Reconstructed voxel
meshes also tend to be low-resolution (323 voxels), losing
important details that could be significant to some applications.

This study aims to validate a deep learning model for
stereo 3D reconstruction, to get a good resolution model of
1283 voxels from 960 couples of stereoscopic images. For that
purpose, The architecture proposed by [7] was implemented.
This generated more detailed voxel models for the applications
previously mentioned. The dataset used for this study will be
kept small due to limited computational resources. We aimed to
prove that a 3D reconstruction is feasible from a small dataset
of detailed images and limited computational resources that
could be use for practical applications, where optimal image
capture is not ideal.

The rest of this document is as follows: chapter two will
include the related work to this study. Methodology and dataset
is presented in chapter three. The results will be shown in
chapter four. Chapter five will review the discussion and the
final chapter will include the conclusions.

II. STEREOSCOPY

It is a technique of depth artificial representation from
two stereographic images, where each of them represents the
vision from one of the human eyes, thus imitating the real
vision. Depth is reconstructed in the brain from the 2D images
captured by the retina, and from certain signals or cues present
in those images [2]. Much of this information is present in only
one of the ocular perspectives through the so-called monocular
depth, but it is the vision complementation that allows a better
perception, through the binocular depth.

Main cues:

• Occlusion: Visual obstruction of a near object on a
more distant one.

• Linear Perspective: Phenomenon by which parallel
lines seem to get closer the further they are apart.

www.ijacsa.thesai.org 646 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 3, 2022

• Aerial perspective: Perception of distance through
the absorption of light. Closer objects appear more
colorful and brighter than distant objects in general.

• Relative size: Related to perspective. Nearby objects
appear larger.

• Density: The denser an object’s texture appears, the
farther away it is assumed to be. It is also known as
texture gradient.

• Adequacy: It is the adjustment of the muscle and the
ocular lens to focus an image. The further away the
object is, the more relaxed the muscle and the more
circular the lens.

• Focus: It is the rotation of the eyes, to focus together
on an object at a certain distance. The eyes converge
on near objects and diverge on distant ones.

• Motion Parallax: When the viewer (human, camera,
etc.) is in motion, nearby objects appear to move faster
than distant objects.

Fig. 1 shows the main binocular cues for depth perception.

Fig. 1. Binocular Cues. [1]

III. CONVOLUTIONAL NEURAL NETWORKS

They are supervised learning neural networks, based on
multilayer perceptrons, where the hidden layers are specialized
to detect certain shapes, starting from simple lines and curves,
up to more specialized layers capable for complex figures
detection. [3]. These networks are especially used for artificial
vision since they are biologically inspired by the functioning
of the human visual cortex.

The input for the convolutional network is a normalized
set of image pixels, where each input neuron corresponds to
a pixel, separated by channels (red, blue, green). A group of
nearby pixels is then convolved with a filter matrix called ker-
nel. These kernels are applied one by one to each neuron input,
which are previously trained. The result of that convolution is
a matrix that feeds the next network layer. For this first layer,
the output of each neuron is calculated as:

Yj = f

(
bj +

∑
i=1

Kij ∗ Yi

)
(1)

Where Yj is the output of each neuron, Yi are its inputs,
Kij is the kernel , bj is the bias , and f() is an activation
function, commonly the Rectified Linear Function or ReLu;
which is defined as f(x) = max(0, x).

Fig. 2. Example of Convolutional Neural Network [4].

The next step is sampling, which is reducing the size of
the output matrix of the previous layer, thus reducing the
computational cost of the convolutions. The most common
reduction method is Max Pooling which selects the max value
from m×n group of neighbour cells. This also helps to reduce
noise from the extracted images. On the reduced outputs a new
set of kernels is applied to perform a finer detail extraction
followed by another sampling process. This is repeated as
necessary.

Finally, as shown in Fig. 2, the outputs of the last
convolution-sampling process are sent to a fully connected
supervised learning network that is responsible for classifying
the details to a previously established category [5].

IV. RELATED WORK

In [6], the authors made a classification for 3D recon-
struction approaches, focusing on shape representations, the
network architectures, and the training mechanisms, stating
specific issues such as limited datasets, fine-scale reconstruc-
tion, and unseen objects. Recently, Xie et al. [7] proposed
to reconstruct synthetic 3D models into a low-quality voxel
mesh and a point cloud using a dataset of couples of RGB
images and their correspondent disparity maps to feed a 3
CNN pipeline (Fig. 3), this work is the first to use stereo
images for reconstruction based on deep learning. It obtained
similar results to reconstruction from multiple-image-based
reconstructions.

Fig. 3. CNN Architecture for 3d Mesh and Point Cloud Reconstruction from
RGB and Disparity Sterteoscopy Images. [7]

Similarly, Xie worked also on a point view and voxel
reconstruction approach for single and multiple views named
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Fig. 4. DispNet and RecNet Architecture. [7]

Pix2Vox [8] [9]. For the voxel mesh upscaling task, Wang et
al. [10] presented a long-term recurrent CNN and Generative
Adversarial Network (GAN) combination to complete and
improve resolution for voxel volumes. These works generate
low-resolution 323 meshes and get small and simple images
as inputs, our work starts from complex and detailed images
from a small dataset to get similar results in completion.

A relatively recent study to improve recognition by CNNs
is that of Qi et. al [11] which improves the results on both
volumetric and multiview-based reconstructions by using two
CNNs with specialized jobs. These architectures produce also
low-quality voxel meshes. Dryanovski et al [12] using mobile
devices and the Google Tango platform to achieve a low com-
putational cost and low memory consumption reconstruction of
large scenes by using a hash table to store the volumetric infor-
mation. The method also includes a fusion process to improve
the quality and completeness of reconstructions. Kar, Häne,
and Malik [13], propose a stereo reconstruction system based
on projective geometry to transfer from 2D to 3D elements
from multiple images joined by a CNN to a volumetric mesh
of 323 and a depth point map. Riegler et al [14] present a
CNN fusion architecture for multiview reconstruction, based
on truncated signal distance function (TSDF) and octree data
structures for simple objects. The efficiency of representation is
addressed by Liu et al. [15], where the authors propose a point-
voxel convolution to reduce the memory cost of voxel models.
Multiple-view approaches rely on large datsets, camera poses
and costly 3D fusion processes. Moreover, getting many views
for a scene is not always feasible. Stereo-based reconstruction
uses only two images; therefore, partial 3D mesh fusion is less
costly.

In [16], Firman et al. start from a trained set of decision
trees in a random forest to complete a scene making predic-
tions about the reconstructed geometry in voxlets or groups
of voxels, for a low-resolution mesh, using only a single
input depth image. Yang et al. [17], seek a higher resolution
also starting from a single image, but applying Generative
Adversarial Networks (GANs) to identify a specific set of
objects (benches, chairs, armchairs, and tables) from a single
image, but with meshes of 2563 voxels. In contrast, Häne
et al. used Convolutional Neural Networks (CNN), [18] to
achieve a hierarchical prediction by subdividing an initial 163

mesh into a 2563 voxel to refine the result. For that purpose,
they use also a single image, but the framework is prepared
to work with more inputs. More recently, Tatarchenko et al.
[19] proposed two new methods in the recognition task that is
based on the Intersection over Union (IoU) metric: Clustering
and Recovery, although also pointing to low-resolution meshes.
TSDF volumes and regression instead of depth maps are used
by Choe [20] and Murez [21], making their reconstructions
based on camera poses. Jadhav [22], worked on a homography
multiview image correspondence to complete voxel meshes.
Addressing the limitation of single image perspective, Watson
et al. [23] introduces a process for obtaining stereo images
from a single RGB input, adding depth on key information
for reconstruction. Volumen completion from single image
input is made by Varley et al. [24], which work consists
of a fast voxel mesh completion method applied to robot
grasping. One-image-based reconstructions require semantic
labeled datasets and they are restricted to specific domains,
since they complete occluded parts from similar preproccesed
scenes. Stereo reconstruction obtains their depth information
from the very input, and our work relies only in the ground
truth model for refinement. Other approaches like TSDF vol-
umes and homography need also camera poses and multiple
images which are not always available.

Fig. 5. Voxelization Process on Binvox.

Stereo image inputs carry enough depth information to
obtain a suitable 3D voxel mesh model that can be used in
practical applications. Our work starts from a small dataset
of detailed images, so the computational cost is small both in
image processing and 3d mesh fusion. To overcome domain-
restricted limitations, we tested two different categories of ob-
jects: complex low-res scenes and single high-detailed objects.
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Fig. 6. Left: Original Model. Right up: Pairs of Left-Right RGB Images. Right Down: Pairs of Left-Right Disparity Maps.

V. METHODOLOGY

We use the DispNet, and RecNet architecture from [7]
for high-quality volumetric reconstruction from a dataset of
pairs of stereoscopic images with details that recreate real
conditions, such as a Gaussian blur or low lighting. This
dataset was generated from 3D models that could be found on
https://sketchfab.com. The Blender tool was used to create the
RGB and depth images according to the procedure described
in [9]. The dataset is extended by adding the same images with
a depth of field of 3m.

The tested architecture includes interconnected convolu-
tional and residual neural networks of the encoder-decoder
type, as can be seen in Fig. 4. DispNet includes 5 convolution
and 4 deconvolution layers to deliver the two disparity images.
RecNet includes 6 convolution layers, one fully connected
layer, and 7 deconvolution layers to finally build the volumetric
mesh. Two modifications were made to the original RecNet
decoder architecture to produce 1283 voxel grids. Several
residual blocks are included in both networks. CorrNet .. is
a three-dimensional convolutional network with nine convolu-
tional layers and a final fully connected layer; Although it was
implemented, due to limitations of the development platform
it could not be tested with more than 500 images.

A comparison of the refinement of the volumetric mesh
was obtained by training the current convolutional network to
obtain higher resolution meshes; specifically 1283 voxels. This
will be useful for models belonging to taxonomies with more
complex shapes. For the validation of the results, a voxelization
process will be used from the tested models to obtain ground
truth meshes with Blender and Binvox (Fig. 5). The results
were measured using the IoU metric against the previously
obtained ground truth reconstructions.

A. Implementation Details

The architecture was implemented with Kaggle Notebook,
using a NVIDIA Tesla P100 GPU with 13 GB of GDDR5
memory, an Intel(R) Xeon(R) 2.30GHz CPU, 16 GB of RAM.
and 359 GB of disk space. The implementation has been
carried out with the Python programming language and the
Keras deep learning library, which is already equipped with all

the types of convolutional layers required to build the proposed
models. Due to limitations in space and use time, the number
of epochs for both networks are limited to 100, which we
found was enough to achieve good results.

Fig. 7. Binvox Mesh Sample.

B. Data set

Dataset has been built with pairs of stereoscopic images
in RGB and their correspondent disparity maps captured
from 40 3d objects selected from 2 categories of free mod-
els obtained from sketchfab.com: complex scenes with low
polygon count and high poly count statues. A production
pipeline for these images has been created in the Blender
(https://www.blender.org/) tool, where a stereoscopic camera
with azimuth angle θaz ∈ [0.360) and elevation angle θel = 30,
with a 35mm focal length, 32mm sensor size, and a 130mm
[7] stereo baseline. The camera is positioned at 12 different
angles with an angular increment of 30o. The RGB images
obtained are 256×256 pixels. In the case of disparity images,
these are obtained by applying a depth filter which is then
color inverted to generate the disparity details. These images
also have 256×256 pixels. Fig. 6 shows some images in RGB
and disparity. Each model has been voxelized with the binvox
tool (https://www.patrickmin.com/binvox/), since this format
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is more compatible with Keras (Fig. 7). A three-dimensional
mesh of occupancy (binary values) is obtained, loaded, and
stored for use. The size of the dataset is then increased by
applying a 6-pixel neighborhood Gaussian blur effect to the
RGB images.

VI. RESULTS

A. DispNet Results

The DispNet network received two RGB stereoscopic
images concatenated as a 6-channel array for a set size of
960 pairs. As output, it generated two stereoscopic grayscale
disparity images (1 channel), which are also concatenated in
a 2-channel array with a set size of 960 pairs. The network
is configured as shown in Fig. 4. The Dispnet class includes
a minimum square error loss function, Adam optimizer, 100
training epochs, batch of size 6, and validation set equal to
30%. After training, the following metrics are obtained:

Fig. 8. Dispnet Loss and Accuracy during 100 Epochs of Training.

TABLE I. TRAINING RESULTS FOR DISPNET AFTER 100 EPOCHS

Metric Train Validation
loss 0.0016 0.0027
accuracy 0.8634 0.8431

Table I shows an error value below of 0.01% for both sets
and an accuracy of about 86% for the training set and 84% for
the validation set. The training progress can be seen in Fig. 8.
These results are quite acceptable, even though it is a small
dataset. Visually the disparity images produced by Dispnet are

very similar to the original in shape and color. This can be
seen in Fig. 9. These generated images are feasible to use as
input for RecNet.

B. RecNet Results

Two inputs are used for RecNet: the left RGB image and
disparity pair merged into 4 channels, and the corresponding
right side RGB-disparity merge, as output; the occupancy maps
are given by binvox with each of the 40 models multiplied 12
times. Unlike DispNet, RecNet is implemented with a binary
entropy loss function. Adam optimizer, 100 epochs and batch
of 6 are also used. The metrics shown in Table II and Fig.
10 indicate a very low precision that could not be corrected
either. with CorrNet aggregation [9]. The generated models
are acceptable in both categories as seen in Fig. 11. There
is usually a loss of fine detail such as thin lines or small
extremities.

TABLE II. RECNET TRAINING METRICS FOR 100 EPOCHS

Metric Train Validation
loss 0.007 0.0128
accuracy 0.1256 0.1139

C. Intersection over Union Metric

The IoU metric calculates the total number of matches
between two 3D meshes produced by an intersection or coin-
cidences in both arrays over the total number of occupied cells
of both meshes. This is represented in the following equation

IoU =

∑
i,j,k I(V̂

(i,j,k) > t)I(V (i,j,k))∑
i,j,k I[I(V̂

(i,j,k) > t) + I(V (i,j,k))]
(2)

Where V̂ (i, j, k) is the generated mesh, V (i, j, k) the
original mesh; t is a limit (threshold) applied to the values
of the mesh produced to approximate the values to 0 or 1
respectively. The I function is a limit function to obtain only
binary values before performing the summations. The IoU
result is a percentage value indicating the matches between
arrays.

For both categories with normal and blurred variants on
each one; the resulting IoU metric is shown in Table III. Fig.
12 indicates the comparison of metric values for each category,
as well as the IOU frequencies for grouping entries with an
interval of 0.05.

TABLE III. AVERAGES IOU VALUES FOR EVERY CATEGORY TRAINED

Category Value
Scenes 0.896
Statues 0.815
Blurred scenes 0.895
Blurred statues 0.816
Average 0.856
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Fig. 9. Disparity Maps Generated by DispNet.

Fig. 10. RecNet Loss and Accuracy during 100 Epochs of Training.

VII. DISCUSSION

Our research shows that a 3D volumetric reconstruction can
be achieved from a small set of pairs of stereoscopic images.
The metrics get values of 80% for a small dataset compared to
[7], where the author uses more than a million pairs of images,

with values between 65% and 70% for model precision.
The additional information given by the depth maps helps
to get more accurate reconstructions. A smaller set of better
quality images requires less computational power and less time
consumption, which is ideal for applications on free GPU
developing platforms like Google Colab or Kaggle Notebook.
It is possible that the balance of quality of inputs and the size of
the set leads to good reconstructions with fewer resources. This
is related to the main limitations faced during this study: the
time and size constraints of GPU use and the access to bigger
datasets. Our CNN architecture wasn’t specially modified for a
1283 voxel model, apart from a stride modification on the final
layer of the pipeline. Therefore, a more precise model could
be achieved with additional configurations on the architecture.

The quality of inputs has been established as an important
variable to reconstruction accuracy. The author in [7] used
137×137 RGB pictures, relying more on the number of inputs
given. 256× 256 or even bigger RGB and depth pictures have
shown similar results for this CNN architecture as smaller
pictures. This could be extended for reconstruction research
on single and multiple RGB images, which usually use low-
quality pictures. These results could be extended for real good-
quality pictures taken with stereo and depth cameras. Better
tuned CNNs based on this architecture can be made for these
real pictures, the model resolution could also be extended with
extra steps in the pipeline.

VIII. CONCLUSION

In this work, we have developed a two-step convolutional
network architecture for 3d reconstruction from a small dataset
of pairs of stereoscopic images with complex scenes and
detailed objects. Our work is influenced by depth perception
cues noticed as disparity maps which are generated in the
first step and then used to feed the reconstruction step. Re-
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Fig. 11. RecNet Result Meshes (Left) Compared to Ground Truth Meshes (Right).

constructed models have on average 80% on the intersection
over union metric. This percentage is similar to state-of-the-
art proposals with bigger datasets. The models also have better
resolution (1283) than previous works. This suggests that a set
of hundreds of rich and detailed stereoscopic images could be
enough for the reconstruction of these volumetric models. The
dataset was enlarged with a blurred version of the RGB images
as input. Future work will focus on refining the final result with
bigger datasets, applying another transformations to images
like rotation and contrast; and tuned networks settled for this
task that could overcome low accuracy levels on network
training and validation.
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