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Abstract—Network security has become a serious issue since
networks are vulnerable and subject to increasing intrusive
activities. Therefore, network intrusion detection systems (IDSs)
are an essential component to defend against these activities.
One of the biggest issues encountered by IDSs is the class
imbalance problem which leads to a biased performance by
most machine learning models to normal activities (majority
class). Several techniques were proposed to overcome the class-
imbalance problem such as resampling, cost-sensitive, and en-
semble learning techniques. Other issues related to intrusion
detection data include mixed data types, and non-Gaussian and
multimodal distributions. In this study, we employed a conditional
tabular generative adversarial network (CTGAN) model with
common machine learning algorithms to construct more effective
detection systems while addressing the imbalance issue. CTGAN
can generate samples of the minority class during training to
make the dataset more balanced. To assess the effectiveness of
the proposed IDS, we combined CTGAN with three machine
learning algorithms: support vector machine (SVM), K-nearest
neighbor (KNN), and decision tree (DT). The imbalanced NSL-
KDD dataset was used and several experiments were conducted.
The results showed that CTGAN can improve the performance of
imbalance learning for intrusion detection with SVM and DT. On
the other hand, KNN showed no improvement in the performance
since it is less sensitive to the class imbalance problem. Moreover,
the results proved that CTGAN can capture the distribution of
discrete features better than continuous features.

Keywords—Intrusion detection; machine learning; imbalance
learning; conditional tabular generative adversarial networks

I. INTRODUCTION

In the current era of transformation to digital services and
with the evolution of Internet technologies, cybersecurity has
become a serious issue, especially with the growing volume
and diversity of attacks. People utilize the Internet to conduct
most of their work (e.g. online shopping, payment, banking,
access to governmental services, file sharing, communication,
and more). Moreover, it is a vital part of several cyber-physical
systems in critical infrastructures such as Internet-of-Things
(IoT) and smart grids. Therefore, intrusion detection systems
are an essential component of cybersecurity and provide crucial
services to protect information systems from cyberattacks that
can lead to catastrophic consequences (e.g. sensitive data
leakage, physical harm, and financial loss). It can monitor
the system operations and network traffic to detect anomalous
patterns [1].

Intrusion detection is a recurrent research topic due to the
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emergence of more sophisticated adversarial incidents. One
of the challenges facing intrusion detection is the scarcity of
intrusive samples compared to the abundance of normal op-
eration samples; resulting in insufficient data samples to train
the model on a representative collection of attack scenarios.
With such an imbalanced dataset, the number of samples in a
majority (normal or negative) class is significantly higher than
the number of samples in a minority (abnormal or positive)
class. Training a machine learning algorithm on an imbalanced
dataset can adversely impact the performance and lead to
unsatisfactory results since it can be more biased towards the
majority class, i.e. normal patterns.

Imbalanced learning is very common in several problems
with rare events and different techniques have been proposed
to address the imbalance issue. These techniques can be
divided into five main categories: data-level, algorithm-level,
cost-sensitive, ensemble-based, and hybrid techniques. The
data level are preprocessing techniques known as re-sampling
because they either increase the frequency of the minority
class (oversampling) or reduce the frequency of the major-
ity class (undersampling/downsampling). Random oversam-
pling (ROS), random undersampling (RUS), synthetic minority
oversampling technique (SMOTE), and generative adversarial
networks (GAN) are examples of data-level techniques. A
systematic literature review of the challenges and solutions
for imbalanced data in machine learning is provided in [2].

The focus of our study is on oversampling techniques,
specifically, an enhanced version of GAN, i.e. the conditional
tabular GAN (CTGAN) [3]. CTGAN is a recent deep learning
model and can be thought of as an oversampling technique.
It can augment the tabular dataset and increase the frequency
of the minority class samples while handling other issues such
as mixed data types, multimodality, and non-Gaussian distri-
butions. It proves its efficiency in addressing the imbalance
problem and improving the classification accuracy in different
domains.

This paper aims to investigate the role of CTGAN in
improving the classification performance of support vector
machines (SVM), K-nearest neighbors (KNN), and decision
trees when applied to imbalanced data to detect various types
of network intrusions. Different metrics have been computed to
evaluate the quality of the generated data for various attacks in
the multi-class NSL-KDD dataset. Moreover, the performance
measures of the trained intrusion detection models have been
computed and discussed.
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The main contributions of this paper are:

e  Handling the imbalance problem in intrusion detection
datasets by employing CTGAN which is not investi-
gated very well in the literature.

e Evaluating the quality of the generated data by CT-
GAN in terms of different metrics.

The rest of this paper is organized as follows: Section II
provides a brief background about intrusion detection, class
imbalance problem, and techniques to deal with this problem.
Section III reviews related studies on intrusion detection. Sec-
tion IV describes the methodology we followed in our study.
Finally, Section V describes the experiments we conducted to
evaluate the proposed prototype.

II. BACKGROUND
A. Intrusion Detection

An intrusion detection system is an essential component
responsible for analyzing and monitoring networks to detect
intrusions and alert administrators on ongoing attack activ-
ities [4]. Intrusion detection is still a significant research
field for two reasons. First, there are continuous updates and
changes of network intrusions resulting in continually chang-
ing patterns [5]. Second, the number of available intrusion
detection datasets is increasing over time, making it possible
to investigate and compare new approaches [5]. Examples of
intrusion categories include Denial of Service (DoS) such as
smurf, User to Root (U2R) such as buffer overflow, Probing
(Prob) such as portsweep, and Root to Local (R2L) such
as password guessing [6]. An effective intrusion detection
system should have not only low false negative but also low
false positive. These measures can be greatly affected by the
quality of having a representative training dataset. However,
real scenarios may have several challenges. For example,
besides the class imbalance problem, the intrusion detection
traces may have several other characteristics that need a special
treatment, e.g. mixed data types (continuous, discrete, ordinal,
and categorical) as well as non-Gaussian and multimodal
distributions.

B. Class Imbalance Problem

Most of the intrusion detection datasets are imbalanced
datasets, which causes a degradation in the classification
performance for certain types of intrusions [7]. Usually, the
number of normal traces in intrusion detection datasets is much
higher than the number of intrusion traces. Thus, as a minority
class, the intrusion class might not be well-represented and
hence not classified correctly.

The misclassification of the minority class costs more than
the misclassification of the majority class, as it could cause a
serious problem. Misclassifying a normal behavior class can
lead to the need for more tests to explore the intrusion. On
the other hand, misclassifying intrusions may lead to disaster
impacts (e.g., privacy loss, unauthorized access to network
assets, or damage of the whole system). Even if the detection
rate of the minority class is low, classification accuracy could
be high because the classification accuracy does not consider
the distribution of classes. Consequently, machine-learning
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based intrusion detection systems can be accuracy biased, since
they can give more attention to the majority class (a.k.a. normal
behavior).

C. Imbalance Techniques

Many different techniques can be used to address the
imbalance issue. These can be categorized into five categories,
i.e. data-level, algorithm-level, cost-sensitive, ensemble-based,
and hybrid techniques. Data-level techniques modify the class
distributions before the training process. This modification is
done either by removing some instances from the majority
class or by adding more instances to the minority class [8]. The
former method is known as undersampling while the latter is
known as oversampling. Random oversampling (ROS), random
undersampling (RUS) and synthetic minority oversampling
technique (SMOTE) are examples of data-level preprocessing
techniques.

Unlike data-level techniques, algorithm-level techniques do
not modify the distribution of classes; but rather, they modify
the algorithm [9]. In contrast, cost-sensitive techniques assign
different costs to give the minority class higher importance
than the majority class [10]. Ensemble methods combine more
than one algorithm to achieve superior performance than would
normally be attained separately such as bagging, boosting,
stacking, and cascading classifiers [10]. Moreover, hybrid tech-
niques combine two or more of the aforementioned techniques
to produce an efficient technique for handling imbalance [9].
For instance, SMOTEENN combines oversampling by SMOTE
with undersampling by the edited nearest neighbor (ENN)
method [11].

D. Conditional Tabular GAN

Generative Adversarial Network (GAN) is one of the top
innovative deep learning models [12]. It has been widely
used in various applications to process different types of data
(e.g., images, voice, and text). Hence, it became one of the
most critical research fields in deep learning. It combines
two networks: generator and discriminator [13]. The generator
is responsible for generating synthetic data that resemble to
the original data whereas the discriminator is responsible for
classifying the real or synthetic data with their corresponding
classes [13]. GAN in tabular data has various challenges. One
of the challenges is that the structured data can follow non-
Gaussian and multimodal distributions. Tabular GAN (TGAN)
resolved this issue by using mode-specific normalization [3].

In GAN, the generator does not consider the imbalance
issue. Data that belong to the minority class will not be
presented sufficiently as the data belong to the majority class
do. Conditional generator in conditional GAN can be used
to enforce the synthetic sample to match a specific class
(category) [14]. Hence, it can generate more intrusive samples
to overcome the imbalance issue in intrusion detection datasets.
To use the conditional generator, in CGAN, instead of the
original generator in GAN, three issues must be mitigated:

e A way must be found to represent the condition and
the input to the generator.

e The generated samples must match the chosen cate-
gory (condition).
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e  The conditional generator should learn the conditional
distribution.

Conditional Tabular GAN (CTGAN) combines the advan-
tages of CGAN and TGAN. Therefore, it can be used to solve
the class imbalance issue by controlling the class labels of
the generated samples. It also overcomes the non-Gaussian
and multimodal distributions of structured data. Furthermore,
CTGAN utilizes fully connected networks to enhance the
quality of the model [3]. The conditional generator can be
interpreted as

F ~ Py(row|D;, = k™)

where k* is the chosen category from the discrete column
D;, that must be generated by conditional generator and r is
the sample generated by the generator. Fig. 1 shows a typical
architecture of the CTGAN.

III. RELATED WORK

With the growth of the amount of data related to intrusion
detection, and the evolution in machine learning and deep
learning techniques, many studies have been conducted in this
field. Most of the previous studies ignore the class imbalance
problem and use datasets of balanced distributions. In [1],
the authors proposed a framework called scale-hybrid-IDS-
AlertNet which can trace the network traffic and detect ab-
normal activities. The building of this framework came after a
comprehensive analysis of different machine learning and deep
learning models on different intrusion detection datasets. They
found that the deep neural network (DNN) model outperforms
other machine learning models such as Logistic Regression
(LR), Naive Bayes (NB), K-nearest neighbor (KNN), and
support vector machines (SVM).

There are some researchers who have used imbalance
techniques to deal with this problem in network intrusion de-
tection systems. For example, Razan Abdulhammed et al. [15]
compared the performance of different data-level techniques
on the CIDDS-001 dataset. For data preprocessing, they con-
sidered ROS, RUS, class balanced and spread subsample.
For classification, they utilized deep neural networks (DNN),
random forest (RF), voting technique, stacking technique and
variational autoencoder (VA). The superior performance was
achieved by RF on the original distribution, class balancer and
RUS (99.9%). Moreover, the accuracy of voting in the original
distribution and using RUS was high (99.99%).

SMOTE is a known and effective oversampling technique,
and many studies have been conducted to prove its efficiency.
In [16], the imbalance issue was mitigated in a CICIDS2017
dataset using SMOTE oversampling. As SMOTE works only
with binary classification, the researchers examined two classes
at a time—a normal class with one of the minority classes (i.e.,
botnet, web attack, or brute force attack). Two experiments
were conducted: one on the imbalanced dataset and one on
the balanced dataset. Three algorithms were utilized to conduct
the experiments (i.e., RF, NB, and KNN). On the imbalanced
dataset, the accuracy was high with all classifiers, but the
precision, recall, and Fl-score were low. To mitigate this
degradation, the researchers applied the SMOTE technique and
the result showed better performance based on Fl-score and
recall.
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Generative adversarial networks (GAN) is considered as a
data-level technique because it modifies the distribution of data
by generating new samples. It was applied in [17] by Yilmaz
et al. to improve the performance of intrusion detection. The
result after applying GAN was found to be more accurate than
without using GAN. Different versions of GAN were proposed
to enhance its performance. For example, Shuokang Huang and
Kai Lei. [18] proposed Imbalanced GAN (IGAN) that includes
a data imbalance filter, a generator, and a discriminator. It
can force the generator to generate samples of the minority
class only. IGAN with fuzzy neural network (FNN) obtained
a superior performance over Convolutional Neural Network
(CNN), RUS with SVM, FNN, and SMOTE with multilayer
perception (MLP).

Punam Bedi et al. [19] proposed an intrusion detection
system called Siam IDS which is based on Siamese Neural
Network (Siamese-NN). It can handle the imbalance issue in
intrusion detection systems. It achieved high recall values of
the minority classes (U2R and R2L intrusions). Moreover, it
outperformed CNN-based IDS and DNN-based IDS. In [20],
m-RIGFS and RWIGFS were used with weighted-SVM to
improve the imbalance learning for the intrusion detection
systems. m-RIGFS and RWIGFS are feature selection tech-
niques for imbalanced classes. This approach obtained a good
performance in terms of the overall accuracy, sensitivity, and
specificity. However, it should be noted that the sensitivity of
the U2R, a rare class was low.

In [7], a CNN model was utilized to classify UNSW-
NB15 and CICIDS2017, which are relatively recent intru-
sion detection datasets. They applied the CNN model, after
addressing the class imbalance issue using their proposed
approach, i.e. SGM which combines an oversampling tech-
nique (SMOTE) with an undersampling technique (Gaussian
Mixture (GMM)). The proposed approach achieved a higher
result (more than 96%) compared to other sampling techniques
and classification models. Furthermore, in [21], SMOTE was
combined with a genetic fuzzy system that includes a fitness
function designed to deal with the imbalance problem. The
proposed approach outperformed other approaches, which are
the KDDCup-99 winner [22], GFS(Pittsburgh) [23], MOG-
FIDS [24], EFRID [25] and RIPPER [26].

Data-level and cost-sensitive techniques can be combined
to yield better performance. Alabdallah et al. in [27] combined
a stratified sampling with a cost function. This approach
assigns the minority class samples higher weights than the ma-
jority class samples to improve the classification performance
and decrease the accuracy paradox.

To our knowledge and based on exploring earlier work in
the literature, limited studies have used GAN-based methods
to overcome the imbalance problem in intrusion detection
systems. Moreover, none of the reviewed studies have eval-
uated the generated samples. Therefore, in our study, we
explore CTGAN machine-learning based models to deal with
the imbalance learning for intrusion detection. Moreover, we
evaluated the generated samples in terms of different metrics
(e.g. Chi-Squared test and Continuous Kullback—Leibler Di-
vergence).
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Fig. 2. General Layout of the Workflow.
IV. METHODOLOGY
Fig. 2 depicts the general layout of the workflow. The aim
of this work is to investigate the performance of CTGAN in
improving the detection rate of intrusive samples in intrusion
detection systems. To achieve this aim, we applied the follow- .

ing steps:

Oversampling by CTGAN: Since the intrusion data
suffers from several issues including class imbalance,
mixed data types, multimodality, and non-Gaussian
distributions, we first applied CTGAN to increase the
intrusive samples in the training dataset.

Data preprocessing: The aim of this step is converting
raw data into a suitable format for machine learning
models. In this study, two preprocessing techniques
were applied to the dataset before classification:

[¢]

One-hot encoding: Some machine learning al-
gorithms work only with numeric data, hence
one-hot encoding is important when dealing
with a dataset that contains categorical fea-
tures. One-hot encoding is a method of sorting
each categorical value into a distinct column
and setting a value to it (either 0 or 1).
Therefore, one-hot encoding was applied to
the NSL-KDD dataset to convert its categorical
features (i.e., protocol type, service, and flag).
Standard scalar: This is a significant step for
some machine learning algorithms because
features that are not scaled to have zero mean
and unit variance could negatively affect the
performance of the algorithm. This method
scales the features to have a mean of zero
and a standard deviation of one. Hence, all
values will be in the same range. The following
equation is used to perform standard scalar:

rT—p
g
where x is a sample, p is the mean of the
samples and o is the standard deviation of the
samples.

Machine learning training and testing: To assess the
efficiency of using CTGAN to overcome the imbal-
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ance problem and other data issues, three machine
learning algorithms (i.e. SVM, DT, and KNN) were
used to train and test the NSL-KDD dataset before
and after applying CTGAN.

e  Evaluation: To accurately evaluate the performance
of the proposed framework, various metrics (e.g. F1-
score, geometric mean (G-mean), and Matthews cor-
relation coefficient (MCC)) were used. These metrics
are appropriate for evaluating the performance of
imbalance learning.

V. EXPERIMENTS AND EVALUATION
A. Dataset Description

NSL-KDD is an imbalanced dataset with huge amount of
captured traffic under various normal and attack scenarios. It
is an improved and revised version of the KDD99 dataset. It
contains 41 features extracted from traffic traces of normal
and abnormal activities as shown in Table I. Intrusion traffic
is categorized into four main categories: Denial-of-Service
(DoS), Probing (Probe), Remote-to-Local (R2L), and User-to-
Root (U2R). Each category of these attacks contains several
sub-categories as shown in Table II. In this study, only 20%
of the dataset was used to conduct the experiments. Each
class includes a different number of samples as shown in
Table III. Therefore, this dataset is imbalanced because of the
obvious difference in the number of samples in each class.
The imbalance ratio of normal and attack classes in the dataset
ranges from 1.44 to 305.77. Fig. 3 shows the distribution of
intrusive and normal samples.

TABLE I. FEATURES OF NSL-KDD DATASET

No. Feature No. Feature No. Feature

1 duration 16 num_root 31 srv_diff_host_rate

2 protocol_type 17 num_file_creations 32 dst_host_count

3 service 18 num_shells 33 dst_host_srv_count

4 flag 19  num_access_files 34  dst_host_same_srv_rate

5  src_bytes 20 num_outbound_cmds 35 dst_host_diff_srv_rate

6 dst_bytes 21 is_host_login 36 dst_host_same_src_port_rate
7  land 22 is_guest_login 37 dst_host_srv_diff_host_rate
8  wrong_fragment 23 Count 38 dst_host_serror_rate

9  urgent 24 srv_count 39 dst_host_srv_serror_rate
10  hot 25 serror_rate 40 dst_host_rerror_rate

11 num_failed_logins 26 srv_serror_rate 41 dst_host_srv_rerror_rate

12 logged_in 27 rerror_rate

13 num_compromised 28 srv_rerror_rate

14 root_shell 29 same_srv_rate

15  su_attempted 30 diff_srv_rate

TABLE II. ATTACK CATEGORIES IN NSL-KDD

Attack category  Attack Types

DoS Back, Apache2, Smurf, Neptune, Udpstorm, Land,Worm, Pod, Pro-
cesstable, Teardrop

Prob Satan, Portsweep, Nmap, Ipsweep, Mscan, Saint

R2L Warezmaster, Phf, Ftp_write, Named, Snmpguess,Httptunnel, Xlock,

Spy, Xsnoop, Sendmail, Imap,Guess_Password, Warezclient, Multi-
hop, Snmpgetattack
U2R Loadmodule, Buffer_overflow, Rootkit, Xterm,Sqlattack, Perl, PS

B. Performance Measures

1) Evaluation Metrics of Machine Learning Models: The
following metrics were used to evaluate the performance of
the applied classifiers:
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TABLE III. SAMPLES IN NSL-KDD

Class Train set Test set
Normal 13449 9711
DoS 9234 7458
Prob 2289 2421
R2L 209 2754
U2R 11 200
Total 25192 22544

a) Accuracy (ACC): This is the most common metric
to evaluate the performance of a model. It is the number of
samples that are correctly predicted over the number of all
samples. It can be calculated using the following equation:

TP+TN+FP+FN

b) Recall: Tt refers to the ability of the model to predict
positive samples. It can be calculated by dividing the number
of the samples that are correctly classified as true positive over
all positive samples. It can be calculated using the following
equation:

Recall = 755§ PT_S; N ()

¢) Precision: It is the number of samples that are
correctly classified as true positive over the number of samples
that are predicted as positive. The following equation can be
used to calculate the precision:

TP (3)

Precision = TP1FP

d) Fl-score: It is a way to combine recall and precision
into a single metric. It is called the harmonic mean of recall
and precision. It can be calculated using Equation 4:

2X Precision X Recall (4)

Fl_SCO’I“E = Precision+ Recall
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e) Geometric mean (G-mean): It is based on the true
positive rate (sensitivity or recall) and true negative rate
(specificity). G-mean is a combination of sensitivity (recall),
and specificity. Specificity and G-mean can be calculated using
the following equations:

Specificity = FPT_‘_% (5)
G_mean = /Sensitivity x Speci ficity (6)

f) Matthews correlation coefficient (MCC): It is a good
performance metric for binary classification and combines all
parts of the confusion matrix (i.e., true positives, false posi-
tives, true negatives, and false negatives). It can be calculated
using the following equation:

(TPXTN)—(FPxFN) %

MCC =
\/(TP+FP)x(TP+FN)x(TN+FP)x(TN+FN)

C. Synthetic Data Evaluation Metrics

The overall evaluation score of the synthetic data is an
aggregation of the following metrics:

a) Chi-Squared (CSTest): 1t is a statistical metric that
compares the distributions of two discrete columns using the
Chi-squared test.

b) Inverted Kolmogorov-Smirnov D statistic (KSTest):
It is a statistical metric that compares the distributions of the
continuous columns using the Kolmogorov—Smirnov test.

c) KSTestExtended: It is an extension of the KSTest
metric that transforms all columns into numerical columns
before applying the KSTest.

d) Continuous Kullback—Leibler Divergence (Contin-
uous KLDivergence): This metric calculates the Kullback-
Leibler (KL) divergence on all pairs of the numerical columns.

e) Discrete Kullback—Leibler Divergence (Discrete KL-
Divergence): This metric calculates the Kullback-Leibler di-
vergence on all pairs of the Boolean and categorical columns.

D. Experiments

In this study, one-vs-one classification was performed. We
divided the dataset into four subsets. Each subset contains two
class labels, i.e. normal and one of the intrusions (i.e., DoS,
Prob, R2L, or U2R).

The experiments were conducted in Python and CTGAN
was used to oversample the subsets using different number
of epochs. Tuning epoch size in deep learning models is
important, as it has a direct effect on the performance. It is
the number of iterations the model performs over the training
dataset. The default epoch size value in CTGAN is 300. In this
study, different epoch size values (e.g., 300, 400, and 1600)
were tested to obtain the best results.

Then, we evaluated the quality of the synthetic samples
using multiple evaluation metrics that are combined to produce
an overall score. This score provides a general indication of
how good the synthetic samples are. Lastly, SVM, KNN, and
decision tree models were run on the NSL-KDD dataset before
and after implementing CTGAN.
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E. Result and Discussion

Table IV presents the evaluation scores of the synthetic data
used to balance the subsets. The overall evaluation score is the
average of multiple scores that evaluate the data from different
aspects (e.g., statistical, detection, and likelihood). The overall
score gives an estimation of how similar the synthetic data and
the real data are (i.e., the quality of the generated data). This
score ranges from 0 to 1, where 0 is the worst possible score
and 1 is the best possible score. As shown in Table IV all
synthetic data of all attack categories achieved overall scores
around 0.5.

We observed that CSTest obtained high scores ranging
from 0.85 to 0.99, whereas KSTest achieved fairly good scores
ranging from 0.77 to 0.82. Moreover, KL Divergence scores for
discrete columns are reasonable unless for DoS; it is slightly
high. On the other hand, KL Divergence scores for Contin-
uous columns are high which indicates worse performance.
Therefore, we can conclude that CTGAN can fairly capture
distributions of both continuous and discrete columns, but its
performance is better in the discrete columns.

TABLE IV. EVALUATION SCORES OF THE SYNTHETIC SAMPLES

Metric DoS Probe R2L U2R
Overall evaluation score 0.54 0.50 0.49 0.51
CSTest 0.99 0.98 0.85 0.92
KSTest 0.80 0.77 0.82 0.80
KSTestExtended 0.79 0.76 0.81 0.80
ContinuousKLDivergence 0.83 0.73 0.80 0.84
DiscreteKLDivergence 0.40 0.29 0.28 0.21

TABLE V. RESULTS OF ONE-VS-ONE SVM CLASSIFICATION

Imbalanced Normal-vs-DoS Normal-vs-Probe Normal-vs-R2L  Normal-vs-U2R
dataset

Accuracy 0.90 0.92 0.79 0.98

Precision 0.99 0.87 0.99 0

Recall 0.77 0.69 0.07 0

F1-score 0.87 0.77 0.13 0

G-mean 0.87 0.81 0.26 0

MCC 0.80 0.72 0.231 -0.002
Balanced dataset Normal-vs-DoS Normal-vs-Probe Normal-vs-R2L  Normal-vs-U2R
Accuracy 0.93 0.96 0.79 0.98

Precision 0.99 0.87 0.60 0.38

Recall 0.85 0.94 0.17 0.24

F1-score 0.91 0.90 0.26 0.30

G-mean 0.91 0.95 0.40 0.49

MCC 0.86 0.87 0.234 0.29

Although accuracy is the most common evaluation metric
of machine learning models, it is an inappropriate metric
for imbalanced classification because it does not distinguish
between the number of correctly classified samples of the
majority and minority classes. Therefore, it is obvious from
Tables V, VI, and VII that there is a degradation in accuracy
values of some attack categories after implementing CTGAN.

Moreover, the precision values of all classifiers decreased
for some attacks categories, but improved for others. At the
same time, recall values increased for all attack categories,
except for DoS in the decision tree and KNN, where there
was no improvement.

Precision and recall separately are not enough to evaluate
the performance of the imbalanced classification. F1-score is
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Fig. 6. ROC Curves of DT on the Imbalanced Dataset.

a balance of precision and recall; thus, it is a good metric for
the imbalanced classification. Tables V, VI, and VII show an
improvement in the Fl-score values in all attack categories
after using CTGAN, except for DoS with KNN, where there
was no improvement.
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TABLE VI. RESULTS OF ONE-VS-ONE DT CLASSIFICATION

Imbalanced Normal-vs-DoS Normal-vs-Probe Normal-vs-R2L  Normal-vs-U2R
dataset
Accuracy 0.91 0.94 0.80 0.98
Precision 0.96 091 0.98 0
Recall 0.82 0.80 0.11 0
F1-score 0.88 0.85 0.20 0
G-mean 0.89 0.88 0.33 0
MCC 0.81 0.821 0.291 0
Balanced dataset Normal-vs-DoS Normal-vs-Probe Normal-vs-R2L  Normal-vs-U2R
Accuracy 0.91 0.96 0.80 0.94
Precision 0.98 0.88 0.68 0.22
Recall 0.82 091 0.21 0.73
F1-score 0.89 0.86 0.32 0.33
G-mean 0.90 0.92 0.45 0.33
MCC 0.83 0.828 0.299 0.37
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Fig. 7. ROC Curves of DT on the Balanced Dataset.
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Fig. 8. ROC Curves of KNN on the Imbalanced Dataset.

G-mean is the balance between the accuracy of the algo-
rithm on the majority class and the accuracy of the algorithm
on the minority class. Hence, it is an appropriate evaluation
metric for imbalanced classification. We notice from Tables V,
VI, and VII that there is an improvement in G-mean values
of all classifiers on all attack categories after using CTGAN,
except for DoS with KNN there was no improvement.
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TABLE VII. RESULTS OF ONE-VS-ONE KNN CLASSIFICATION

Imbalanced Normal-vs-DoS Normal-vs-Probe Normal-vs-R2L  Normal-vs-U2R
dataset
Accuracy 0.90 0.93 0.79 0.98
Precision 0.99 0.88 0.99 0.75
Recall 0.78 0.77 0.04 0.03
F1-score 0.87 0.82 0.07 0.06
G-mean 0.87 0.86 0.19 0.17
MCC 0.80 0.78 0.17 0.14
Balanced dataset Normal-vs-DoS Normal-vs-Probe Normal-vs-R2L  Normal-vs-U2R
Accuracy 0.90 0.96 0.78 0.97
Precision 0.99 0.86 0.48 0.21
Recall 0.78 0.93 0.09 0.11
F1-score 0.87 0.89 0.15 0.15
G-mean 0.87 0.94 0.29 0.33
MCC 0.80 0.86 0.12 0.14
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Fig. 9. ROC Curves of KNN on the Balanced Dataset.

While Fl-score and G-mean are good evaluation metrics
for imbalanced classification, MCC is more informative and
reliable because it is determined based on the values of all of
the cells of the confusion matrix. It is high only if all values of
the confusion matrix are good. Moreover, MCC is the metric
least affected by the imbalance issue. Thus, we notice from
Tables V and VI that MCC values of SVM and decision tree
increased on the balanced datasets for all attacks categories.
On the other hand, there was no improvement in MCC values
of KNN on DoS and U2R balanced datasets as shown in
Table VII. Also, the MCC value of KNN was reduced on the
balanced R2L dataset. One possible reason for this issue is that
the KNN is less sensitive to the imbalance problem, which is
consistent with [28]. Thus, oversampling the dataset did not
improve the performance.

ROC curves and AUC scores are commonly used evalua-
tion metrics for imbalanced classification. Fig. 4, Fig. 5 show
the ROC curves and AUC scores of SVM on the imbalanced
and balanced datasets of all attacks categories. We notice that
AUC scores of all attack categories in the balanced datasets
are clearly better than the AUC scores in the imbalanced
datasets, which indicates an improved performance. Fig. 6
and Fig. 7 demonstrate the ROC curves and AUC scores of
decision tree on the imbalanced and balanced datasets of all
attacks categories. The AUC scores of all attacks categories are
significantly higher after implementing CTGAN, especially for
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the rare classes (i.e., R2L and U2R). Fig. 8 and Fig. 9 depict
the ROC curves and AUC scores of KNN on the imbalanced
and balanced datasets of all attacks categories. We observed
that the AUC scores of KNN did not show an improvement
after the balancing process except with R2L, where there was
a slight reduction.

Based on the Fl-score, G-mean, MCC and AUC values
obtained, using CTGAN to generate synthetic samples has
improved the performance of the SVM and decision tree
models. At the same time, we notice that the positive impact
of CTGAN was not obvious on KNN, instead it causes a
slight reduction in some evaluation metrics. This is due to
the insensitivity of the KNN to the imbalance problem.

VI. CONCLUSION

Most of the intrusion detection datasets are imbalanced due
to the natural difference between the number of intrusive and
normal samples. There are many techniques to deal with the
imbalance problem. One of these techniques is oversampling
(e.g., ROS, SMOTE, and GAN-based methods). In this study,
the focus is on CTGAN which can generate more samples of a
specific class. CTGAN was applied on NSL-KDD to increase
the number of intrusive samples and make the dataset bal-
anced. The effectiveness of CTGAN was evaluated by running
SVM, decision tree, and KNN models on the dataset before
and after using CTGAN. Experiments using various types of
attacks and one-vs-one classification were conducted in this
study. CTGAN proved its effectiveness in generating synthetic
data resembling real intrusions to improve the performance
of SVMs and decision trees on the imbalanced datasets in
terms of Fl-score, G-mean, MCC, and AUC values. On the
other hand, CTGAN did not show an improvement in KNN
performance because it is less sensitive to class imbalance
problem. For future work, more machine learning and deep
learning models could be used. Furthermore, other imbalance
techniques could be evaluated and compared with CTGAN.
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