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Abstract—The growing and marketing of coffee is an impor-
tant source of economic resources for many countries, especially
those with economies dependent on agricultural production, as
is the case of Colombia. Although the country has done a lot
of research to develop the sector, the truth is that most of its
cultivation is carried out by small coffee families without a high
degree of technology, and without major resources to access
it. The quality of the coffee bean is highly sensitive to diverse
diseases related to environmental conditions, fungi, bacteria, and
insects, which directly and strongly affect the economic income
of the entire production chain. In many cases the diseases are
transmitted rapidly, causing great economic losses. A quick and
reliable diagnosis would have an immediate effect on reducing
losses. In this sense, this research advances the development
of an embedded system based on machine learning capable of
performing on-site diagnoses by untrained personnel but taking
advantage of the know-how of expert coffee growers. Such a
system seeks to instrument the visual characteristics of the
most common plant diseases on low-cost, robust, and highly
reliable hardware. We identified a deep network architecture
with high performance in disease categorization and adjusted the
hyperparameters of the model to maximize its characterization
capacity without incurring overfitting problems. The prototype
was evaluated in the laboratory on real plants for recognized
disease cases, tests that matched the performance of the model
validation dataset.

Keywords—Cercospora Coffeicola; convolutional neural net-
work; coffee leaf miner; coffee leaf rust; deep learning; image
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I. INTRODUCTION

For developing countries, agriculture is one of the most
important economic sectors, both for foreign exchange earn-
ings and for ensuring the food sustainability of their citizens.
Colombian coffee enjoys great importance in the international
markets because has characteristics that make it stand out, such
as its excellent quality and its soft flavor [[1]. The importance
of coffee is so great that it has been the main source of foreign
exchange for the country with 5.3 of the Gross Domestic
Product (GDP) and with a production of one million fifty
thousand sacks by January 2020. However, its cultivation is
mainly carried out by low-income coffee families, with very
little access to technologies that help reduce the effect of the
plagues that affect the plant [2], [3]. While real-time image
processing can be computationally expensive [4], a low-cost
artificial system reduces costs for damage and care of the plant
because farming families can access these tools at low cost
and use them to reduce the spread of disease and artificial
intelligence strategies can increase crop performance if they
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are made accessible to people with modest education and
purchasing power [5], [6].

The production and conservation of quality coffee are very
difficult for small producers [7]. In Colombia, only Arabic
coffees are cultivated, which differ from the Canephora coffees
(Robusta coffees) because they are soft, and of greater accep-
tance in the world market. The harvest is mostly done by small
coffee-growing families of medium and low profile. Some
plagues attack and make the plant sick, reducing the production
and affecting the quality and flavor [8]. These problems have
increased considerably in the last decades worldwide, which
has affected quality and quantity indicators [9]. Among the
most important pests that affect the coffee plant are Coffee
Leaf Rust (CLR) [10], the Coffee Borer Beetle (Hypothenemus
Hampei) [11], the Coffee Leaf Miner (Leucoptera Coffeella)
[L1], the Citrus Mealybug (Planococcus Citri), the Coffee
Stem, and Root Borer (Plagiohammus Colombiensis), and the
red spider. Also of importance are the Iron Spot (Cercospora
Coffeicola) [12], the Lint Disease (Corticium Koleroga), the
Cock’s Eye (Mycena Citricolor) [13], and the Anthracnose
(Colletotrichum Coffeanum) [14]. The varieties of Arabic
found in Colombia are Tipica (susceptible to CLR), Borbén,
Maragogipe, Tabi (resistant to CLR), Caturra (susceptible to
CLR), and Colombia variety (resistant to CLR).

Another important factor that negatively affects the culti-
vation of coffee, and that favors the propagation of plagues
and their diseases, is related to the climatic variations of the
planting areas [[13]], [16]. These climatic variations in addition
to affecting the growth of the plants tend to increase the
aggressiveness of the pests [17)]. It has been observed that
height affects the intensity of CLR aggression, which is greater
in the lower areas with higher temperatures [18]], [19].

Prevention and timely diagnosis are essential to stop the
advance of pests [20]]. Identifying pests at an early stage of
infection greatly increases the chances of successful treatment.
There are methods for determining the diseases of any plant,
such as taking samples of vegetative tissue to a specialized
laboratory or bringing an expert agronomist to the crop site.
In any of these cases, the disadvantages for the farmer are
centered on the time needed to obtain the results and the costs
involved. This is why the design of autonomous systems using
artificial vision and pattern recognition techniques, as well as
some classification algorithms, has been considered for the
development of preliminary diagnostic tasks [21]], [22]. In this
way, the coffee grower can identify the possible disease, its
propagation, and with experts and specialists coordinate more
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quickly and with less cost the correct treatment [23]], [24]].

Several of the diseases and plagues that are threatening the
cultivation of coffee also produce visually detectable effects
[25]. The visible effects have been studied as possible indica-
tors of their presence, thanks to the fact that they present spe-
cific characteristics [26]. Among these specific characteristics
are abnormal coloring of the leaves, deformation of the leaves,
and signs of dehydration. These particular characteristics can
be used for the process of diagnosis of the disease, or in
the opposite case, to diagnose the plant as healthy. RLC is
considered by many to be the most severe disease of the coffee
crop since it causes the premature fall of the leaves, leading to
the death of the plant. The disease has caused great production
losses in countries in Asia, Africa, and the Americas. Once the
disease appears and establishes itself in a place, it has not been
possible to eradicate it, despite multiple strategies implemented
by the producing families [[27]. It is characterized by pale spots
on the underside of the leaves that over time become large
yellow or orange spots with the presence of a yellow powder
(the spores of the fungus) [28].

In the case of the Cock’s Eye disease (Mycena Citricolor),
small circular or oval spots are observed, slightly sunken, with
a diameter of 6-10 mm on the leaves [29], [13]]. The lesions
start as dark brown spots with an undefined border, which
when reaching their final size present a well-marked border,
with little or no chlorosis around them, and can be light brown,
grayish, or reddish-brown, with a papery and dry appearance.

Iron Spot (Cercospora Coffeicola) is another important
disease that attacks coffee cultivation. It is caused by a fungus
that affects the plant in various stages, beginning in the
nursery [[12]]. It is visually characterized by brown spots with
a yellowish halo that contrasts with the normal leaf tissue. As
the disease progresses, the size of the spot increases, causing
the tissue to die. The most serious damage occurs to the fruit,
but also affects the leaves. It is transmitted by the fungus
Cercospora Coffeicola, and its spot is particularly prevalent in
the nursery and on unshaded coffee plantations. In the fruits the
infection starts through wounds or exposure to the sun forming
lesions similar to those on the leaves, but which eventually stop
being circular to become elongated and dark.

Each disease produces characteristic damage to the plant.
These damages visually generate geometrical and colorimet-
ric parameters that can be identified through digital image
processing [30], [31]. One of the most powerful strategies
for image categorization is the convolutional neural networks,
which have demonstrated to have a very high capacity to
identify information in unknown images after training with
categorized cases [32], [33]]. Therefore, it is possible to use a
neural model to design an embedded, autonomous, and low-
cost system capable of identifying in real-time diseases of the
coffee plant leaves [34].

The rest of this article is organized as follows. Section II
describes the functional characteristics of the embedded system
and the working environment of the equipment, which define
the design profile of the system. Section III describes the model
developed for the detection of anomalies in the coffee leaf,
as well as the characteristics of the hardware used, and its
configuration. The results that demonstrate the behavior of the
classification model are given in Section IV, and in Section V
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the conclusions of the research and development are presented.

II. PROBLEM STATEMENT

The sustainability of agriculture depends on many factors,
including the ability to reduce food losses due to infections
caused by bacteria, viruses, and fungi. In this sense, early
detection of crop diseases drastically reduces the spread of
illnesses, and therefore economic losses. Solution strategies
should be developed focusing not only on the nature of the
crop in question but also on the social conditions under
which production takes place. Our research focuses on the
identification of diseases common to the coffee plant, which
is why we sought to develop a system that could examine in
real-time the leaf of the plant, the place where diseases can be
identified. This system aims to detect possible changes in the
leaf of the plant that could signal an infection.

The objective of this research is to develop an embedded
system for the autonomous and on-site diagnosis of coffee
diseases. Other important features of the system include low
cost and ease of operation. Among the design features, the need
for autonomous operation stands out given the impossibility of
connection for the deployment of complex models. In addition
to these features, portability and high performance also limit
the hardware characteristics to be used.

Among the machine learning schemes evaluated as auto-
matic categorization schemes, those based on deep networks
presented the highest values in the evaluation metrics. Conse-
quently, a deep model that can be run in real-time on limited
processing hardware should be chosen for implementation.
Such a system should have a digital camera for image capture,
and the appropriate framework for digital processing. The
categorization model must extract the image parameters with
the diseases to be identified, so a specific dataset for the
problem is required. It should also facilitate the interpretation
of results by the user, so the images captured by the user should
be labeled according to the diagnosis (Fig. [I).

To design the model, the most frequent diseases that
cause the most damage to the plant and coffee production
were selected. For these images, we used public databases
categorized by experts in the plant. We used 1250 images
with a size of each of 2048 x 1024 pixels, corresponding
to Arabica coffee leaves separated into five categories, each
category with 250 images. The number of images in each
category was kept the same (250) to avoid bias in the model.
The first category (category 1) corresponds to healthy leaves,
the other four categories correspond to leaves affected by four
common plant diseases (each leaf has only one of the diseases):
Coffee Leaf Miner (CLM, category 2), Coffee Leaf Rust (CLR,
category 3), Phoma Leaf Spot (Phoma Tarda, category 4), and
Iron Spot (Cercospora Coffeicola, category 5). Fig. [2] show the
detail of the images in each of the categories.

Before training the model, the images will be pre-processed
using segmentation and labeling filters to remove the back-
ground of the image and keep only the leaf. Color adjustment
filters will also be used to enhance the images. In this way,
we seek to ensure that each image has the visual information
that a human expert would identify. The same processing is
applied to the images used in the training as well as those used
for model validation (Fig. [3). The system must have a visual
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Fig. 1. Pipeline of the Proposed Embedded System.
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Fig. 2. Sample Images from the Dataset. (a) Healthy Leaves, (b) Coffee Leaf Miner (CLM), (c) Coffee Leaf Rust (CLR), (d) Phoma Leaf Spot (Phoma Tarda)
and (e) Iron Spot (Cercospora Coffeicola)

output in which the user can observe the damage identified on
the leaf in real-time. In principle, a screen should be available
in which this image is constructed by superimposing on the
frame captured by the camera the information related to this
labeling and the information related to the categorization.

Among the possible deep models, the best performance
was obtained with the ResNet (Residual Neural Network).
Convolutional neural networks have convolution layers (con-
volution filters) that have the effect of filtering the image
with a previously trained kernel, capable of detecting primitive
features such as lines or curves. Over several layers, the neural
network learns to identify these features along with the training
data set. The ResNet50 architecture is selected as the topology
given its smaller comparative size (fewer parameters), and high
initial test results. This feature is achieved thanks to its design,

the network topology contemplates short forward connections
from the previous layers, which has been observed to increase
its accuracy.

III. METHODS

The system is composed of three processing modules: leaf
detection unit, preprocessing unit, and DNN (Deep Neural
Network) based model (Fig. [T). These modules are sequential,
the output of one functions as input to the next. The first
one corresponds to a set of filters applied to the input image
that seeks to identify the morphological characteristics of the
leaf in the video frames. These filters look for leaf shape
regardless of orientation or background, but prioritize shapes
of relative size to the frame, thus requiring the user to focus on
individual plant leaves. These initial filters reduce processing
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Fig. 3. Image after Segmentation, Labeling, Filtering and Scaling.

requirements by identifying an area in which the second
module’s preprocessing is applied. The preprocessing module
receives as input an area in the frame on which segmentation
and labeling are applied to identify areas of the region with
characteristics different from those expected in a healthy leaf.
This information is transferred to the output screen for user
documentation but is also used to precisely delimit the region
containing the leaf, which feeds the next module. Finally,
this information enters the DNN module, which propagates
the network in the trained model, and defines the most likely
disease. This information is also displayed on the screen for
the user.

The ResNet network was trained with public images cor-
responding to different databases. The selection of the images
considered criteria related to the effect of the disease in the
region of interest, the severity of leaf damage, and image
capture conditions (real environment and/or laboratory). The
images in the dataset were filtered to remove the background,
center the leaf on the image, and improve its color level [35]].
Also, they were randomly mixed within the stack to improve
the performance of the network. To facilitate training and
reduce resource consumption, the images were scaled to 256
x 256 pixels in RGB format. Although the aspect ratio of the
images was altered, this does not alter the visual information
related to the images, but it does facilitate the design of the
neural network.

For neural network training, the color matrices of the
images, which make up the input parameters, were normalized
to color depths in the range of zero to one. Besides, the
1250 images were randomly separated into two groups, the
first group with 80% of the images (1000 images) for neural
network training, and a second group with the remaining 20%
(250 images) for model validation purposes. For the design of
the network structure, the size of the input images is taken
into account, 256x256x3 = 196,608, which defines the total
number of input nodes. The number of output nodes is defined
by the number of network categories, which in our case are five
categories, so five output nodes. In the output, a one-hot coding
structure was defined to define these five output categories.

The ResNet50 model is a variant of ResNet with a total
of 48 convolution layers, along with 1 MaxPool layer and 1
Average Pool layer. The network has a total of 23,597,957
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parameters, of which 23,544,837 were adjusted during training.
Of these parameters, 10245 corresponded to the dense output
network. As optimization function in the model, we use the
stochastic gradient descent function. In the optimization we
use as error measure the categorical hinge function. During the
training, we calculated in each epoch the values of accuracy (or
hit rate) and MSE (mean quadratic errors) metrics to observe
the performance of the network throughout the training. The
final model was trained over 300 epochs with a batch size
of 32. Throughout the training, the accuracy increased from
23.3% to 96.5% for the training data.

We selected Arrow Electronics’ DragonBoard 410c devel-
opment board as the platform to evaluate the performance
of our neural model as an embedded system. We chose
this board for both cost and performance. This board has
a Qualcomm APQS8016e 64-bit quad-core processor, Wi-Fi,
Bluetooth, and GPS connectivity, and support for Windows
10 IoT Core, Android 5.1, and Debian 8.0. To evaluate the
performance of our model, we use Keras 2.4.3 and Tensorflow
2.3.0 installed above Linux Debian OS. Additionally, we used
numpy 1.18.5, scipy 1.4.1, scikit-learn 0.22.2, Pillow 7.0.0,
glob2 0.7, matplotlib 3.2.2, cv2 4.1.2.30, seaborn 0.11.0, and
pandas 1.1.2.

IV. RESULT AND DISCUSSION

The performance of the model was evaluated based on
the behavior of the categorization system with the validation
images, in this way it was possible to quantify the performance
under ideal conditions. The final tests of the prototype were
performed in the laboratory with leaves collected directly in
the field by the research group. These tests allowed validation
of the detection and preprocessing modules.

For the case of the final DNN model tuned for implemen-
tation, training was performed over 300 epochs, and accuracy
(Fig.[) and loss values (Fig.[5) were recorded for both training
and validation data. The error produced by the training data is
continuously reduced throughout the whole process, reaching a
final value of 0.07. An equivalent behavior is observed for the
accuracy of the training data, which increases continuously
throughout the training process from 23.3% to 96.5%. The
behavior of the validation data is not as uniform, but an overall
reduction of the error at the end of the training process is
observed, which although it is lower than that achieved by
the training data, keeps decreasing in parallel, guaranteeing
the non-existence of overfitting (final loss value of 0.56). The
accuracy of the validation data also has a uniformly increasing
behavior, parallel to the training data, increasing continuously
throughout the training process (final value of 71.5%). These
data, while not guaranteeing a perfect classification, do provide
for the application of an adequate classification of the analyzed
images.

The confusion matrix provides a quick picture of the
classification capability of the model as it explicitly shows
when one category is confused with another. This allows
working separately with different types of error, as well as
calculating different model performance metrics. We calculate
the confusion matrix for our model using the images from the
validation group (unknown images for the model) and assign
a heatmap with light colors for the highest number of true
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Fig. 4. Model Behavior: Training Accuracy vs Validation Accuracy.

positives, and dark colors for the opposite cases (Fig. [6). The
diagonal of the curve clearly shows that the model correctly
classifies most of the unknown images. For example, for the
healthy leaves’ category, 22 of the images were correctly
classified in the first category, and for the CLM category,
the best performing category, 45 of the images were correctly
classified.

To evaluate the performance of the model in a specific way,
we calculate the accuracy, recall, fl1-score, and support metrics
for each of the categories with the validation images (the 250
unknown images for the model). The average precision of the
model (percentage of correct positive predictions among all
positive predictions) was 73%, with an exceptional classifica-
tion of diseased leaves with Phoma Leaf Spot (84% precision)
and healthy leaves (92% precision). However, the classification
of diseased leaves with Coffee Leaf Rust was considerably
low (42% precision). The values of recall and fl-score show
similar results to those shown by the precision, in the case
of recall (percentage of correct positive predictions among all
positive predictions that could have been made) some measure
of the wrong positive predictions is presented, in this case, the
average value drops a little to 64%, which is very similar to the
precision value, but the recall for the leaves that are healthy
drops to 41%, and the value for the leaves that are sick with
Coffee Leaf Rust goes up to 88%. The fl-score corresponds
to the harmonic mean of precision and recall, so the above
peaks are averaged out at 64%. For the classification model
of our project, these values are good enough to support the
development of the prototype.

We also calculated the ROC curve (Receiver Operating
Characteristic) of the neural model (Fig. [7). This curve graphi-
cally shows the sensitivity of the model (ratio of true positives
to the ratio of false positives) to variations in the discrimination
threshold between categories. In this sense, high average values

(0.87) and high values per category (0.85 to 0.93) of true
positives versus false positives are observed.

Laboratory tests of the prototype showed not only the
correct operation of the classification model within the metric
margins but also how the leaf detection and preprocessing
modules facilitate the work of the deep model. The need to
evaluate the impact of these modules on the overall perfor-
mance of the system is raised in future work. The capability of
the DragonBoard 410c development board to run the software
in real-time will also be verified.

V. CONCLUSION

Early and on-site detection of diseases in coffee crops is
of great importance to avoid harvest losses, and to schedule
the correct spraying processes. In this sense, in this work, we
propose an embedded system based on machine learning for
the detection of diseases in the coffee plant. This system is
intended to be used directly in crops by farmers without tech-
nical knowledge, so its design, in addition to the characteristics
of the plant and its diseases, considers aspects of use, cost, and
performance. These characteristics of the system constitute the
major contribution of the authors in the research.

For the design of the classification model, we selected
four high impact diseases for this crop: Coffee Leaf Miner
(CLM), Coffee Leaf Rust (CLR), Phoma Leaf Spot (Phoma
Tarda), and Iron Spot (Cercospora Coffeicola). Healthy leaves
were also assigned a category. These diseases produce visible
damage in the coffee leaf that can be identified and classified
by image processing. In this sense, we selected a deep neural
network type ResNet (Residual Neural Network) to identify
and learn the characteristics of the leaves and their diseases.
This neural network was selected due to its high performance
and lower number of parameters compared to other topologies,
including other larger ResNet models. The architecture of the
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Fig. 5. Model Behavior: Training Loss vs Validation Loss.

Fig. 6. Confusion Matrix.

ResNet network was adjusted for input images of 256x256
pixels in RGB format, 50 layers of depth (ResNet50), and five
output categories. The database was made up of 250 images
in each category, and 80% of them were used for training
(1000 images) and 20% for model validation. The training was
carried out over 300 epochs taking care not to overfitting the
network. To fine-tune the parameters, the error was evaluated
using the categorical hinge function, and optimized using
the stochastic gradient descent function. The final accuracy
achieved by the model was 96.5% for the training data and
63.6% for the validation data (images unknown to the model).
This model was implemented on a DragonBoard 410c from
Arrow Electronics, running a Debian OS. Preliminary results

Some extension of Receiver operating characteristic to multi-class
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Fig. 7. ROC Curve.

show low resource consumption and acceptable performance
for real-world implementation. Detection of diseased leaves
exceeds 91% of cases, and correct disease identification is 64%
in the worst case. Research continues to strengthen the training
database, apply further fine-tuning to the hyperparameters, and
evaluate the impact on the performance of the digital image
processing modules.
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