
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

Empirical Analysis of Learning-based Malware
Detection Methods using Image Visualization

Abdullah Sheneamer
Department of Computer Science

Jazan University
Jazan, Saudi Arabia

Essa Alhazmi
Department of Computer Science

Jazan University
Jazan, Saudi Arabia

James Henrydoss
Vision and Security Technology Lab

University of Colorado
Colorado Springs, USA

Abstract—Malware, a short name for malicious software is
an emerging cyber threat. Various researchers have proposed
ways to build advanced malware detectors that can mitigate
threat actors and enable effective cybersecurity decisions in the
past. Recent research implements malware detectors based on
visualized images of malware executable files. In this framework,
a malware binary is converted into an image, and by extracting
image features and applying machine learning methods, the
malware is identified based on image similarity. In this research
work, we implement the Image visualization-based malware
detection method and conduct an empirical analysis of vari-
ous learners for selecting a candidate learning classifier that
can provide better prediction performance. We evaluate our
framework using the following malware datasets, Search And
RetrieVAl of Malware (SARVAM), Xue-dataset, and Canadian
Institutes for Cyber Security (CIC) datasets. Our experiments
include the following learning algorithms, Linear Regression,
Random Forest, K-Nearest Neighbor (KNN), Classification and
Decision Tree (CART), Support Vector Machine (SVM), Multi-
Layer Perceptron (MLP), and deep learning-based Convolutional
Neural Network (CNN). This image-visualization-based method
proves to be effective in terms of prediction accuracy. Some
conclusions emerge from our initial study and find that a Con-
volutional Neural Network (CNN) algorithm provides relatively
better performance when used against SARvAM and various
malware datasets. The CNN model achieved a high performance
of F1-score and accuracy in the binary classification task reaching
95.70% and 99.50%, consecutively. The model in the multi-
classification task achieved of 95.96% and 99.30% (F1-score and
accuracy) for detecting malware types. We find that the KNN
model outperforms other traditional classifiers.

Keywords—Malware detection; malware analysis; deep learn-
ing; machine learning; malware features

I. INTRODUCTION

Malware attacks are continuously evolving, and the spread
of malware is ubiquitous and unstoppable. Attackers spread
the malware through the Internet, email, and social media for
the primary purpose of harming computers with a fraudulent
intention. Typically, malware is an umbrella name for a set of
malicious software, including viruses, worms, Trojan horses,
spyware, etc. and are created to cause extensive damage to
either data or systems or gain unauthorized access to a system
or network. Cisco’s recent cyber security threat report explores
how cybercriminals exploited by building coordinated multi-
step attacks using the following four types of attacks: crypto
mining, phishing, Trojans, and Ransomware. These attacks
received ten times more queries than any other type of attack.
Building advanced software defense methods to mitigate the

spread of malware is an absolute necessity. Malware detection
is a process of detecting the presence of malware on a host
system or identifying whether a particular program file is
malicious or not malicious, i.e., benign [1]. The malware
detectors play a crucial role in building early warning systems
to thwart any attacks and prevent hackers from using computer
systems during the zero-day attack period.

In the past, various research works built a plethora of
malware detection methods that address techniques to im-
plement advanced malware detectors. Nevertheless, malware
authors continuously innovate new ways to penetrate the
defense mechanism. A vast amount of research work exists that
formulates the signature-based, behavioral-based, and machine
learning-based malware detection approaches [2], [3], [4], [5],
[6]. In a signature-based detection, each file is analyzed, as-
signed a signature or hash (a unique alphanumeric way to iden-
tify malware), and then added to the signature database, where
it’s used for comparison in subsequent malware incidents.
This technique identifies specific patterns in the application
to determine whether the file is malicious by verifying against
a known set of signatures for matching patterns. These patterns
can be syntactic, e.g., the sequence of instructions, or semantic-
based, e.g., control or data flow properties. One of the critical
aspects of any malware detection system is identifying whether
a file is malicious or benign. The signature-based detection is
a simple and widely used method built as AV (Antivirus) and
malware detectors. A behavioral-based technique implements
a dynamic environment where malware binaries are executed
in a sandbox machine to extract the run-time characteristics
to identify the malware. In a static or code analysis-based
malware detection technique, the malware can be classified
by using the code structure of the malicious code, e.g., use of
control Flow Graphs (CFG) to identify the malware. The static
method is the process of analyzing malware/binary without
executing it. Its main objective is to extract useful information
from the malware code structure, and it helps us get an idea
of the type of malware and what the malware can do.

Signature-based approaches allow security analysts to iden-
tify the malicious component quickly, and so they are widely
used by several commercial anti-virus (AV) companies. How-
ever, this technique’s primary disadvantage is that they re-
quire a trained security analyst to manually write appropriate
signatures that can be used to detect each malware family
and load them in a signature database for run-time access.
Unfortunately, this manual effort is error-prone and as well as
time-consuming. Also, storing the whole world of signature-

www.ijacsa.thesai.org 925 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

learning is a daunting task [7], [8], [9], [10]. Besides, when
the malware mutates, the original stored signatures of malware
become obsolete and unable to successfully detect the newly
mutated malware due to the polymorphic and metamorphic
methods that implement code obfuscation [11].

In contrast to signature-based detection, the machine
learning-based (ML) technique aims to address this limitation
of manual intervention and introduce automation by imple-
menting a set of ML-based malware classifiers. Machine learn-
ing algorithms in the classification of malware rely on features
extracted from binary files or a disassembled assembly code
by using either the static code analysis techniques or dynamic
analysis techniques where malware behavioral characteristics
are studied during run-time and at the point of execution.
This information is helpful for future analysis as it will allow
us to analyze the sample efficiently. These techniques extract
various features from the malicious samples and use standard
machine learning algorithms to learn a classifier that labels
the sample as either benign or malicious. However, there
are still some challenges such as processing a large amount
of malware, learning high-dimensional vectors, high storage
usage, and low scalability in learning. Traditional approaches
to malware detection using automatic classification are facing
some limitations. The first one concerns feature extraction:
static approaches are hindered by code obfuscation techniques,
while dynamic methods are time-consuming, and evasion
techniques often impede the correct execution of the code.
The second limitation regards the building of the prediction
models: the completeness of a training dataset may degrade
over time as the malware authors evolve new techniques or can
not be sufficient for some malware families or instances [12].
In addition, many malware runs independent of the operating
system and executes its malicious code even before loads,
running malicious.

The rest of the paper is organized as follows. Section II dis-
cusses related work. Our proposed framework are introduced
in Section III. In Section IV, the framework’s experiments are
described. Discussion are covered in great details in Section
V. Finally, the paper is concluded in Section VI.

II. RELATED WORK

This section includes the relevant research associated with
this project work comprising visualizing malware binaries and
Machine-Learning (ML) based malware detection approaches.
Malware detection has been widely practiced in the past
decade. The detection approaches depend primarily on the
following techniques: static - that relies on analyzing the code
structure, call flow graphs of malware, the dynamic technique
that addresses the behavioral characteristics of malware at
run time execution in a sandbox environment during zero-
day attack period [13]. Nataraj et al. [14] implemented the
first framework on visualizing and classifying malware using
image processing techniques. In their work, malware binaries
are visualized as gray-scale images and observed that malware
from the same families exhibited similarity in texture and
layout. The authors conducted experiments on over 9,458
samples from 25 families of malware using image visualiza-
tion and texture analysis. Nataraj et al. [15] also extended
the approach to have malware binaries are represented as
signals or images, and signal processing-based features are

used to characterize malware. Han et al. [16] implemented
visualization of malware images and performed a similarity
calculation between images of malware variants. In this new
classification method, they proposed a new classifier by first
converting malware into gray-scale images and then applied
a histogram similarity measurement to study the similarity
of gray-scale image entropy maps. Han et al. [17] proposed
a new malware family classification method that converts
malware binary files into images and entropy graphs. Xue et
al. [18] built a homology-based malware analysis using an
ensemble of learning methods. Xue used gray-scale images,
RGB color images, opcode sequences, and system flow graph-
based image visualization methods and used Convolutional
Neural Networks (CNNs) as base learners to perform bagging
ensemble learning that extract features from malware images.
Liu et al. [19] proposed an automatic malware classification
and a new malware detection scheme using a clustering-based
machine learning method. They implemented a new malware
detection using Opcode n-gram based gray-scale images and
feature extraction with Shared Nearest Neighbor (SNN)-based
clustering algorithm on discovering new malware. Fu et al.
[20] proposed visualizing malware using color images and
extracted global texture and color features from the images for
classification. A series of unique byte sequences are extracted
from code and data sections of malware and using simhash
functions converted to local features. K-Nearest Neighbors,
SVM, and Random Forest methods are used to classify the
malware. Makandar et al. [21] implemented malware classi-
fication methods that apply image processing techniques that
use image textures-based features extraction from visualized
malware binaries. Multi-resolution and wavelets are used to
build effective texture feature vectors using Gabor Wavelet,
GIST, and Discrete Wavelet Transform. They proposed using
Support Vector Machine (SVM) based multi-class malware
image classification. Singh et al. [22] implemented a CNN-
based deep-network in building visualization-based malware
detection methods. The use of ensemble learning techniques
in malware detection is not new. Zhang et al. [23] implemented
malicious code detection using multiple classifiers fusion and
is not strictly dependent on specific malicious code. Menahem
et al. [24] improved the prediction performance of malware
detectors by combining the results of the individual classi-
fiers into one final result to achieve overall higher detection
accuracy. Recent research by [25] implemented an ensemble
classification scheme of using both binary and multi-class
classification as part of implementing intrusion detection so-
lutions. There exists incomplete knowledge of class examples
present during the training time. Scheirer et al. [26] introduced
the open-set-based recognition method for a computer vision
problem. The open-set classifiers are expected to detect all
unknown classes present during testing but are not known to
the model during training time. Open-set recognition describes
the scenario in such a way that new classes (unknown unknown
classes) unseen in training appear in testing, and requires the
classifiers not only to accurately classify the known classes, but
also to effectively deal with the unknown ones. In a malware
survey paper, Rudd et al. [13] identified the following six
flawed assumptions to use an open-set based malware detection
instead of a closed-set one: intrusions are closed-set, anomalies
imply class labels, static models are sufficient, no feature space
transformation is required, model interpretation is optional,
and class distributions are Gaussian. Henrydoss et al. [27]

www.ijacsa.thesai.org 926 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

implemented an open-set-recognition-based intrusion detection
scheme.

Han et al. implemented a feature extraction method of
malware binary using texture fingerprints index structure. This
method achieves the highest accuracy of 85.77 %. Han et
al., proposed a malware visualization method that uses both
the static and dynamic code analysis technique with RGB
color images. Using RGB image Opcode is generated from
the malware by executing it, converting that opcode sequence
into images for classification. The accuracy of this method
yielded 98.96%. Wang et al. [28] addressed the problem of
using small training sets. Opcode sequence extracted from
the malware binary file was converted to an image and then
normalized by histograms. Dilated and eroded PCA is applied
to extract features for SVM-enabled classification. Tobiyama
et al. [29], Kolosonjaji B et al. [30], Zhao et al.[23] imple-
mented deep learning techniques CNN to classify malware
images and achieve a prediction accuracy of 96%, 85.6%,
and 96.7% respectively. These experiments were performed
on a few malware samples, and these techniques are not
evaluated against larger datasets. Liu et al., Azia Makandar
et al., Huang et al. implemented malware classification based-
on image analysis using multiple features, e.g., use of binary
files, opcode sequences, and API call sequences, and resulted
in an accuracy of 98.9%, 98.8%, and 99.51%. These methods
used an advanced feature set ranging from 4000 to 50000
feature sets. Huang et al. [31], provided the state of the art
classification performance evaluated against a large dataset that
contains a training set of 4.5 million and a testing set of 2
million samples.

III. FRAMEWORK

A. Malware Analysis using Image Visualization

Traditional malware detection methods are based on static
and dynamic analysis techniques. The static analysis technique
involves analyzing the disassembled code of a malware file.
The dynamic code analysis and run-time-based methods use
malware behavioral characteristics at the point of execution in
a sandbox test environment. We adopt an image-visualization-
based technique to implement malware detectors in this work.
Basically, instead of detecting the malware binary as is where
we convert them into an image and use computer vision
techniques to recognize the image and detect the appropriate
malware family. Visualizing malware is a new type of malware
detection method. Using image processing is a simple but very
effective method [14] of malware detection. Nataraj et al. [14]
propose the initial framework of malware analysis using an
image visualization-based malware detection technique. This
method converts a malware binary into an image, using image
processing techniques, and extract image features, e.g., texture
and layout. Then a machine-learning-based image detector is
used to identify the malware family that is solely based on
malware images that exhibit similar behaviors. Fig. 1 depicts a
detailed architecture and framework of the image-visualization
based malware detection method. Firstly, malware binaries are
converted or visualized as gray-scale images. They observe
that for many malware families, images belonging to the same
family aims to have similar image layout and texture. This is
based on the assumption that most of the malware authors use
an existing malware and modify the source code to create new

malware. It has been observed that the Image visualization-
based malware detection methods [19], [20], [18] yield a
comparable detection performance in comparison to the regular
static and dynamic malware detection technique [32], [33].

Fig. 1. Malware Detection Framework using Visualization Architecture.

The following covers the types of malware visualization
methods: Gray-scale image visualization, RGB color image
visualization-based methods that are widely used in the previ-
ous research works [19], [20], [18]. Also, using the malware
binary file and other code analysis techniques like Opcode
visualization and System Flow Graph (SFG) are also utilized
[18]. As shown in Fig. 1 and Fig. 2, the system uses gray-scale
and RGB color images of malware and computes the feature
vector, i.e., fingerprint, to identify a malware binary. This
fingerprint captures the structural, visual similarity between
malware variants. The Opcode and SFG methods are out of
scope for this work.

B. Gray-Scale Image Generation

In Fig. 2, a malware binary executable file is converted
into a gray-scale image. A malware binary is converted to
a vector of 8-bit unsigned integers and then organized into
a two-dimensional (2D) array. This 2D data is visualized as
a gray-scale image in the range [0,255] where 0 is black,
and 255 denotes white. The image’s width is fixed, and the
height is allowed to vary according to the malware binary
file size. Nataraj et al. recommend image widths for different
file sizes based on empirical observations. We use their code
base for converting and feature extraction for the Gray-scale
image visualization prior to applying our proposed learning
classifiers.

Fig. 2. Malware to Image Converter.

www.ijacsa.thesai.org 927 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

C. RGB-Color Image Generation

In Fig. 2, a malware binary executable file is converted
into a RGB, color image. A malware binary is converted into
a vector of 24 bits binary data (8-bit represents red color, 8-
bit represents the green color, and 8-bit represents blue color)
unsigned integers and then organized into a 2D array. This 2D
data is visualized as a color image [0,255] where 0 is black,
and 255 denotes white. The image’s width is fixed, and the
height varies according to the malware binary file size.

D. Malware Feature Extractor (MFE)

In this work, we conduct the malware detection approach
using various machine learning algorithms on the features of
the visualized image of the malware executable. We learn from
the extensive research on signal and image processing tech-
niques that implement compact signature extraction methods.
The learning algorithms used in this work use image features
extracted from these binaries. We consider techniques from the
signal and image processing where compact structure extrac-
tion methods have been extensively studied. The image pro-
cessing for content-based image retrieval has been extensively
explored by Manjunath et al. [34], and scene classification by
Olivia et al. [35] and Torralba et al. [36]. Manjunath et al.[34]
propose image processing using texture information for brows-
ing and retrieval of large image data. It uses the Gabor wavelet
features for texture analysis and supports a comprehensive
experimental evaluation. The Gabor features provide the best
pattern retrieval accuracy [34]. We adopted a similar malware
feature extraction method formulated using the GIST-based
image features. The GIST method uses texture and spatial
layout of an image [14], [37], [38]. Refer Fig.3 for the design
details of the Malware Feature Extractor. Nataraj et al. founded
the following feature extraction technique. Typically, a smaller
resized or reshaped version of the image is used to compute
the features [36]. Firstly, the binary executable file is converted
to a discrete 1-dimensional signal by numerically coding every
byte value as an 8-bit number that ranges from 0˘255. Then the
signal is “reshaped” to a 2-dimensional gray-scale image with
“d” being the width and “h” being the height of the reshaped
image. During reshaping, the width “d′′ and the height “h”
are fixed depending on the number of bytes in the binary.
The horizontally adjacent pixels in the image correspond to
the adjacent bytes in the binary. The vertically adjacent pixels
are associated with the bytes spaced by a multiple width
of “d′′ in the binary. Then the image is passed through
various filters that capture both the short-range and long-range
correlations in the image. The localized statistics are obtained
by dividing the filtered images into non-overlapping sub-blocks
from these filtered images and computing the average value on
those blocks. This is called sub-block averaging. A compact
signature is formed by concatenating the averages computed
from all the filters. Typically, the features are extracted from
the image’s smaller “resized′′ version.

The feature computation details are explained below. The
image on which the feature needs to be extracted is defined
using (I(x, y)). The GIST descriptor id computed by filtering
the image through a bank of Gabor filters that are band-
pass filters whose responses are Gaussian functions modulated
with a complex sinusoid. The filter response t(x, y) and
the Fourier Transformed version T (u, v) are defined by the

Fig. 3. Malware Feature Extractor.

following equations: Filter Response (FR) equation 1 and
Fourier Transform of FR equation 2.

t(x, y) =
1

(2πσxσy)
exp[

1

2
(
x2

σ2
x

+
y2

σ2
y

)] (1)

T (u, v) = exp[−1

2
(
(u− w)2

σ2
u

+
v2

σ2
v

)] (2)

A filter bank, i.e., a block of filters, is created by rotat-
ing orientation and scaling the basic filter response function
t(x, y), resulting in a set of similar filters. Let S be the number
of scales and O be the number of orientations per scale in a
decomposed multi-resolution image. An image is filtered using
“k′′ such filters to derive “k′′ filtered images. To conduct our
experiment, we select the number of filters, k = 20 with a
number of scales S = 3 and in which the first two scales have
8 orientations (O=8), and the last one has four orientations,
i.e., O = 4. Each filtered image is further divided into B.B
sub-blocks, and the average value of a sub-block is computed
and stored as a vector of length “L′′ where L = B2. Using
this above method, “k′′ vectors of length “L′′ are created per
image. These vectors are then concatenated to form a kL−dim
feature vector called GIST. We choose a B value of 4 to
obtain a 320-dimensional feature vector in our work. When
computing GIST descriptors, there is a key pre-processing
step involved, that is, to reduce the image size to a square of
dimensions SxS. In our work we choose a value of S = 64.
An optimal value of S to be used in the computation because
larger the value of S increased the computational complexity.
Because of the sub-band averaging, this higher S − vale does
not significantly affect and strengthen the signature.

E. Machine Learning Approaches

We have explored a few learning classifiers to evaluate a
better performing algorithm for implementing the malware de-
tection function using virtualized images as part of this work.
This section describes the theory and implementation of the
machine learning algorithms that we used in this study: Naïve
Bayes Classifier (NBC), Support Vector Machines (SVMs),
Random Forests, k-Nearest Neighbours (KNN), CART, and
MLP. As a note, all of the ML classifiers were trained on
normalized data.

www.ijacsa.thesai.org 928 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

F. Evaluation Methods

The evaluation of machine learning classifiers is critical
when studying the learning models and their performance. To
evaluate the performance of the classifier models, we have
used similar evaluation measures that are adopted in most
of the previous research experiments that involve learning-
based malware detection using visualized images of malware
binaries. It covers the prediction accuracy and F1-score under
varying conditions of input parameters. Most of the time,
we use classification accuracy to measure the performance of
machine learning models, and we have also used confusion
matrices to compare the prediction accuracy and failures.

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Precision(P ) =
TP

TP + FP
(4)

Recall(R) =
TP

TP + FN
(5)

F1− score =
2 ∗ Precision ∗Recall

Precision+Recall
(6)

In the above equations, TP, TN, FN, FN, and FP are true
positives, true negatives, false positives, and false negatives.
We use F1-score as the primary performance indicator to
evaluate all the classifier models used in our experiments. F1
score is a single metric that combines both precision and recall.
The precision or True Positive Rate (TPR) is a way to look at
the accuracy of positive predictions performed by a classifier
and can be defined as follows: precision = TP/(TP + FP )
where the True Positives (TP) is the number of true positives,
i.e., correct prediction of a positive sample, and the False
Positives (FP), i.e., the wrong prediction. But precision is
used with another parameter called recall. Recall is defined
by TP/(TP + FN).

We have also used a confusion matrix table to study the
performance of classifiers. The confusion matrix is a table with
rows and columns that report false positives, false negatives,
true positives, and true negatives. This allows a more detailed
analysis than the mere proportion of correct classifications, i.e.,
prediction accuracy.

IV. EXPERIMENTS

Our experiments include the following three step approach.
Firstly, we convert the malware binaries into images. Secondly,
we perform feature extraction using the GIST-enabled MFE.
Finally, we perform the malware classification using the fol-
lowing machine learning methods: Linear Regression, Random
Forest, KNN, CART, SVM, and MLP, CNN. We evaluate
on the following three malware datasets; SARVAM [14] (25
malware families), Xue et al. [18] (10 malware families),
and CIC [39] (six malware categories). These experiments
leverage gray-scale image features and RGB Color image
features to build models of different classifiers and evaluate
their performances.

A. Datasets Summary

Fig. 4 shows malware families and categories distributions
across all datasets. SARVAM dataset contains 9,339 instances
broken into 25 malware families. The families distribution of
malware are unbalanced with majority instances belonging to
a family called Allaple.A as seen Fig. 4(a). In Xue et al.
dataset, there are 10 malware families distributed in 5,314
instances. Fig. 4(b) presents malware family distribution with
almost 20% of Backdoor.Win32.Bifrose as the top family. CIC
is the smallest dataset which contains 439 instances and broken
into six categories with a lot of families. This data shows
that Scareware category includes the most instances among
the families and Botnet includes the least instances as noticed
in Fig. 4(c). Last, the benign dataset includes 1,024 instances
collected from different sources and combined as one dataset.
Finally, our experiments for the gray-scale images include all
datasets while the RGB color images were just included for
Xue and CIC datasets. We have not included the RGB color
images as part of experiments and used only the gray-scale
images due to unavailability of the original executable files of
SARVAM dataset.

B. Models Setup

Our experiments are conducted in two phases. The first
phase focuses on identifying malware from benign as binary
classification tasks. The second phase involves a multi-class
classification that identifies the individual malware family. We
evaluate seven classification algorithms and compare between
them based on four performance metrics stated above. Due
to the limitation of datasets sizes, we used 10-fold cross-
validation mechanism to train and test the classification al-
gorithm. The second phase aims to detect the family or the
category of malware as a multi-classification task using the
most effective classification algorithm in the previous phase.
This task is evaluated by confusion matrix in order to see how
the actual unbalanced malware families and categories are truly
and falsely predicted. Both phases were consecutively built
to compare the results of gray-scale images and RGB color
images.

C. Binary Classification Performance

In this phase. we compare the performance results of the
seven classifiers as described in Fig. 5 and Table I. This task
aims to predict malware instances from benign instances. Each
instance includes 320-dimensional feature vector with the class
types. The total elements of the feature vector are broken
into 960 (320x3) elements. We firstly measure the accuracy
of each fold (using 10-fold cross-validation) in each classifier.
We depicted the accuracy results for the folds through their
quarterlies in the box plots as seen in Fig. 5. We found that K-
Nearest Neighbors classifier outperform others in the accuracy
results across all datasets, while support vector machines and
Naïve Bayes classifiers perform closely low in most cases.

In a more nuanced view, the performance of binary clas-
sification for malware and benign can be described through
four following metrics: average accuracy, precision, recall and
F1-score as seen in Table I. Whilst recall denotes the ability
to locate every relevant instance in classification datasets, pre-
cision denotes the number of data points a classifier classifies

www.ijacsa.thesai.org 929 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

(a) (a) Sarvam dataset (b) (b) Xue dataset (c) (c) CIC dataset

Fig. 4. Malware Families and Categories Distribution over All Datasets.

(a) (a) gray-scale: Sarvam (b) (b) gray-scale: Xue (c) (c) gray-scale: CIC

(d) (d) RGB Color: Xue (e) (e) RGB Color: CIC

Fig. 5. Comparison of Seven Classifiers 10-fold CV Accuracy Results for Predicting Malware and Benign.

TABLE I. BINARY CLASSIFICATION TO PREDICT MALWARE AND BENIGN USING SEVEN CLASSIFIERS OF THREE DATASETS.

Sarvam Xue CIC

Classifiers Class Avg.Acc. Precision Recall F1-score Avg.Acc. Precision Recall F1-score Avg.Acc. Precision Recall F1-score
Gray-Scale RGB Color Gray-Scale RGB Color Gray-Scale RGB Color Gray-Scale RGB Color Gray-Scale RGB Color Gray-Scale RGB Color Gray-Scale RGB Color Gray-Scale RGB Color

LR Benign 93.69% 87.30% 42.29% 56.97% 89.92% 90.50% 82.33% 81.98% 48.24% 52.44% 60.84% 63.97% 87.36% 87.83% 91.18% 91.71% 90.82% 90.72% 91.00% 91.21%
Malware 94.01% 99.33% 96.59% 90.76% 91.43% 98.01% 97.78% 94.25% 94.50% 78.78% 78.89% 79.50% 80.87% 79.14% 79.87%

RF Benign 96.95% 95.64% 72.75% 82.64% 91.02% 90.68% 85.04% 84.15% 52.73% 53.42% 65.10% 65.35% 89.27% 86.60% 93.66% 90.60% 90.82% 91.31% 92.22% 90.95%
Malware 97.09% 99.64% 98.35% 91.51% 91.61% 98.21% 98.06% 94.74% 94.73% 80.00% 79.35% 85.65% 77.90% 82.73% 78.62%

KNN Benign 98.27% 98.84% 83.50% 90.52% 93.83% 93.59% 88.56% 86.58% 71.09% 71.19% 78.87% 78.14% 91.05% 90.29% 96.47% 95.66% 90.63% 90.33% 93.45% 92.92%
Malware 98.22% 99.89% 99.05% 94.63% 94.63% 98.23% 97.87% 96.40% 96.23% 80.84% 80.04% 92.26% 90.43% 86.17% 84.92%

CART Benign 96.40% 84.17% 80.47% 82.28% 88.91% 88.10% 64.23% 63.65% 63.48% 61.91% 63.85% 62.77% 84.89% 83.73% 90.09% 87.81% 88.77% 87.21% 89.42% 87.51%
Malware 97.87% 98.34% 98.10% 92.98% 92.70% 93.19% 93.19% 93.08% 92.94% 74.67% 70.63% 77.22% 71.75% 75.92% 71.19%

NB Benign 80.66% 26.00% 51.86% 34.64% 77.20% 86.01% 35.25% 60.03% 48.44% 39.45% 40.81% 47.61% 77.51% 69.79% 96.77% 94.21% 70.12% 60.35% 81.31% 73.57%
Malware 94.08% 83.82% 88.65% 89.29% 89.06% 82.86% 94.94% 85.95% 91.90% 57.56% 49.69% 94.53% 91.34% 71.55% 64.37%

SVM Benign 90.12% 0.00% 0.00% 0.00% 83.84% 85.33% 0.00% 94.34% 0.00% 9.77% 0.00% 17.70% 70.00% 69.99% 69.99% 69.99% 100.00% 100.00% 82.35% 82.35%
Malware 90.12% 100.00% 94.80% 83.84% 85.17% 100.00% 99.89% 91.21% 91.95% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

MLP Benign 92.59% 86.43% 28.61% 42.99% 88.85% 89.93% 79.45% 82.46% 39.26% 49.12% 52.55% 61.57% 86.33% 85.58% 88.98% 91.12% 90.72% 90.14% 89.85% 90.62%
Malware 92.71% 99.51% 95.99% 89.33% 90.90% 98.04% 97.99% 93.49% 94.31% 77.33% 77.56% 73.80% 79.50% 75.52% 78.52%

CNN Benign 99.50% 98.20% 96.70% 97.50% 94.83% 95.46% 85.28% 83.84% 82.25% 87.03% 83.73% 85.40% 91.17% 93.75% 95.94% 99.31% 90.83% 91.14% 93.31% 95.05%
Malware 99.60% 99.80% 99.70% 96.60% 97.65% 97.26% 96.98% 96.93% 97.31% 82.58% 85.26% 91.88% 98.78% 86.98% 91.53%

as relevant where it really is relevant. There is a compromise
in these two evaluation metrics to maximize, when increasing
the recall, the model decreases the precision. In case we want
to find an optimum balance of recall and precision, we use
the F1-score to combine measurements for both metrics. We
applied these performance metrics per class to evaluate the
instance type (belonging to either malware and benign).

The K-Nearest Neighbor classifier (KNN) achieved in
the average accuracy about 98.27%, 93.83%, and 91.05%

for the gray-scale images of SARVAM, Xue, CIC datasets
respectively, irrespective of the instance types, i.e., malware or
bengin. It also achieved similar performance using the RGB
color images of the two datasets, i.e., Xue and CIC. While the
average accuracy metric cannot evaluate the performance of
benign and malware separately, the performance of KNN vary
across datasets. For the Xue dataset, F1-score on both gray-
scale and RGB color images achieves closely better results in
detecting malware (96.48% and 96.23%) than other classifiers
except CNN classifier. While KNN F1-score for both gray-

www.ijacsa.thesai.org 930 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

(a) Gray-scale: Sarvam dataset (b) Gray-scale: Xue dataset (c) Gray-scale: CIC dataset

(d) RGB Color: Xue dataset (e) RGB Color: CIC dataset (f) Gray-scale: All datasets

Fig. 6. Binary-classification CNN Accuracy Models based on Epochs.

scale and RGB color images in detecting benign achieves
better results than others (78.87% and 78.14%), it preforms
low compared to SARVAM dataset. Conversely, KNN model in
CIC dataset can be accurately detecting more benign instances
than malware instances for both gray-scale and RGB color
images as clearly seen in the F1-score results for both benign
(93,45% and 92.92%) and malware (86.17% and 84.92%).

While the tree-based classifiers especially Random Forest
(RF) perform well in this classification domain in SARVAM
dataset, Decision Tree (CART) results underperform the logis-
tic regression (LR) in the remaining datasets. The performance
of these classifiers across datasets follows the same pattern of
KNN when comparing F1-score results for detecting malware
and benign. In other words, the classifiers’ performance for
detecting more instances of malware than benign were seen
in SARVAM and Xue datasets. In contrast, the results in CIC
dataset show that classifiers can detect more benign instances
than malware.

The Multilayer Perceptron (MLP) classifier performance
results are seen in the median position and they can be
improved over all datasets. They are close to the performance
results in the logistic regression classifier.

Support Vector Machine classifier (SVM) usually fails to
detect the minority class. This means it can learn only one
class that reflects the majority. For example, benign instances

are considered of the minority class in SARVAM and Xue
datasets, and the F1-score results are either zero or below 10,
and vice versa. In addition, Naïve Bayes classifier achieves the
lowest results in all metrics over all datasets.

The Convolutional Neural Network classifier (CNN)
achieved in the average accuracy about 99.50%, 94.83%, and
91.17% for the gray-scale images of SARVAM, Xue, CIC
datasets respectively, irrespective of the instance types, i.e.,
malware or bengin. It also achieves similar performances using
the RGB color images of the two datasets, i.e., Xue and
CIC. Specifically, CNN F1-score (where there is a balance
of precision and recall) in SARVAM dataset achieves higher
results for malware instances than benign instances because
of their falling off in their recall scores. This means that
some instances of benign are predicted to be malware. In
contrast, the high precision scores reflect that classifier cor-
rectly predicts the majority instances of each type, whether
benign or malware. For the Xue dataset, F1-score on both
gray-scale and RGB color images achieves closely better
results in detecting malware (96.93% and 97.31%) than all
other classifiers and F1-score for both gray-scale and RGB
color images in detecting benign achieves better results than
others (83.73% and 85.40%). In contrast, CNN model of CIC
dataset can be accurately detecting more benign instances than
malware instances for both gray-scale and RGB color images
as clearly seen in the F1-score results for both benign (93.31%

www.ijacsa.thesai.org 931 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

and 95.05%) and malware (86.98% and 91.53%). Finally, the
results show that the CNN classifier is the best algorithm to
be used in the second phase of classification task. Binary-
classification CNN accuracy models based on 1000 Epochs
are shown in Fig. 6(a), (b), (c), (d), (e), and (f).

D. Multi-classification Performance

After evaluating binary classification tasks in the first
phase, we selected the best classification algorithm that per-
forms well in all metrics among all datasets to be used in this
phase. Thus, we aim in this phase to measure the performance
of the KNN classification task on identifying the individual
malware family or category. Due to the variation in naming
malware families on each datasets, we separately evaluated the
model performance for each dataset. We chose the confusion
matrix as a performance metric in order to see how the actual
unbalanced malware families and categories are truly and
falsely predicted. It also depicts where the model is confusing
classes and mislabeling one as another.

The performance results of the KNN models for malware
families are reflected in a confusion matrix as shown in Fig. 7,
where the ordinate and abscissa are the number of the malware
family or category. The abscissa indicates the actual malware
family and the ordinate indicates the predicted malware family.
The color gray patches in the figure indicate the similarity
between the predicted instances and the actual instances under
specific family or category. According to the ribbon on the
right, the more dark the color is to the top, the higher the
similarity is, and less dark it is to the bottom, the lower the
similarity is.

In SARVAM dataset (available only for gray-scale images),
the KNN model achieves a large probability of true positives
over the majority of malware families depicted in the dark
color of the right diagonal in Fig. 7(a). In the other hand,
there are few families misclassified. For example, the figure
shows that lot of instances of “Swissor.gen” malware are
falsely predicted as “Swissor.gen E” malware (42%) and vice
versa (34%). It seems the features vector of both malware
families showing same patterns and have identical sequences
of codes. Similarly, many “C2LOP.P” malware instances are
misclassified by the model as “C2LOP.gen!g”. This indicates
that the model is biased toward the malware family that
contains more instances and have identical sequences of codes
with the other family. In other words, when a false prediction
occurs, the predicted family is likely to belong to the same
family series.

While the Xue dataset for the gray-scale images and the
RGB color images are evaluated separately, the performance
results of true positives and false positives are compatibly
approximate among malware families as seen in Fig. 7(b)
and Fig. 7(d). The KNN model for detecting malware family
for this dataset achieves lower performance in the confusion
matrix than for the SARVAM dataset. In addition, non malware
families exceed 89% of the true positives of the total instances.
For the CIC dataset, the KNN model also does not achieve a
good results (Fig. 7(c) and Fig. 7(e)) compared to the models
built for the other datasets.

We also train and test a model for multi-classification
using CNN. For the SARVAM dataset, accuracy on gray-scale

images achieves closely better results in detecting malware
99.30% than all other classifiers as shown in Fig. 8(a) and
Fig. 9(a). For the Xue dataset, accuracy on both gray-scale and
RGB color images achieves better results in detecting malware
(87.79% and 88.09%) than all other classifiers as shown in
Fig. 8(b) and (d) and Fig. 9(b) and (d) . For the CIC dataset,
accuracy on both gray-scale and RGB color images achieves
better results in detecting malware (78.51% and 85.93%) than
all other classifiers as shown in Fig. 8(c) and (e) and Fig. 9(c)
and (e)

TABLE II. MODEL GENERALIZATION: TESTING THE MODEL ON UNSEEN
DATA TO PREDICT MALWARE AND BENIGN USING KNN AND CNN

Accuracy Classes Precision Recall F1-Score

97.10% (KNN) Benign 89.66% 61.54% 72.98%
Malware 97.44% 99.52% 98.47%

97.56% (CNN) Benign 82.4% 77.81% 80.18%
Malware 98.5% 98.9% 98.7%

E. Deep Learning Experiments using CNN

We also conducted deep learning experiments on visualized
malware images using the Convolutional Neural Networks
(CNN). After we generate grayscale and RGB images from
Binary malware or benign executable files. we construct the
CNN which has 24 layers (excluding the input layer), including
8 convolutional layers, 5 pooling layers, 6 dropout layers, 3
full-connection layers, and an output layer. All the convolu-
tional layers use a 3×3 convolution kernel with a step size
of 1; the number of convolution kernels in the eight layers
are 8, 16, 32, 32, 64, 64, 128, and 256. Because the size of
the feature map does not change when the feature map passes
through a convolutional layer, a 1-pixel edge fill is performed
on each input feature map in the convolution layer. We use
all max pooling layers with a 2×2 sliding window and a
step size of 2 as shown in Fig. 10. Because the last fully-
connected layer of the CNN requires that the input feature
maps should be the same size, the general CNN network
structure needs to preprocess the image to unify the image size.
We use a dropout regularization layer with 0.25 and 0.5 after
each pair of convolutional and pooling layers to prevent CNN
network overfitting. We also use ReLU and softmax activation
functions for multi malware classification and sigmoid for
binary malware classification.

F. Multi-class Open-Set Recognition Performance

Most of the malware detectors used today fall under the
category of closed-set assumption. In a closed-set operation,
the data for training and testing are drawn from the same
label space and from the same distribution. A large database
containing malware signatures are used and signature vectors
received are compared against the database leading to a binary
classification scheme of malicious or benign files. If there is
a new malware, i.e., the training and testing distributions are
different, all these methods from closed-set detection will fail.
One possible approach that can be extended from our empirical
study is to use the Open-set recognition based approach
to implement malware detection technique using visualized
malware images.

www.ijacsa.thesai.org 932 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

(a) Gray-scale: Sarvam dataset (b) Gray-scale: Xue dataset (c) Gray-scale: CIC dataset

(d) RGB Color: Xue dataset (e) RGB Color: CIC dataset

Fig. 7. Multi-classification Confusion Matrix of the KNN Classifier to Detect Malware Family and Category over Three Datasets.

(a) Gray-scale: Sarvam dataset

(b) Gray-scale: Xue dataset
(c) Gray-scale: CIC dataset

(d) RGB Color: Xue dataset
(e) RGB Color: CIC dataset

Fig. 8. Multi-classification Confusion Matrix of the CNN Classifier to Detect Malware Family and Category over Three Datasets.

www.ijacsa.thesai.org 933 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

(a) Gray-scale: Sarvam dataset (b) Gray-scale: Xue dataset (c) Gray-scale: CIC dataset

(d) RGB Color: Xue dataset (e) RGB Color: CIC dataset

Fig. 9. Multi-classification CNN Accuracy Models based on Epochs.

G. Model Generalization

Unlike other works, we built a generalized KNN and CNN
models using 66.67% of the three datasets for the binary
classification task. Then, we tested the model on the remaining
combined datasets (33.33%) as unseen data. Our splitting
mechanism applies the stratified sampling method to avoid the
bias toward a majority class. This approach is more solid for
evaluating the performance of the model. Moreover, combining
datasets from independent sources will examine whether the
model can be generalized for any cases. Table II shows the
performance of the models tested on unseen instances of
benign (338) and malware (4,981). In general, the models
achieves above 97% of the accuracy where it is better detecting
malware than benign. To investigate the model in depth, let
us assume that malware cases are positive and benign cases
are negative. The models were tested on 4,981 malware cases
and 338 benign cases as unseen cases. The model of KNN
predicted correctly more than 4,000 malware instances as true
positive cases while there are 24 malware instances predicted
as benign. In the other side, the model of KNN predicted truly
208 benign instances while the remaining are predicted as
malware. The model of CNN predicted correctly more than
4,000 malware instances as true positive cases while there are
55 malware instances predicted as benign. In the other side,
the model of CNN predicted truly 263 benign instances while
the remaining was predicted as malware.

V. DISCUSSION

In this section, we discuss the experimental results and their
broader implications. Addressing the malware problem is an
ongoing research area. We studied the impact of using both the
gray-scale and RGB color images in the malware visualization
method. We implemented binary and multi-class classification
using both gray-scale imaging and RGB-color images. In our
study, we find that converting the binary files to either gray-
scale images or RGB color images does not impact the perfor-
mance results. Hence, focusing on a new approach in feature
generation and extraction is required. Using new visualization
techniques like Speeded Up Robust Features(SURF), His-
togram of Oriented Gradients (HOG), Local Binary Patterns
(LBP), and Scale Invariant Feature Transform (SIFT) might
better support and enhance the malware detection model [40]
but subject to evaluation. In this work, we have included only
the GIST-based Image visualization technique for malware
detection. Any other visualization and non-visualization-based
discussion are out of our work’s scope. Nataraj et al. [14], [37],
[15]’s original setup included 9,458 samples from 25 malware
families with gray-scale image conversion and GIST-based
feature extraction. Their approach achieved a classification
accuracy score of 98 %. While our results align with the
performance results, we extended the framework to include
data not only from SARVAM [14] (25 malware families), but
also from Xue et al. [18] (10 malware families), and CIC [39]

www.ijacsa.thesai.org 934 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

Fig. 10. Convolutional Neural Networks Architecture for Malware Classification.

(6 malware families). In addition, we evaluated the proposed
design using various machine learning algorithms i.e. Linear
Regression, Random Forest, KNN, CART, SVM. We also have
evaluated using CNN-based deep learning technique and MLP.
In our setup, we consider the idea of using both the binary
and multi-class classifiers that provide handlers to extend the
design to an open-set and ensemble-based learners.

Our approach is producing a comparable performance to
the above-mentioned classifiers. Even though the datasets used
in these classifiers are SARVAM and other datasets, our sta-
tistical T-TEST on F1-scores are not statistically significantly
different.

VI. CONCLUSION

In this work, we implement the computer visualization-
based technique to build ML-based malware detection. We em-
ploy a GIST-based approach to extract malware image features
from both the gray-scale and color images of malware binary
samples. To study the prediction performance, we empirically
analyze various machine learning algorithms. Our experimen-
tal study includes the following learning algorithms: linear
regression, random forest, k-NN, CART, SVM, and MLP, and a
CNN-based deep learning model and selects a candidate learn-
ing classifier that can yield better prediction performances. We
evaluate our approach using the following malware datasets

SARVAM, PhD-thesis, and CIC. In comparison to traditional
malware detectors, the visualization-based approach provides
a significant performance enhancement. Our study observes
that the CNN-based deep-learning model yields significantly
better performance when tested against the various malware
datasets listed above. Malware authors constantly innovate new
methods for implementing sophisticated attacks that make the
malware detection as an active research area. Our approach
provides a path forward to implement an innovative malware
detector. Nevertheless, this research work needs to be verified
against various new malware datasets to be more effective. In
the future, we would like to extend our research to benchmark
datasets and as well conduct a large-scale evaluation.

REFERENCES

[1] A. Souri and R. Hosseini, “A state-of-the-art survey of malware
detection approaches using data mining techniques,” Human-centric
Computing and Information Sciences, vol. 8, no. 1, p. 3, 2018.

[2] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan,
“Synthesizing near-optimal malware specifications from suspicious be-
haviors,” in 2010 IEEE Symposium on Security and Privacy. IEEE,
2010, pp. 45–60.

[3] X. Hu, T. Chiueh, and K. G. Shin, “Large-scale malware indexing using
function-call graphs,” in Proceedings of the 16th ACM conference on
Computer and communications security, 2009, pp. 611–620.

www.ijacsa.thesai.org 935 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

[4] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Bringas, “Opem:
A static-dynamic approach for machine-learning-based malware detec-
tion,” in International Joint Conference CISIS’12-ICEUTE 12-SOCO
12 Special Sessions. Springer, 2013, pp. 271–280.

[5] H. Sayadi, N. Patel, S. M. PD, A. Sasan, S. Rafatirad, and H. Homay-
oun, “Ensemble learning for effective run-time hardware-based malware
detection: A comprehensive analysis and classification,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE,
2018, pp. 1–6.

[6] H. Sayadi, H. M. Makrani, O. Randive, S. M. PD, S. Rafatirad,
and H. Homayoun, “Customized machine learning-based hardware-
assisted malware detection in embedded devices,” in 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications/12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE). IEEE, 2018, pp.
1685–1688.

[7] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of android malware through static analysis,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2014, pp. 576–587.

[8] K. Griffin, S. Schneider, X. Hu, and T. Chiueh, “Automatic generation
of string signatures for malware detection,” in International workshop
on recent advances in intrusion detection. Springer, 2009, pp. 101–120.

[9] D. Venugopal and G. Hu, “Efficient signature based malware detection
on mobile devices,” Mobile Information Systems, vol. 4, no. 1, pp.
33–49, 2008.

[10] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laorden, and
P. G. Bringas, “Idea: Opcode-sequence-based malware detection,” in
International Symposium on Engineering Secure Software and Systems.
Springer, 2010, pp. 35–43.

[11] J. Scott, “Signature based malware detection is dead,” Institute for
Critical Infrastructure Technology, 2017.

[12] A. Pinhero, M. Anupama, P. Vinod, C. Visaggio, N. Aneesh, S. Abhijith,
and S. AnanthaKrishnan, “Malware detection employed by visualization
and deep neural network,” Computers & Security, p. 102247, 2021.

[13] E. M. Rudd, A. Rozsa, M. Günther, and T. E. Boult, “A survey of stealth
malware attacks, mitigation measures, and steps toward autonomous
open world solutions,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 2, pp. 1145–1172, 2016.

[14] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: visualization and automatic classification,” in Proceedings of
the 8th international symposium on visualization for cyber security,
2011, pp. 1–7.

[15] L. Nataraj and B. Manjunath, “Spam: Signal processing to analyze
malware,” IEEE Signal Processing Magazine, vol. 33, no. 2, pp. 105–
117, 2016.

[16] K. Han, B. Kang, and E. G. Im, “Malware analysis using visualized
image matrices,” The Scientific World Journal, vol. 2014, 2014.

[17] K. S. Han, J. H. Lim, B. Kang, and E. G. Im, “Malware analysis
using visualized images and entropy graphs,” International Journal of
Information Security, vol. 14, no. 1, pp. 1–14, 2015.

[18] D. Xue, J. Li, W. Wu, Q. Tian, and J. Wang, “Homology analysis
of malware based on ensemble learning and multifeatures,” PloS one,
vol. 14, no. 8, p. e0211373, 2019.

[19] L. Liu, B. Wang, B. Yu, and Q. Zhong, “Automatic malware classifica-
tion and new malware detection using machine learning,” Frontiers of
Information Technology & Electronic Engineering, vol. 18, no. 9, pp.
1336–1347, 2017.

[20] J. Fu, J. Xue, Y. Wang, Z. Liu, and C. Shan, “Malware visualization
for fine-grained classification,” IEEE Access, vol. 6, pp. 14 510–14 523,
2018.

[21] A. Makandar and A. Patrot, “Malware class recognition using image
processing techniques,” in 2017 International Conference on Data
Management, Analytics and Innovation (ICDMAI). IEEE, 2017, pp.
76–80.

[22] A. Singh, A. Handa, N. Kumar, and S. K. Shukla, “Malware classifica-

tion using image representation,” in International Symposium on Cyber
Security Cryptography and Machine Learning. Springer, 2019, pp.
75–92.

[23] B. Zhang, J. Yin, J. Hao, D. Zhang, and S. Wang, “Malicious codes
detection based on ensemble learning,” in International conference on
autonomic and trusted computing. Springer, 2007, pp. 468–477.

[24] E. Menahem, A. Shabtai, L. Rokach, and Y. Elovici, “Improving
malware detection by applying multi-inducer ensemble,” Computational
Statistics & Data Analysis, vol. 53, no. 4, pp. 1483–1494, 2009.

[25] C. Iwendi, S. Khan, J. H. Anajemba, M. Mittal, M. Alenezi, and
M. Alazab, “The use of ensemble models for multiple class and binary
class classification for improving intrusion detection systems,” Sensors,
vol. 20, no. 9, p. 2559, 2020.

[26] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 7, pp. 1757–1772, 2012.

[27] J. Henrydoss, S. Cruz, E. M. Rudd, M. Gunther, and T. E. Boult, “In-
cremental open set intrusion recognition using extreme value machine,”
in 2017 16th IEEE International Conference on Machine Learning and
Applications (ICMLA). IEEE, 2017, pp. 1089–1093.

[28] T. Wang and N. Xu, “Malware variants detection based on opcode
image recognition in small training set,” in 2017 IEEE 2nd International
Conference on Cloud Computing and Big Data Analysis (ICCCBDA).
IEEE, 2017, pp. 328–332.

[29] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi,
“Malware detection with deep neural network using process behav-
ior,” in 2016 IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC), vol. 2. IEEE, 2016, pp. 577–582.

[30] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for
classification of malware system call sequences,” in Australasian Joint
Conference on Artificial Intelligence. Springer, 2016, pp. 137–149.

[31] W. Huang and J. W. Stokes, “Mtnet: a multi-task neural network
for dynamic malware classification,” in International conference on
detection of intrusions and malware, and vulnerability assessment.
Springer, 2016, pp. 399–418.

[32] M. Amin, T. A. Tanveer, M. Tehseen, M. Khan, F. A. Khan, and
S. Anwar, “Static malware detection and attribution in android byte-
code through an end-to-end deep system,” Future Generation Computer
Systems, vol. 102, pp. 112–126, 2020.

[33] H. Cai, “Assessing and improving malware detection sustainabil-
ity through app evolution studies,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 29, no. 2, pp. 1–28, 2020.

[34] B. S. Manjunath and W. Ma, “Texture features for browsing and retrieval
of image data,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 18, no. 8, pp. 837–842, 1996.

[35] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” International journal of computer
vision, vol. 42, no. 3, pp. 145–175, 2001.

[36] A. Torralba, K. P. Murphy, W. T. Freeman, M. A. Rubin et al., “Context-
based vision system for place and object recognition.” in ICCV, vol. 3,
2003, pp. 273–280.

[37] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang, “A comparative
assessment of malware classification using binary texture analysis and
dynamic analysis,” in Proceedings of the 4th ACM Workshop on
Security and Artificial Intelligence, 2011, pp. 21–30.

[38] M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, and C. Schmid,
“Evaluation of gist descriptors for web-scale image search,” in
Proceedings of the ACM International Conference on Image and Video
Retrieval, 2009, pp. 1–8.

[39] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, “To-
ward developing a systematic approach to generate benchmark android
malware datasets and classification,” in 2018 International Carnahan
Conference on Security Technology (ICCST). IEEE, 2018, pp. 1–7.

[40] N. Raj and V. Niar, “Comparison study of algorithms used for feature
extraction in facial recognition,” Int. J. Comput. Sci. Inf. Technol, vol. 8,
no. 2, pp. 163–166, 2017.

www.ijacsa.thesai.org 936 | P a g e


