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Abstract—The importance of software systems and their 

impact on all sectors of society is undeniable. Furthermore, it is 

increasing every day as more services get digitized. This 

necessitates the need for evolution of development and quality 

processes to deliver reliable software. For reliable software, one 

of the important criteria is that it should be fault-free. Reliability 

models are designed to evaluate software reliability and predict 

faults. Software reliability prediction is always an area of interest 

in the field of software engineering. Prediction of software 

reliability can be done using numerous available models but with 

the inception of computational intelligence techniques, 

researchers are exploring new techniques such as machine 

learning, genetic algorithm, deep learning, etc. to develop better 

prediction models. In the current study, a software reliability 

prediction model is developed using a deep learning technique 

over twelve real datasets from different repositories. The results 

of the proposed model are analyzed and found quite encouraging. 

The results are also compared with previous studies based on 

various performance metrics. 

Keywords—Software reliability; deep learning; performance 
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I. INTRODUCTION 

Reliability is an essential and one of the most critical 
aspects of a software product and it is also one of the major 
attributes to determine software quality. Software reliability 
can be described as its ability to perform its intended functions 
accurately and successfully. Regular checks during software 
development ensure the prevention of faults which can further 
lead to failure and might incur huge efforts to correct or 
recover if detected later. Therefore, reliability prediction is an 
important aspect of any software development approach. For 
reliable software, it is important that it should be fault-free. 
Computational intelligence techniques like machine learning, 
genetic algorithm, deep learning, etc. are gaining the attention 
of researchers for reliability prediction. The current study uses 
a deep learning-based technique for software reliability 
prediction due to its potential to predict high accuracy on the 
huge amount of unstructured or unlabeled data [1]. Early fault 
prediction using deep learning models helps to improve the 
reliability of the software. 

Deep learning is a subset of machine learning algorithms 
that are built on Artificial Neural Network (ANN). Neural 
networks are computational systems that respond to external 
inputs with dynamic state changes and try to determine 
underlying relationships within a dataset. ANN with two or 
three layers is a basic neural network and the neural network 
with more than three layers is considered as a deep learning 

concept [38]. The label deep was inspired by the number of 
processing layers that data must pass through. Deep learning 
advances have resulted in the development of neural networks 
with more complexity to generate more powerful learning 
abilities. The deep learning model takes an input and performs 
a step-by-step nonlinear transformation and then uses the 
learnings to generate a statistical model as output. The model 
continues these iterations until the output is accurate enough. 
Due to the data-hungry nature of deep learning algorithms and 
increased dataset size, complex problems can be easily solved 
more accurately and efficiently. 

Deep learning integration into Software Engineering (SE) 
tasks has become increasingly popular among software 
developers and researchers these days. Deep learning assists 
SE experts in extracting requirements from natural language 
text, generating source code, and predicting software faults for 
typical SE tasks. Deep learning in SE has increased the interest 
of both the SE and Artificial Intelligence (AI) experts. 

This paper aims to develop a novel neural network-based 
deep learning reliability prediction model. The choice of the 
deep learning model has been determined because of its ability 
to automatically capture and learn the discriminative features 
from data, which results in an improved reliability prediction 
model. This research will open the road for other deep learning 
approaches to be used in fault prediction. So, that software 
engineers will be able to better predict the likelihood of faults 
which results in greater resource use, risk management and 
better quality control. 

The remaining paper is organized into five sections. 
Section 2 conducts a literature review of related studies to 
explore the various models already used for predicting the 
software reliability and its accuracy so, that the scope of further 
improvement can be identified. Section 3 discusses the 
proposed model design for improving the accuracy of software 
reliability prediction. Step by step process is also discussed in 
this section. Section 4 implements the model and presents the 
results. Results are presented in tabular as well as graphical 
form and also discussed in detail. Section 5 compares the result 
of the current study with previous studies. In the final section 
of the paper, the work has been summarized with possible 
directions for future research. 

II. LITERATURE REVIEW 

The use of Computational Intelligence (CI) in the field of 
software engineering is expanding nowadays. It can be 
witnessed by the huge research work undergoing and still being 
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carried out by various researchers. Some important research 
work related to software reliability prediction is filtered and 
studied to conduct the current work. 

The term CI can be traced back to 1983 when Nick 
Cercone and Gordon McCalla started the International Journal 
of Computational Intelligence (IJCI). Cercone and McCalla 
sought to differentiate their work from existing studies in the 
broad Artificial Intelligence domain [2]. Bezdek[2] was the 
first to propose a technical definition of CI and its relation to 
neural networks like computational networks. Marks [3] 
summarized that fuzzy systems, genetic algorithms, neural 
networks, and evolutionary programming is building blocks of 
CI. In the same year,Karunanithi et al. [4] explored the 
application of connectionist models based on a neural network 
for software reliability growth prediction and claim better 
results as compared to traditional parametric models. In the 
same field, Ho et al. [5] extended the research, the work 
compared traditional and connectionist models while 
extensively studying software reliability prediction using 
connectionist models. Therefore, neural networks give good 
results in predicting errors but do not provide appropriate 
results under different circumstances. In 2005, Tian and 
Noore[6] mentioned that neural networks are difficult to 
interpret physically the neurons in layer and proposed an 
alternative approach based on genetic algorithm predict 
software reliability and Costa et al. [7] proposed a hybrid 
approach which used both genetic algorithms and evolutionary 
neural networks for improving the reliability prediction. In this 
approach, a genetic algorithm is used to analyze the number of 
neurons in each layer of ANN. The use of hybridization 
became prominent since 2005 in the field of predicting 
software reliability. Another study by Pai and Hong [8] 
experimented combination of Simulated Annealing (SA) and 
Support Vector Machines (SVMs) for predicting software 
reliability. In this study, SA is used to choose the SVM 
parameters. However, the authors suggest exploring other 
searching techniques for improving the results. Hu et al. [9] 
used recurrent neural networks (RNNs) and genetic algorithms 
for designing generic software reliability models and showed 
better results with the larger datasets. In 2011, Lo [10] 
introduced techniques Support Vector Machine (SVM) and 
Autoregressive Integrated Moving Average (ARIMA), both the 
proposed models predict better results as compared to the 
results of the traditional model. Li et al. [11] used the Adaboost 
technique based on machine learning which combines weak 
predictors into a single predictor to improve prediction 
accuracy and the results are verified using two case studies. 
Similarly, Roy et al.[12]a proposed neuro-genetic algorithm in 
which ANN is trained using backpropagation and further the 
weights of the network are optimized using Genetic Algorithm 
(GA). Further the results are compared with traditional 
methods and good results are obtained by the model. Then, 
researchers focused more on machine learning and deep 
learning methods. Jin et al. [13] proposed a combination of 
Quantum Particle Swarm Optimization (QPSO) and hybrid 
Artificial Neural Network (ANN) for predicting fault-
proneness of software modules. QPSO was used for 
dimensionality reduction whereas ANN classified modules into 
non-faulty and faulty categories. The approach is simple to 
implement, and results showed the correlation between a 

module‟s software metrics and fault-proneness, which makes it 
possible to minimize cost and effort for software maintenance. 
Malhotra [14] reviewed various machine learning techniques 
for software fault prediction, performance is assessed and 
compared with statistical techniques. The study proved that 
machine learning technique models predict software fault 
better than traditional models, but these techniques are still 
limited. Wahono[15] proposed three influential frameworks 
i.e., Lessmann et al., Menzies et al., and Song et al. by 
combining Machine Learning (ML) classifiers for predicting 
software defects and improving the accuracy but these 
frameworks are not able to handle noisy data. Jaiswal and 
Malhotra [16] studied the application of various ML techniques 
including Instance-Based Learning (IBL), Cascading Forward 
Backpropagation Neural Network (CFBPNN), Multilayer 
Perceptron (MLP), General Regression Neural Network 
(GRNN), Feed Forward Backpropagation Neural Network 
(FFBPNN), Bagging, and Adaptive Neuro-Fuzzy Inference 
System (ANFIS) on industrial software. The results showed 
that ANFIS provides better reliability prediction compared to 
other methods. Several recent studies indicate the strength of 
the deep learning approach in software reliability prediction 
such as Clemente et al.[17] developed a predictive model using 
a deep learning technique that predicts security bugs with more 
accuracy (73.50%) as compared to machine learning 
techniques.[18][19][20][21][22] identified all the challenges, 
metrics required for finding faults and testing using different 
computational techniques.[23][24][25][26][27] fire reviewed, 
and assessed qualityparameters for component-based software 
using different computational intelligence techniques. Qasem 
et. al. [28] predicted software faults using two deep learning 
algorithms i.e., the Multi-layer Perceptrons (MLP) and 
Convolutional Neural Network (CNN) using four NASA 
datasets and concluded CNN is a better model but implemented 
on limited datasets. 

The literature review shows that there are a lot of 
techniques being used by various researchers in predicting 
software reliability, but more work needs to be done for 
predicting reliability for complex or large datasets. However, 
the neural network-based deep learning approach is gaining the 
attention of researchers due to its capability of providing better 
results. However, still, there is a scope on improving the 
accuracy of the reliability prediction by detecting faults in the 
software. To further improve prediction accuracy, a deep 
learning model is designed which is presented in subsequent 
sections. 

III. DESIGN OF MODEL 

Deep learning algorithms are based on ANN where hidden 
layers try to uncover relationships between data. An artificial 
neural network works by processing inputs through several 
dynamic state responses. The interconnected processing 
elements between different layers are called neurons and are 
responsible for facilitating the computational system. Artificial 
neural networks have evolved to provide increasingly complex 
structures with powerful learning abilities. 

The framework used for building this model is shown in 
Fig. 1. 
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Fig. 1. Model Design Framework. 

A. Data Acquisition 

Data acquisition obtains meaningful data and transforms it 
into a digital form that can be processed by the model. The data 
used in the current study is obtained through various online 
sources and loaded into panda‟s data frames for further 
processing. A total of twelve datasets are used which consists 
of various features. Table VI presents the detail of all the 
datasets along with their sources. NAN (invalid or not a 
number) values check, and categorical features encoding are 
performed on the datasets. If the dataset contained NAN, it is 
ignored as they may create noise in further processing and 
lower the accuracy of the prediction. The attributes of the 
datasets are also divided into features and target attributes. 

B. Data Preparation / Preprocessing 

Collected data contains some impurities, therefore, not 
suitable for modeling in its raw form. It needs to be cleaned 
and pre-processed. For preprocessing the data transformation 
and normalization are carried out. This is accomplished by the 
application of natural logarithmic transformation and min-max 
normalization. Natural logarithmic transformation is used to 
reduce the skewness of the dataset distribution [38] and the 
min-max normalization technique provides high accuracy, 
learning speed and transforms the large value ranges into small 
range values. After normalization, a dataset is built using a 
weighted random sampler technique. The dataset is divided 
into sub-datasets for training, validation, and testing. This 
distribution is done randomly with 70% training data, 
10%validation data, and 20%testing data. The purpose of 
training is to make the dataset applicable to train or fit for the 
model. Validation is used for unbiased evaluation at the time of 
hyperparameter tuning and the test set does unbiased 
evaluation of the final model. 

The dataset contains many outliers which can affect the 
sample mean/variance and skew the results. To eliminate the 
noise due to outliers, considering the median and the 
interquartile range can yield better results. Therefore, Robust 
Scaling is applied to relevant features in the data set. 

C. Modelling 

The model is implemented using a dense neural network 
which consists of three types of layers: input, hidden, and 
output and shown in Fig. 2. In this type of network, all the 

neurons at one layer are connected with all the neurons of the 
previous layer. Various configurations of the model are 
designed for each dataset and later the configuration with the 
best results is finalized. Activation functions along with the 
layers are decided to design a network. Also, the initial values 
of hyperparameters are decided. 

 

Fig. 2. Dense Neural Network Architecture. 

For different configurations on each dataset different 
activation functions are used within the hidden layers in this 
study like ReLU (Rectified Linear Unit), GELU (Gaussian 
Error Linear Unit), Tanh (Hyperbolic Tangent), Softmax, and 
Sigmoid [29][30] and Table I represents all the activation 
functions with range. 

 ReLU is a non-linear, differentiable, and 
computationally fast converge training phase of the 
network. 

 A sigmoid activation function is non-linear, 
differentiable, and output ranges from 0 to 1 so that the 
output layer produces the result in probability for binary 
classification. 

 Tanh is non-linear, differentiable, monotonic, and used 
for classification. The negative inputs are mapped 
strongly negative, and the zero inputs are mapped near 
zero. 

 GELU is formed by combining properties of dropout, 
zoneout, and ReLu. It is a neuron activation function 
based on the Gaussian function. 

 The softmax activation function normalizes the 
probability distribution of predicted target classes. 
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TABLE I. DIFFERENT ACTIVATION FUNCTION 

Activation Function Function f(x) Range 

ReLU {
        
        

 [0,∞) 

Sigmoid,  ( ) 
 

(     )
 (0,1) 

Tanh,     ( ) 
       

       
 (-1,1) 

GELU 
  
 

 
[     (

 

√ 
)] 

where     ( ) is the error function 

(-0.17,∞) 

Softmax 

   

∑     

 

for i= 1,2,3,…,j 

(0,1) 

D. Training 

In the training section, cross-entropy is used as a loss 
function. Cross-entropy calculates the difference between two 
probability distributions. SGD (Stochastic Gradient Descent) 
and Adam (Adaptive Moment Estimation) are used for 
optimization. They are used to update the weights after each 
iteration. The updated weights are saved so that further, loss 
and accuracy can be calculated. SGD is used as 
the optimization technique because of its ability to learn faster 
by randomly selecting a subset of data, generally called batch, 
and performing gradient descent iteratively on that subset. 
Adam optimization is an enhancement over SGD. It brings the 
best of AdaGrad and RMSProp, which are extensions of SGD 
to provide an adaptive learning rate with little memory 
requirements and computational efficiency. 

Cross entropy (   ) is a loss function that is used during 
training to adjust model weights and find optimal weights. The 
aim is to minimize the loss, where a perfect model has zero 
loss. While zero loss is often difficult to achieve practically, 
models are optimized to minimize the loss to the extent 
possible. 

       ∑        
 
                (1) 

for n classes, where    is the truth label and    is the 

Softmax probability for the j
th
class [31]. 

Further, the cost-sensitive learning method is used to tackle 
the class imbalance problem by assigning different weights to 
both classes (faulty and non-faulty). The difference in weights 
influences the classification of the classes during the training 
phase. The whole purpose is to penalize the misclassification. 

E. Testing 

In this phase, the evaluation of the model is done 
statistically using four standard performance metrics accuracy, 
precision, recall, and F1-score. The percentage of correct 
predictions for test data is referred to as accuracy. The 
confusion matrix along with all these four-performance metrics 
calculates support value. The support is the actual number of 
occurrences of a response class in a dataset. Further, the 
accuracy of the model is evaluated using formulas: 

Accuracy = (TP + TN) / (TP + FP + FN + TN)          (2) 

where, TP= True positive, TN= True negative, FP= False 
positive, FN= False negative. 

Precision is the number of positive class predictions that are 
actually positive class predictions. It is calculated as number of 
correctly predicted positive observations divided by total 
predicted positive observations [32]. 

Precision = TP/ (TP + FP)             (3) 

A recall is defined as the number of correct positive 
predictions divided by all correct positive samples [32]. 

Recall = TP/ (TP + FN)             (4) 

F1-score measures the accuracy of a model on a dataset and 
is calculated as the harmonic mean of the model‟s precision 
and recall [32], 

F1 = 2*(precision * recall)/ (precision + recall)          (5) 

IV. IMPLEMENTATION AND RESULTS 

The deep learning model is implemented on various 
datasets as shown in 0and determines its software reliability 
prediction ability. The objective of the model is to classify 
modules as faulty or non-faulty, based on different features of 
the dataset and all the datasets are shown in Table II. 

TABLE II. DATASET 

Dataset 
Data with 

defects 

Data with no 

defects 

Target 

Feature 

MJ 14299 79849 Bugs 

PC5 5176 16670 Defective 

JM1 2106 8779 Defects 

MC1 68 9398 C 

PC2 23 5566 C 

KC1 326 1783 Problem 

PC4 178 1280 C 

PC1 77 1032 Defects 

PC3 77 1032 Defects 

KC2 107 415 Problems 

Datatrieve 11 119 Faulty 

COCOMO NASA 26 34 Rely 

The MadeyskiJureczko (MJ) dataset presents metrics that 
are used to build software defect prediction models for 
component-based software. Different metrics included are 
6Chidamber and Kemerer (CK) metrics, 1 Henderson-Sellers 
(HS) metric, 5 Bansiy and Davis (BD) metrics, 3 Tang and 2 
Martin metrics. Other metrics are based on McCabe‟s 
complexity. The target attribute is named „bugs‟. 

Datasets MC1, PC1, PC2, PC3, PC4, and PC5 are used for 
software defect prediction with 40, 21, 36, 22, 37, 39attributes 
respectively. Each dataset has 1 target attribute for predicting 
faults. The target attribute for MC1, PC1, PC2, PC3, PC4, PC5 
is named as „C‟, „defects‟, „C‟, „defects‟, „C‟ and „defective‟ 
respectively. 

JM1, KC1, and KC2 datasets are used to encourage 
repeatable, verifiable, refutable, and improve predictive models 
of software engineering. All datasets have 22 attributes 
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consisting of 5 different lines of code measure, 3 McCabe 
metrics, 4 base Halstead measures, 8 derived Halstead 
measures, a branch count, and 1 target field. The JM1 target 
field is named as„defects‟, KC1 target attribute is named as 
„problem‟and KC2 target attribute is classified as „problems‟ 
which tells whether the module contains/does not contain 
reported defects in terms of 1 and 0. 

Datatrieve dataset consists of a total of nine attributes 
including eight condition attributes and one target attribute. 
The target attribute is named „faulty6_1‟ which has values of 
either 1 or 0. 0 indicates no faults are found and 1 indicates that 
faults are present. The purpose of the dataset is to study the 
correlation of code quality with the characteristics of the 
modules and the transition process between two versions of the 
software. The characteristics of the modules are recorded using 
attributes “LOC6_0”, “LOC6_1”, “AddedLOC”, 
“DeletedLOC”, “DifferentBlocks”, “ModificationRate”, 
“ModuleKnowledge”, “ReusedLOC”, “Faulty6_1”. 

The COCOMO NASA dataset attributes are used to find 
the required software reliability. The target feature is named 
„Attribute Rely‟. Values of various attributes are represented in 
the form of nominal, very high, high, low which are further 
converted into 0 and 1 during preprocessing. The seventeen 
attributes and its characteristics used are RELY (Required 
software reliability), DATA (Database size), CPLX (Process 
complexity), TIME (Time constraint), STOR (Main memory), 
VIRT, TURN (Turnaround time), ACAP (analysts), 
AEXP(Application), PCAP(Programmers), VEXP (Virtual 
machine), LEXP(Language), MODP (Modern Programming), 
TOOL (use of software), SCED (Schedule information), LOC 
(Line of code), ACT_EFFORT (Actual effort). 

On all the twelve datasets, the same modeling approach is 
used with different configurations. In modeling, different 
layouts of neurons, and the values of hyperparameters (epoch, 
batch size, learning rate) have experimented and all the values 
are hyper tuned to achieve better results, the optimal 
combination of hyperparameters minimizes the loss function. 
Different dataset results in different values of parameters and 
different configurations for optimal results are shown in 0. 

The loss and accuracy graph over the number of epochs for 
every dataset is shown in TABLE VFig. 4 to 27. A good 
prediction model should have low loss and high accuracy. As 
observed from the loss and accuracy graphs from all the 
datasets, the accuracy of the model over the iterations is higher 
than the loss respectively. 

An accuracy metric is used to measure how accurate the 
developed model‟s prediction is as compared to actual data. 
The loss values are calculated on training data and verified 
using validation data. Loss values are observed after each 
iteration of optimization to find the optimal model parameters. 
The model's loss and accuracy data for each epoch are saved in 
the history which is used by the model's developer to make 
more informed decisions about the architectural choices that 
must be made. Optimal Configuration for the datasets is 
represented in Table III. 

TABLE III. OPTIMAL CONFIGURATION 

Dataset Layers in Model 
Learning 

Rate 

Activation 

Function 

MJ [24,1024,112,1] 0.04 ReLu 

PC5 [39,1024,812,512,2] 0.0094 Tanh 

JM1 [21,1024,512,256,1] 0.0004 
Softmax, 

GELU, ReLu 

MC1 [40,1024,2] 0.009 Softmax 

PC2 [35,1024,256,2] 0.001 ReLu 

KC1 [21,1024,512,256,128,64,2] 0.0099 Tanh 

PC4 [37, 1024,812,512,2] 0.0094 Tanh 

PC1 [21,1024,2048,2] 0.0099 Tanh 

PC3 [37,1024,512,2] 0.01 GELU 

KC2 [21, 1024,256,1] 0.005 
Sigmoid, 

Tanh 

Datatrieve [9, 256,512,64,1] 0.00001 Tanh, ReLu 

COCOMO 

NASA 
[17,512,128,1] 0.2 Tanh 

The design model is tested using various performance 
metrics i.e., accuracy, precision, recall, and F1- score. These 
are the most commonly used reliable metrics for assessing the 
performance of a prediction model. The performance 
evaluation is done using a confusion matrix. The confusion 
matrix provides a summary of the individual class predictions 
for class-specific evaluations and provides information in terms 
of TP, TN, FP, and FN. 

The results of the prediction model are shown in Table IV 
TABLE IVand Fig. 3. 

TABLE IV. PERFORMANCE METRICS 

Dataset Accuracy Precision Recall 
F1-

score 
Support 

MJ 89% 0.90 0.96 0.93 55894 

 PC5 91% 0.99 0.90 0.95 11669 

JM1 89% 0.92 0.95 0.93 5266 

MC1 95% 0.99 0.95 0.97 7518 

PC2 86% 0.99 0.86 0.93 3896 

KC1 84% 0.90 0.91 0.91 1248 

PC4 89% 0.99 0.87 0.93 895 

PC1 85% 0.99 0.84 0.91 722 

PC3 83% 0.99 0.81 0.89 1052 

KC2 86% 0.89 0.94 0.92 311 

Datatrieve 86% 0.97 0.87 0.92 83 

COCOMO 

NASA 
96% 0.99 0.91 0.95 23 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 3, 2022 

688 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 3. Performance Metrics Graph. 

From the results following are the observations that are 
made: 

 Among all the datasets, the model showed the highest 
accuracy for the COCOMO NASA dataset i.e., 96% 
accuracy with precision 99%, recall 91% and f1-score 
95% but it has the least instances among all the datasets. 
Datatrieve dataset also contains fewer instances and the 
model‟s accuracy on Datatrieve is 86% with good 
precision 97%, recall 87%, and f1-score 92%. 

 MJ dataset has the highest number of instances among 
all the datasets and prediction accuracy on this dataset is 
89% which is validating the model as a good model. 
The model showed a precision of 90%, recall of 96%, 
and f1-score of 93%. This shows that this model is 
working well on a large dataset. 

 The prediction accuracy on MC1 and JM1 datasets is 
95%, 89% respectively, though its instances are less 
than MJ. Results of precision 99%; 92%, recall 95%; 
95% and f1-score 97%; 93% respectively are also very 
promising. 

 The prediction accuracy on PC1, PC2, PC3, PC4, and 
PC5 datasets is more than 80%. The results are average 
as compared to previous work on these datasets. It 
concludes that this model is giving optimum results on 
these datasets. 

V. COMPARISON WITH EXISTING MODELS 

Our proposed deep learning-based reliability prediction 
model shows better results in terms of accuracy, precision, 
recall, and f1-measure as compared to other techniques like 
decision tree, linear regression, backpropagation neural 
network, SVM, random tree, random forest, naïve bayes, 
hybrid machine learning techniques, etc. For the dataset KC1 
accuracy is second highest after VOTE [34] proposed by the 
author Wang et.al achieved the highest precision but better as 
compared to other models like Under Sampling Strategy 
(USS), Random Forest (RF), and Naïve Bayes (NB), whereas 
KC2 dataset achieved the highest accuracy, precision, recall 
and f1-measure when compared with other machine learning 
techniques. Datatrieve dataset achieved the highest accuracy 
and precision when compared with the previous model (USS) 
result given by author Rao et al. [35]. COCOMO NASA 
dataset is evaluated with the highest score among all the 
datasets, but the result cannot be reliable because the dataset is 
small. Except for accuracy, where it is second after Random 
Forest by Wang et.al[34], the MJ dataset, which is the largest 
component-based dataset, outperforms all other approaches 
like Linear Regression (LR), Decision Trees (DT), Naïve 
Bayes (NB), SVM, Stochastic Gradient Boosting, KNN in all 
performance metrics[33]. While JM1 dataset results top in all 
the metrics as compared to models USS [35], VOTE, RT, NB 
[33]. Dataset MC1, PC1, PC2, PC3, PC4, and PC5 achieve the 
highest results in precision, recall, and f1-score.Performance 
metrics of various models for different datasets are listed in 
Table VII. 

TABLE V. LOSS AND ACCURACY GRAPH FOR VARIOUS DATASETS 

 
Fig. 4. Accuracy Graph for MJ. 

 
Fig. 5. Loss Graph for MJ. 

 
Fig. 6. Accuracy Graph for PC5. 

 
Fig. 7. Loss Graph for PC5. 

 
Fig. 8. Accuracy Graph for JM1. 

 
Fig. 9. Loss Graph for JM1. 
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Fig. 10. Accuracy Graph for MC1. 

 
Fig. 11. Loss Graph for MC1. 

 
Fig. 12. Accuracy Graph for PC2. 

 

 
Fig. 13. Loss Graph for PC2. 

 
Fig. 14. Accuracy Graph for KC1. 

 
Fig. 15. Loss Graph for KC1. 

 
Fig. 16. Accuracy Graph for PC3. 

 
Fig. 17. Loss Graph for PC4. 

 
Fig. 18. Accuracy Graph for PC1. 

 
Fig. 19. Loss Graph for PC1. 

 
Fig. 20. Accuracy Graph for PC3. 

 
Fig. 21. Loss Graph for PC3. 

 

Fig. 22. Accuracy Graph for KC2. 
 

Fig. 23. Loss Graph for KC2. 

 
Fig. 24. Accuracy Graph for Transaction. 
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Fig. 25. Loss Graph for Transaction. 

 
Fig. 26. Accuracy Graph for COCOMO NASA. 

 

Fig. 27. Loss Graph for COCOMO NASA. 

TABLE VI. DATASET DESCRIPTION 

Dataset Criterion 
No. of 

Attributes 

No. of 

instances 
Source of Dataset 

MJ 
Software defect 

prediction 
24 94148 https://madeyski.e-informatyka.pl/tools/software-defect-prediction/ 

PC5 
Software defect 

prediction 
39 17186 https://github.com/klainfo/NASADefectDataset/raw/master/OriginalData/MDP/PC5.arff 

JM1 
Software defect 

prediction 
22 10885 http://promise.site.uottawa.ca/SERepository/datasets/jm1.arff 

MC1 
Software defect 

prediction 
40 9466 https://www.openml.org/data/download/53939/mc1.arff 

PC2 
Software defect 

prediction 
36 5589 https://www.openml.org/data/download/53952/pc2.arff 

KC1 
Software defect 

prediction 
21 2109 http://promise.site.uottawa.ca/SERepository/datasets/kc1.arff 

PC4 
Software defect 

prediction 
37 1458 https://www.openml.org/data/download/53932/pc4.arff 

PC1 
Software defect 

prediction 
22 1109 http://promise.site.uottawa.ca/SERepository/datasets/pc1.arff 

PC3 
Software defect 

prediction 
22 1109 https://www.openml.org/data/download/53933/pc3.arff 

KC2 
Software defect 

prediction 
22 522 http://promise.site.uottawa.ca/SERepository/datasets/kc2.arff 

Datatrieve 
Success/ failure in 

the transaction 
9 130 http://promise.site.uottawa.ca/SERepository/datasets/datatrieve.arff 

COCOMO 

NASA 

Required software 

reliability 
17 60 http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa_v1.arff 

TABLE VII. COMPARISON OF ACCURACY WITH THE EXISTING MODELS IN THE LITERATURE 

Dataset Model Accuracy Precision Recall F - measure 

MJ 

Proposed 89% 90.00% 96% 93% 

Linear Regression (LR) [33] 74.99%   18.22%   

Decision Tree (DT) [33] 74.45%   10.79%   

Naive Bayes (NB) [33] 73.76%   22.28%   

Support Vector Machine (SVM) [33] 78.19%   26.58%   

Stochastic Gradient Boosting (GBM) [33] 76.16%   22.03%   

K-Nearest Neighbor (KNN) [33] 84.24%   56.83%   

PC5 

Proposed 91% 99% 90.00% 95% 

VOTE [34] 97.46%       

Random Tree [34] 97.08%       

Naive Bayes [34] 96.44%       

https://madeyski.e-informatyka.pl/tools/software-defect-prediction/
https://github.com/klainfo/NASADefectDataset/raw/master/OriginalData/MDP/PC5.arff
http://promise.site.uottawa.ca/SERepository/datasets/jm1.arff
https://www.openml.org/data/download/53939/mc1.arff
https://www.openml.org/data/download/53952/pc2.arff
http://promise.site.uottawa.ca/SERepository/datasets/kc1.arff
https://www.openml.org/data/download/53932/pc4.arff
http://promise.site.uottawa.ca/SERepository/datasets/pc1.arff
https://www.openml.org/data/download/53933/pc3.arff
http://promise.site.uottawa.ca/SERepository/datasets/kc2.arff
http://promise.site.uottawa.ca/SERepository/datasets/datatrieve.arff
http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa_v1.arff
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Dataset Model Accuracy Precision Recall F - measure 

JM1 

Proposed 89% 92% 95% 93% 

USS[35] 66.40% 82.50% 96.90% 89.10% 

VOTE [34] 81.44%       

Random Tree [34] 75.30%       

Naive Bayes [34] 80.45%       

MC1 

Proposed 95% 99% 95% 97% 

USS[35] 85.50% 67% 43.30% 49.70% 

VOTE [34] 99.42%       

Random Tree [34] 99.43%       

Naive Bayes [34] 93.80%       

PC2 

Proposed 86% 99% 86% 93% 

VOTE [34] 99.53%       

Random Tree [34] 99.29%       

Naive Bayes [34] 97.11%       

KC1 

Proposed 84% 90.00% 91% 91% 

USS[35] 78.50% 87.80% 95.30% 91.40% 

VOTE [34] 85.62%       

Random Tree [34] 82.85%       

Naive Bayes [34] 82.50%       

PC4 

Proposed 89% 99% 87% 93% 

ILLE-SVM (Improved Locally Linear Embedding and Support)[37] 90.00% 62.50% 83.33% 71.43% 

VOTE [34] 90.28%       

Random Tree [34] 87.74%       

Naive Bayes [34] 87.11%       

PC1 

Proposed 85% 99% 84% 91% 

USS[35] 84.10% 52.60% 36.30% 40.90% 

ILLE-SVM (Improved Locally Linear Embedding and Support)[37] 84.78% 78.26% 90.00% 83.68% 

LASSO-SVM[36] 78.26% 79.40% 75.46% 79.85% 

SVM[36] 71.32% 69.29% 69.25% 70.64% 

Linear regression (LR)[36] 84.20% 61.50% 69.60% 65.30% 

Back propagation neural network(BPNN)[36] 79.30% 60.60% 72.40% 66.90% 

Cluster Analysis (CA)[36] 71.60% 63.50% 71.20% 67.10% 

VOTE [34] 93.73%       

Random Tree [34] 91.64%       

Naive Bayes [34] 89.12%       

PC3 

Proposed 83% 99% 81% 89% 

USS[35] 76.60% 37.60% 26.10% 30.10% 

ILLE-SVM (Improved Locally Linear Embedding and Support)[37] 89.66% 73.08% 86.36% 79.05% 

VOTE [34] 89.12%       

Random Tree [34] 86.01%       

Naive Bayes [34] 48.30%       

KC2 

Proposed 86% 89% 94% 92% 

VOTE [34] 82.91%       

Random Tree [34] 79.86%       

Naive Bayes [34] 83.62%       

Datatrieve 
Proposed 86%       

USS[35] 50.00% 91.20% 99% 95.40% 

COCOMO 

NASA 
Proposed 96% 99% 91% 95% 
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VI. CONCLUSION 

Predicting software reliability has become an essential 
activity in software development to develop better quality 
software. Recently, the researcher community has identified 
that computational intelligence techniques can outperform 
traditional prediction methods. This study predicts the software 
reliability using a dense neural network which is implemented 
using deep learning. The classification is performed on twelve 
datasets KC1, KC2, Datatrieve, COCOMO NASA, MJ, JM1, 
MC1, PC1, PC2, PC3, PC4, and PC5. The optimal model is 
designed with different configurations for each dataset for 
classification. Results are evaluated using four standard 
performance metrics, i.e., accuracy, precision, recall, and f1-
score. The results obtained by our model show better results as 
compared to previous models in terms of accuracy, especially 
dataset MJ, JM1, KC2, and COCOMO NASA. 

Hybridization of deep learning techniques with other 
computational intelligence techniques can be explored for 
better results. The same study can be extended with large 
industrial datasets to achieve better results and can also be 
experimented with other algorithms. 
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