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Abstract—The breakthroughs in securing speaker verification
systems have been challenging and yet are explored by many
researchers over the past five years. The compromise in security
of these systems is due to naturally sounding synthetic speech
and handiness of the recording devices. For developing a spoof
detection system, the back-end classifier plays an integral role in
differentiating spoofed speech from genuine speech. This work
conducts the experimental analysis and comparison of up-to-date
optimization techniques for a modified form of Convolutional
Neural Network (CNN) architecture which is Light CNN (LCNN).
The network is standardized by exploring various optimizers such
as Adaptive moment estimation, and other adaptive algorithms,
Root Mean Square propagation and Stochastic Gradient Descent
(SGD) algorithms for spoof detection task. Furthermore, the ac-
tivation functions and learning rates are also tested to investigate
the hyperparameter configuration for faster convergence and
improving the training accuracy. The counter measure systems
are trained and validated on ASV spoof 2019 dataset with Logical
(LA) and Physical Access (PA) attack data. The experimental
results show optimizers perform better for LA attack in contrast
to PA attack. Additionally, the lowest Equal Error Rate (EER) of
9.07 is obtained for softmax activation with SGD with momentum
wrt LA attack and 9.951 for SGD with nestrov wrt PA attack.

Keywords—Spoof detection; speech synthesis; voice conversion;
convolutional neural networks; optimizers; gradient descent algo-
rithm; spoofed speech; automatic speaker verification

I. INTRODUCTION

The uniqueness of voice makes it a popular choice as
a biometric for securing smart-phones, telephonic-verification
for banking, online-shopping and interestingly, voice-based
logins. This also requires the voice biometric based systems
to be resilient to unauthentic access in the form of spoofing
attacks. The Automatic Speaker Verification (ASV) systems
are thriving to make the voice-based applications secured
through countermeasures or spoof detection algorithms. These
spoof detection systems are embedded in the ASV pipeline as
standalone or as a sub-part of the security stream. Apparently,
the spoofing attacks may be categorized as synthetic or replay
attacks. The synthetic speech (SS) is generated by means of
Voice Conversion (VC) or Text-to-Speech (TTS) generators.
The replay speech is acquired through careful filtering of the
target speech through a recording device. Apart from this
category, the spoofing attacks may be direct or Physical Access
(PA) attacks and indirect or Logical Access (LA) attacks.
The former requires physical space i.e., microphone while the

latter is conducted by direct injection of speech, exempting the
sensor involvement. Lately, there is rise in spoofing attacks
on the ASV systems due to impeccable quality of synthetic
speech generators and cheaper high-end recording devices. Yet,
these attacks are not preventable, but they can be detected
by building countermeasures ensuring the safety of the ASV
framework.

II. RELATED LITERATURE

The robustness of a spoof detection system depends on its
internal building blocks which includes the feature extraction
and classification. During the training mode, the input speech
is processed to reduce redundancy in data and filter out the
required information from the speech, that is, naturality and
speaker specific content. These unique features are then trained
using appropriate machine learning algorithm to get a training
rule or trained model. Consequently, in the testing mode the
appropriate features are extracted from the test samples and
fed to the trained model following which the samples are
categorized as genuine or spoofed. For building a model, the
number of samples and types of attacks must be considered in
a dataset as they will help boast the validation accuracy. The
datasets available for PA attacks are Red Dots [1], VoicePA
[2] and ASV spoof 2017 [3] while for LA attack, SAS [4] and
ASV spoof 2015 are popular . The ASV spoof 2019 [5], [6]
has all three kind of attacks samples including synthetic and
replay speech. Hence, it is chosen over all other datasets for
developing an anti-spoofing algorithm.

With regards to capturing human and synthetic traits from
the speech, the glottal excitation and source-filer parame-
ters have been extracted along with prosodic features. The
Linear Prediction Co-efficient (LPC) [7], Linear Prediction-
Residual parameters [8] and Line Frequency Cepstral Co-
efficient (LFCC) [9] based spectral features are found to
represent speech quite profoundly. Additionally, the perceptual
parameters have also been explored as they have similarity
with human perceptual filter bank. The Mel Frequency Cepstral
Co-efficient (MFCC), Constant Q-factor Cepstral Co-efficient
(CQCC) [10] and Cochlear Filter Cepstral Coefficients with
Instantaneous Frequency (CFCCIF) [9] are successfully tested
perceptual features for LA attack. The Constant Q transform
(CQT) unlike the standard Fourier Transform has irregular
frequency bins that allows it to maintain a constant Q-factor

www.ijacsa.thesai.org 884 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

throughout the spectrum [11]. This promotes evident discrim-
ination within the spectrum as spoofing related characteristics
are revealed distinctly. Hence, considering the efficiency of
CQT parameters, we are using these as the feature extraction
technique.

In addition, the classification techniques have also caught
attention of researchers for building a robust spoof detection
system. Usually, the Gaussian Mixture Models (GMM) and
Universal Background Models (UBM) are employed as they
perform well with almost all the feature extraction techniques
[8]. Yet, the main shortcoming of this arrangement is that
the GMM and UBM are trained independently making them
unaware of each other’s learning rule. To overcome this
shortcoming, the GMM and Support Vector Machines (SVM)
were explored as they were more versatile and performed
better than the GMM-UBM duo [12]. Additionally, the GMM
classifier is limited to perform better with features of low
dimensionality [13]. Furthermore, the Deep Learning models
have been investigated and perform comparatively well in
contrast to the shallow models [14]. Of course, they require
a lot of labelled data for the training but also fail to capture
temporal information simultaneously. This lead to exploring
other deep models like Convolutional Neural Networks (CNN)
[15], Recurrent Neural Networks (RNN) [16], Long Short-
Term Memory (LSTM) [17], Gated Recurrent Units (GRU)[15]
and Generated Adversarial Networks (GAN) [10]. In [16],
[18], CNN-RNN are combined to explore effectiveness of both
models individually. Thus, the CNNs are used when spatial
learning is of importance while in case of temporal learning,
RNNs and its variants are used. Moreover, the CNNs are
powerful in handling large amount data at the cost of high
training time and large number of parameters. To overcome
this, the Light-CNN (LCNN) architecture is introduced to
avoid repetition in the parameters and ultimately improve
training resources [19]. The LCNN based fusion architecture
achieved best results in the ASV spoof 2017 challenge with
lower EER for replay attack [10]. Then onwards, LCNN gained
popularity and has been tried for synthetic speech detection as
well [20]. Following which, in the ASV spoof 2019 challenge,
an improved version of this architecture with angular-softmax
was presented for both LA and PA attack [21]. The major
highlight of the LCNN is its ability to achieve generality for
variation in data distribution such as recording conditions,
noisy speech, speaker variations, etc [19]. This is possible
by endowing in optimization of these networks. This leads
to wider range of applications of the network along with
impeccable theoretical proofs. Even though the optimization
algorithms have been existing for more than two decades,
through continuous refinement for highly complex networks
with large data size, a defined reassessment of these state-
of-the-art optimizers is the need of the day. Inspite of the
popularity of LCNNs, according to author’s knowledge, there
is no significant work found in optimizing the LCNN for spoof
detection task. Moreover, tuning of the hyperparameters im-
proves the performance of the network with faster convergence.
This work also dedicates its attention to various activation
functions as they hold a crucial role in deciding the category
of the unknown test sample which ultimately contributes to
lower model loss and increase performance accuracy. Also,
a precise choice of activation might prove to enhance the
training time by making the network learn complex patterns

easily. Different combinations of learning rates, activations and
optimizers have been investigated in this work to determine
most suitable model parameters for spoof detection task. Thus,
the objectives of this work can be summarized as following:

i An extensive comparison of various optimizers is per-
formed using ASVspoof 2019 dataset for LA and PA
attacks. The common optimizers compared include
Adaptive moment estimation (Adam), Adaptive-
gradient (Adagrad), Adaptive-delta (Adadelta), Nes-
terov Accelerated Adam (Nadam), Root Mean Square
Propagation (RMSprop), Stochastic Gradient De-
scent (SGD), SGD with nesterov accelerated gra-
dient (NAG) and momentum. This unravels certain
unexpected results as against the usual classification
problem where the RMS prop performs equally well
with the gradients and delta versions of Adam.

ii Exploring activation functions popularly used in
training the transfer function are compared with vari-
ations in optimizers to suit the spoof detection appli-
cation for the LCNN framework. These activations
include Softmax, Rectified Linear Unit (ReLU) and
Logistic function.

iii The experimental results are compared with state-of-
the-art softmax-Adam optimizer and evaluated using
Equal Error Rate (EER) along with Receiver Operat-
ing Characteristics (ROC) Curve.

The article is arranged as follows: Section III ASV based
spoof detection framework and Section IV describes the LCNN
architecture and hyperparameter testing. The Section V in-
cludes the experimental results and discussion while Section
VI is the Conclusion of the work.

III. SPOOF DETECTION SYSTEM

The proposed spoof detection framework is portrayed in
Fig. 1 showing two phases of operation. The training phase is
also called enrolment phase where known authentic speaker
samples are enrolled along with spoofed speech samples.
Initially, the CQT features are extracted to obtain a spectro-
graphic representation of speech [22]. The two dimensional
spectrogram along with their labels is then fed to the LCNN
architecture to obtain the trained speaker model using a loss
function. Furthermore, in the testing phase, the unknown test
samples which are a mixture of genuine and spoof speaker
samples, are represented using CQT features. This feature set
is then tested using LCNN classifier and categorized as spoof
or genuine. The CQT based features extraction and LCNN
classifier are explained in following sub-Sections III-A and
III-B.

A. Front-end CQT Features

The CQT features were introduced few decades ago as an
alternative to short-time Fourier transform (STFT) [22]. The
STFT being a filtering technique for a long spectrum broken
down into shorter windows leads to an increasing Q-factor
towards higher frequencies. This is exactly opposite to the
human speech perception model where the Q-factor is found
to be constant from 500Hz to 20kHz. Thus, STFT fails to
represent the human perception model and CQT is preferred.
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Fig. 1. Proposed Spoof Detection System.

The CQT based features, C(i,m) are computed as shown in
Eq. 1.

C(i,m) =

k=m+[Mi/2]∑
k=m−[Mi/2]

s(k)z∗i (k −m+Mi/2) (1)

Where, i = 1 to I , is the index of frequency bins, Mi is
window length which is a variable and z∗i is complex conjugate
of basis. Hence, at lower frequencies, a high resolution is ob-
tained wrt frequencies and at higher frequencies, high temporal
resolution is possible. Thus overcoming the shortcoming of
STFT with fixed time-frequency resolutions [21], [23].

B. Back-end LCNN Classifier

The LCNN are popular due to their reduction in network
parameters with nearly similar error rates as the CNNs [19].
In this work, we have employed a compact version of LCNN
structure [21] using the Maximum Feature Mapping activation
(MFM) layer. It is based on the Max-out activation which has
the ability to choose the right features for problem solving
purposes. The combination of MFM and multiple Batch Nor-
malization (BN) layers form a LCNN structure with dense
layer at end that wraps up the overall output from the previous
layers. Also, after alternate MFM layer, a max pooling layer is
added which picks out max value out a patch of feature map
rather than input feature map. A more detailed information can
be found in Section IV.

IV. LCNN STRUCTURE AND HYPERPARAMETER TUNING

The conventional CNN uses activation function in the
convolution layer, typically ReLU [15]. The CNN with MFM
activation triggers two neurons and ignores one (in case of
2/1 MFM). This is termed as competitive relationship; hence
MFM acts as a fine feature selection algorithm embed inside
a CNN. The LCNN network used in this work has nine
MFM-convolution, 4 max Pooling, 7 BN layers and 2 Fully
Connected (FC) layers as shown in Fig. 2.

The BN layer is appended after every convolution layer as
it leads to faster convergence and improved accuracy. For an in-
put convolution layer, vk ∈ Rh×w, where k = {1, 2, . . . , 2K},
w is spatial width while h is spatial height. The MFM
activation is given as shown in Eq. 2.

v̂ma,b = max(vma,b, vm+K
a,b ) (2)

Where 2K is number of channels specific to input layer, m,
a and b are indices for channel, width and height respectively.
Therefore, the output dimension is Rh×w×K and the gradients
are calculated as shown in Eq. 3 and Eq. 4.

δv̂ma,b
δvma,b

=

{
1, if vma,b ≥ vm+K

a,b

0, elsewhere
(3)

δv̂ma,b

δvm+K
a,b

=

{
0, if vma,b ≥ vm+K

a,b

1, elsewhere
(4)
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Fig. 2. Light Convolutional Neural Network Architecture for Spoof Detection System.

TABLE I. VARIOUS OPTIMIZERS WITH THE UPDATE RULE

Optimizer Update Rule Description

Adam Θs+1 = Θs − α√
v̂s

m̂s

s = time step, α = learning parameter, Θs = model parameters,
ms and vs are decaying average gradients of past gradients and square of the gradients

respectively.

Adadelta
Θs+1 = Θs + △Θ

△Θ =
RMS[△Θ]s−1

RMS[g]s
gs

gs = gradient of objective function

Adagrad gs,i = ▽ΘJ(Θs,i)
Θs+1,i = Θs,i − αgs,i

J(Θs,i) = objective function
i =. individual parameter

SGD Θ = Θ − α ▽Θ J(Θ;T i;Oi)
T i = ith training sample

Oi = ith label

SGD with momentum Θ = Θ − vs
vs = σvs−1 + α ▽Θ J(Θ)

σ =. momentum factor

SGD with NAG Θ = Θ − vs
vs = σvs−1 + α ▽Θ J(Θ − σvs−1)

vs−1 = square of the previous decaying gradient

Nadam Θs+1 = Θs − ms

ms = σvs−1 + αgs,i

α = learning rate
Θs+1 = future model parameter

RMSprop Θs+1 = Θs − α√
E(g2)s+ρ

gs
E(g2)s = running average at time step s,

ρ = smoothing term

TABLE II. DETAILS OF ASV SPOOF 2019 DATASET

Logical Access Physical Access
Genuine Spoofed Genuine Spoofed

Training Set 2580 22800 5,400 48,600
Development Set 2548 22296 5,400 24,300

Total
5128 45096 10800 72900

50224 83500
133724 Samples

Apparently, half the information bearing neurons are ac-
quired by 2/1 MFM activation. Thus, implying 50% reduction
in comparison to conventional CNN architecture. This is due
to the element-wise maximum computation for all the feature
channels. Hence, leading to sparser connections.

Additionally, this work experiments with different
renowned optimizers to calculate the loss function including
SGD, with momentum and NAG, Adaptive gradient techniques
such as Adam, Adadelta, Adagrad and RMSprop optimizers
[24]. Furthermore, we experimented by changing the activation
functions from state-of the-art softmax-Adam optimizer [20]
based LCNN architecture to ReLU and logistic activations.
The aim to try out various optimizers and activations is
to investigate the appropriate combination of individual
optimization algorithms with respective activation functions.
Many parameters have different working scenarios to perform
best and this gives the reason to explore other optimizers and
activations specific to spoof detection scenario.

A. Gradient Optimization Algorithms

The optimization of hyper-parameters is an essential step in
training any Deep Learning framework. In this work, we have
tested various gradient optimizers for overcoming the chal-
lenges of tuning learning rate, slow convergence, over-fitting
of the model and lower accuracy. The SGD algorithms are
derived from Gradient descent optimizers with noisy stochastic
convergence at each iteration for a particular sample [25]. This
implies that it can capture generality without the network to
complete the training on the entire training set. On the other
hand, the SGD algorithms might experience overshooting due
to improper choice of learning rate. A small value of learning
rate leads to slow convergence while a big value might lead
to no convergence at all. To overcome this issue, momentum,
NAG and adaptive optimizers are investigated. The momentum
increases the speed of convergence towards steeper direction
as against less steeper ones. The typical value of momentum
is 0.9 [25]. Additionally, the NAG with momentum stores
future gradients to speed-up the convergence by improving the
learning rate to higher or lower values accordingly.

Apart from momentum and NAG, a vivid way of improving
the performance of gradient optimizers is through adaptive
gradient techniques. The AdaGrad [26] is one such optimizer
that makes larger updates for not so frequent parameters while
small updates for frequent ones. This also leads to accumu-
lation of past gradients ultimately leading to a zero learning
rate. In contrast to Adagrad, the Adadelta [26] uses a fixed
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TABLE III. EXPERIMENTAL RESULTS FOR LA AND PA ATTACK VARIOUS OPTIMIZERS AND ACTIVATION FUNCTIONS

Type of
System

Type of Attack PA LA
Activation Optimizer Epochs Learning rate EER Epochs Learning rate EER

Baseline Softmax Adam 100 0.00001 11.949 50 0.00001 11.282

Proposed

Softmax

Adadelta 100 0.001 15.989 100 0.001 15.433
Adagrad 100 0.001 11.022 50 0.001 11.559

SGD 100 0.001 21.438 100 0.001 15.687
SGD momentum 100 0.001 12.844 100 0.001 9.055

SGD-nesterov 100 0.001 9.951 100 0.0001 10.671
Nadam 100 0.00001 12.091 50 0.0001 10.312

RMSprop 100 0.00001 11.834 100 0.00001 11.387

ReLU

Adam 100 0.00001 53.87 50 0.00001 43.303
Adadelta 100 0.001 38.978 100 0.001 45.721
Adagrad 100 0.001 48.814 100 0.001 43.981

SGD 100 0.0001 48.385 100 0.001 58.71
SGD momentum 100 0.0001 59.073 100 0.001 50

SGD-nesterov 100 0.0001 56.507 100 0.001 50
Nadam 100 0.0001 44.681 100 0.0001 49.986

RMSprop 100 0.00001 48.033 50 0.00001 54.692

Sigmoid

Adam 100 0.00001 12.245 100 0.00001 10.015
Adadelta 100 0.001 18.844 100 0.001 21.39
Adagrad 100 0.001 15.85 100 0.001 13.984

SGD 100 0.0001 30.07 100 0.001 14.379
SGD momentum 100 0.0001 11.386 100 0.001 13.382

SGD-nesterov 100 0.0001 12.27 100 0.001 10.535
Nadam 100 0.0001 15.779 100 0.0001 18.275

RMSprop 100 0.00001 11.317 100 0.00001 19.893

window to refrain from past gradient accumulation. Similarly,
the RMSprop tries to fix the past gradient issue by averaging
the square of the gradients. Furthermore, the Adam optimizer
estimates learning rate for every parameter value. It is a fusion
of RMSprop with momentum. Additionally, the amalgam of
Adam with NAG is Nadam optimizer [25]. Further, we have
applied an Early stopping condition by tracking the validation
error with some patience to see if it is experiencing any
changes; if not then, training is halted. Table I summarizes
the update rule for all the discussed optimizers.

B. Activation Functions

The basis of any neural network to function the intended
way is through activation. The activation functions lead the
input to the output that speeds-up the training for capturing
complex nature of the patterns within the input data. Usually
the softmax and arg-softmax activations have been used in the
LCNN architectures [21]. In this work, we have considered the
combination of softmax, ReLU and logistic activation function
to observe the loss characteristics with the chosen optimizers.
The ReLU activation has been a popular choice amongst larger
CNN as it overcomes the issue of vanishing gradients but at
the same time experiences the dead neuron issue. While the
logistic function is useful for binary classification tasks. The
softmax is an extension of logistic activation as it works for
multi-class problem [26].

V. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of these optimizers is measured using
the Equal Error Rate (EER) [27] and the ROC curve is plotted

to check goodness of the classification algorithm signifying
the Area Under Curve (AUC) value [28]. The EER must be
ideally as low as possible. The system is trained and evaluated
using the ASV spoof 2019 dataset that has synthetic (TTS and
VC) and replay speech samples along with genuine speaker
samples. There are 20 speakers (male and 12 female) including
more than one hundred thousand samples with LA and PA
attacks. This is currently the only large scale dataset with all
three attack types and genuine samples. Also, in this work the
development dataset is used for validation purposes. The test
data or evaluation data has a lot of variation in environment
conditions for replay speech and synthesizers of synthetic
speech. Thus ensuring an unbiased testing scenario. Table II
shows the details of ASV spoof 2019 dataset. Table III shows
the EER along for various optimizers and activation functions
for both the attacks while Fig. 3 and Fig. 4 portrays the ROC
curve for individual activations and optimizers for LA and PA,
respectively.

From Table III, the efficiency of sigmoid and softmax are
similar in contrast to ReLU where it fails to capture generality
in both the kind of attacks. The EER for ReLU is almost 50 for
most of the optimizers implying that gradient is stuck in local
minima rather than global minima. Additionally, the improper
scaling of weights in ReLU function leads to loss of actual
data being considered. The sigmoid and softmax are related
as the latter is just an extension for multi-class problems. This
results in similar performance by both the activations. Further,
the spoofed samples have multiple types of attack generated
from various VC and TTS sources. Hence, the softmax gives
slightly better EER of 9.005 for LA and 9.951 for PA attack.
Infact, the softmax is observed to converge faster with as low
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Fig. 3. ROC Curve for Various Activations and Optimizers for LA Attack (a) Softmax (b) ReLU (c) Sigmoid.

Fig. 4. ROC Curve for Various Activations and Optimizers for PA Attack (a) Softmax (b) ReLU (c) Sigmoid.

as 50 epochs for Adam and Adagrad for LA attack only.

In case of optimizer efficiency, Adam, RMSprop, SGD with
momentum and NAG lead in EER for all the activations. The
test condition comprise of noise in the dataset, hence RMSProp
is the obvious performer for sigmoid activation with EER
of 11.317. The SGD optimizer performs inconsistently with
large variations in EER ranging from 14.379 to 30.070. This
is due to lack of convergence and difficulty in adapting to
convex problems. Thus as oppose to the SGD optimizer, the
SGD with momentum and NAG are found to have a lower
EER for both attacks. Hence, they are suitable for capturing
generality like in the spoof detection task. The Adam optimizer
performs consistently well with EER ranging from 10.015 to
11.949. So, it may be explored where generality is not of
critical importance. Adadelta and Adagrad are not the shining
performers but Adagrad gives a 0.3% improvement in EER
than Adadelta; yet they perform poorly in comparison to
Adam. The Nadam performs well for softmax optimizer while
its performance worsens with increase in EER for sigmoid
activation. The overall choice of activation will be softmax
with any optimizer from the ones leading. Also, the EER for
LA attack is lower than PA attack. Thus, the network efficiency
is explicitly achieved for LA attack.

To confirm the performance of various optimizers the
Receiver Operating Characteristics (ROC) curve with AUC are

shown in Fig. 3 and Fig. 4 for LA and PA attack respectively.
The required value of AUC is between 0 and 1 with values
closer to 1 implying a good classifier. The Fig. 3(a) shows ROC
for softmax function where all the optimizers perform well.
The SGD with mometum has exceptional AUC of 0.97. In Fig.
3(b), none of the optimizers are able to form a learning rule in
case of ReLU activation implying the the ReLU classifiers are
not suitable for spoof detection task. The Fig. 3(c) confirms
that the Adam and SGD with NAG have same AUC of
0.95 which is best amongst the other optimizers for sigmoid
activation. Simiarly for PA attack, from Fig. 4(a) the ROC for
softmax function shows all the optimizers perform well except
SGD which has AUC of 0.86, while in Fig. 4(b), no significant
efficiency is observed for ReLU activation. Lastly, Fig. 4(c), in
case of sigmoid activation, the RMSprop and SGD momentum
have same AUC of 0.94 which are better amongst the rest of
the optimizers.

VI. CONCLUSION

The goal of conducting this study was proving that ini-
tialization of the network prior to training and tuning of
parameters during the training improves the network accuracy.
Thus in this work, a comprehensive comparison of various
optimizers was carried out on LA and PA attack data. The
rationale for conducting such a study was to signify the
role of optimizers in classifying the test samples accurately.
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Moreover, the activation functions were also considered in
this comparative work to highlight their role based on nature
of input—output data. The softmax and sigmoid prove to be
better as against the ReLU function in the LA attack. Also,
the networks converged faster with less number of epochs
for Adam optimizers. In case of PA attack, the softmax
function performed not so well and so did the ReLU function;
while sigmoid showed significant improvement in accuracy in
comparison to the other two. Further, it was evidently found
that the RMSprop performed consistently well amongst all
the others;while the SGD with momentum performed better
than SGD but not so well against SGD with NAG. On the
whole, the choice of optimizer, learning rate and activation
affect the accuracy of the training network and thus the overall
performance of the spoof detection system. In future, this work
may be extended to experimenting with more activations like
leaky-ReLU, Exponential linear unit and parametric ReLU;
while optimizers such as AMSGrad may be explored to solve
the issues of current adaptive algorithms.
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