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Abstract—This work proposes a metaheuristic algorithm that 
modifies the marine predator algorithm (MPA), namely, the 
stochastic marine predator algorithm with multiple candidates 
(SMPA-MC). The modification is conducted in several aspects. 
The proposed algorithm replaces the three fixed equal size 
iteration phases with linear probability. Unlike the original MPA, 
in this proposed algorithm, the selection between exploration and 
exploitation is conducted stochastically during iteration. In the 
beginning, the exploration-dominant strategy is implemented to 
increase the exploration probability. Then, during the iteration, 
the exploration probability decreases linearly. Meanwhile, the 
exploitation probability increases linearly. The second 
modification is in the prey’s guided movement. Different from 
the basic MPA, where the prey moves toward the elite with small 
step size, several candidates are generated with equal inter-
candidate distance in this work. Then, the best candidate is 
chosen to replace the prey’s current location. The proposed 
algorithm is then implemented to solve theoretical mathematic 
functions and a real-world optimization problem in production 
planning. The simulation result shows that in the average fitness 
score parameter, the proposed algorithm is better than MPA, 
especially in solving multimodal functions. The simulation result 
also shows that the proposed algorithm creates 9%, 19%, and 
30% better total gross profit than particle swarm optimization, 
marine predator algorithm, and Komodo mlipir algorithm, 
respectively. 

Keywords—Metaheuristic; marine predator algorithm; 
stochastic system; production planning 

I. INTRODUCTION 
Optimization is a subject that is widely used and studied. 

Optimization is implemented in many areas, especially in 
operations research, such as manufacturing [1], logistics [2], 
transportation [3], education [4], finance [5], and so on. 
Optimization becomes more important because of its objective 
nature to maximize productivity or output or minimize 
resources within certain constraints and limitations. This 
circumstance often occurs in real-world problems, from the 
simple one like managing the school bus route to the complex 
one, such as handling the production process in manufacturing 
that builds products with many components, such as cars, 
airplanes, ships, and so on. 

In general, optimization methods can be divided into two 
groups: exact and approximate. The exact methods have an 
advantage that true or global optimal is guaranteed to find. The 
problem is that the exact method needs excessive computation 
resources in solving complex and large dimension problems. 
On the other hand, approximate methods do not guarantee that 
global optimal can be found. The objective of approximate 

methods is to find near-optimal or acceptable optimal while 
avoiding local optimal [6], especially in multimodal problems. 
Fortunately, the approximate approach is popular because of its 
adaptability to computational resource constraints. The 
metaheuristic algorithm is a well-known and widely used 
method that uses an approximate approach. In metaheuristic, 
optimization is achieved during iteration. 

Many studies have proposed new metaheuristic algorithms 
in this last decade. Many algorithms were inspired by nature, 
especially animals. These algorithms were developed based on 
animal behavior during foraging, such as grey wolf optimizer 
(GWO) [7], dragonfly algorithm (DA) [8], whale optimization 
algorithm (WOA) [9], and so on. Besides foraging, several 
algorithms were developed by mimicking animal behavior 
during reproduction, such as Komodo mlipir algorithm (KMA) 
[10], red deer algorithm (RDA) [11], Cuckoo search algorithm 
(CSA) [12], butterfly optimization algorithm (BOA) [13], and 
so on. 

Besides proposing a new algorithm, many studies in 
metaheuristic algorithms were conducted to modify the 
existing algorithm. These modifications were conducted to 
improve the algorithm's performance or to make the algorithm 
more suitable to solve specific problems. Several well-known 
algorithms that have been widely modified or combined are 
genetic algorithm (GA), particle swarm optimization (PSO), 
simulated annealing (SA), tabu search (TS), and so on. Farag et 
al. [14] improved the binary-real coded genetic algorithm with 
k-means clustering to solve the unit commitment problem. Deb 
et al. [15] developed a non-dominated sorting genetic 
algorithm (NSGA II) derivative of a genetic algorithm to find 
pareto optimal in solving the multi-objective optimization 
problem. Sylia et al. [16] hybridized the PSO with proportional 
fair scheduling (PFS) to solve resource allocation in the 
orthogonal frequency division multiplexing (OFDM) 
transmission for future long-term evolution (LTE) and 5G 
networks. 

One shortcoming metaheuristic algorithm is the marine 
predator algorithm (MPA). This algorithm is a metaphor-
inspired algorithm that mimics the behavior of sea predators, 
such as shark, marlin, and swordfish, during hunting prey [17]. 
This algorithm is one of the rare metaheuristic algorithms that 
uses iteration to control the exploration and exploitation. The 
iteration is divided into three phases. The first phase conducts 
exploration [17]. The second phase conducts both exploration 
and exploitation [17]. The third phase conducts exploitation 
[17]. Exploration is mostly conducted by implementing the 
Brownian motion, while exploitation is conducted by 
implementing the Levy movement. 
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Even though this algorithm is new, it has been used in 
many optimization studies, such as in task scheduling [18], 
power system [19], hydrothermal scheduling [20], and so on. 
Moreover, studies conducted on MPA modification have been 
found but are still limited. Based on this circumstance, this 
MPA is still potential to modify. Several studies in 
metaheuristic, such as KMA [10], also used MPA as a 
performance comparison. 

Based on this opportunity, this work proposes modifying 
and improving the basic MPA. As metaheuristic algorithm, the 
proposed model consists of conceptual model, algorithm in 
pseudocode, and the mathematical model. In this work, the 
proposed model is evaluated by implementing this proposed 
model into the simulation to solve the theoretical mathematical 
optimization problem and a real-world optimization problem. 
In this simulation, the convergence and sensitivity of the 
algorithm are also evaluated. 

The contributions of this work are as follows. 

1) The proposed algorithm replaces the static division of 
the iteration with the stochastic approach where the 
opportunity to conduct exploration or exploitation changes 
during the iteration. 

2) This work proposes the existence of several candidates 
during the Brownian motion or Levy movement, where their 
fitness score is considered to become the prey’s next move. 

3) This work implements the modified version of MPA to 
optimize real-world production planning problem. 

The remainder of this paper is organized as follows. The 
mechanism of the basic MPA is discussed in the second 
section. The model of the proposed algorithm that consists of a 
conceptual, algorithm, and mathematical model is explained in 
the third section. The fourth section explains the simulation to 
evaluate the proposed algorithm's performance. In this work, 
there are five simulations. The first to fourth simulations are 
conducted to evaluate the proposed algorithm’s performance in 
solving 23 well-known optimization functions. The fifth 
simulation is conducted to evaluate the proposed algorithm’s 
performance in solving a real-world production optimization 
problem. The more profound analysis related to the simulation 
result and findings is discussed in the fifth section. Finally, the 
conclusion and the future research potential related to this work 
are summarized in the sixth section. 

II. RELATED WORK 
The marine predator algorithm is a metaheuristic algorithm 

that adopts sea predator behavior or movement during foraging 
or hunting prey [17]. This algorithm combines Brownian 
motion and Levy movement. Levy movement is a derivative of 
random walk movement whose characteristics are closely 
related to sea predators, such as shark, swordfish, or marline, 
during searching for prey [21]. In this algorithm, the Levy 
movement is combined with the Brownian motion to conduct 
exploration and exploitation. MPA consists of two sets of 
agents: predators and prey. The adoption of the Levy 
movement is like the Cuckoo search algorithm (CSA). CSA is 
developed based on the parasitism behavior of cuckoo birds 

during finding a nest for their eggs [12]. In CSA, the cuckoo 
implements the Levy movement only [12]. 

This algorithm divides exploration and exploitation 
depending on the iteration. It is very different from many 
common metaheuristic algorithms, such as particle swarm 
optimization, genetic algorithm, harmony search (HS), and so 
on, where the decision of running the exploration or 
exploitation does not depend on the iteration. MPA focuses on 
avoiding local optimal in the early phase and improving the 
solution in the later phase. 

Although rare, one example of an algorithm where the 
exploitation-exploration decision depends on the iteration is 
simulated annealing (SA). In general, SA focuses on 
exploitation by conducting neighborhood search in every 
iteration [22]. Exploration is conducted by accepting a new 
worse solution based on some probabilistic calculation to avoid 
local optimal [22]. In SA, the outer loop iterates from the initial 
high temperature to the final low temperature. When the 
temperature is high, the new worse solution is easily accepted. 
During the decrease in temperature, accepting the worse 
solution becomes more difficult [22]. In the end, a new worse 
solution is hard to accept. This exploration-to-exploitation 
approach is like MPA but with different mechanism. 

In MPA, the iteration is divided into three phases with the 
same duration. In the first phase, the process focuses on 
exploration by implementing the Brownian movement for all 
prey. The objective is that local optimal should be avoided in 
the early phase. In the second phase, the population is divided 
into two equal-size groups. The first group consists of preys 
that conduct exploration by implementing the Brownian 
movement. The second group consists of preys that conduct 
exploitation by implementing the Levy movement. The 
objective is that the algorithm focuses on improving searching 
quality. In the third phase, all populations focus on exploitation 
by adopting the Levy movement. This division is illustrated in 
Fig. 1. 

 
Fig. 1. Static Division in Marine Predator Algorithm. 

There are several sequential processes in every iteration. 
The first process is the prey’s movement which is explained 
earlier. The second process is updating the predators. The prey 
replaces its related predator only if its fitness is better than its 
related predator. The third process is the eddy formation. This 
eddy formation is another method used in MPA to avoid local 
optimal. This process is conducted stochastically based on the 
fish aggregating device affects that range from 0 to 1. There are 
two possible actions related to this process based on 
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probabilistic calculations. If a certain generated random 
number is below the fish aggregating devices, the prey 
randomly conducts a long jump within its local problem space 
that narrows as iteration goes. Otherwise, this prey will move 
toward two randomly selected prey at a certain speed. 

In the prey’s guided movement, whether Brownian 
movement or Levy flight, only one location is considered, as 
shown in Fig. 2. This location may be within the path between 
the prey and the elite or the extended distance from the elite. 
The determination of this new location depends on the step 
size, which is determined stochastically depending on the 
selected movement and the gap between the predator and the 
prey. The fitness value is not considered. 

 
Fig. 2. Guided Movement in Marine Predator Algorithm. 

Moving toward the best solution is common in many 
metaheuristic algorithms. In particle swarm optimization 
(PSO), each agent moves toward local best and global best 
with a certain proportion [23]. In Komodo mlipir algorithm 
(KMA), female mates with the highest quality big male to 
produce two offspring [10]. The first offspring is close to the 
female, and the second one is close to the highest quality big 
male. Then, offspring whose fitness is better becomes the 
replacement. Meanwhile, the small male moves toward the big 
male. In the red deer algorithm, this idea is implemented 
during the fighting between the male commander and stag and 
the mating of the commander and harem [11]. 

Even though the MPA is proven as a competitive 
algorithm, there are several questions or review due to this 
algorithm. First, is there any possible method to conduct 
exploration-to-exploitation approach despite this fixed division 
during the iteration? Second, is there any method to improve 
the movement of the prey rather than the small step size? 

There are several possible modifications due to this basic 
MPA mechanism. The first is eliminating the fixed size 
division of the iteration while the concept of exploration 
dominant in the early iteration and the exploitation dominant in 
the later iteration is still adopted. The second is to create 
several new location candidates for prey during the guided 
movement. Their fitness score is considered so that the prey 
moves to a more promising location.  

III. PROPOSED MODEL 
In this section, the proposed model will be discussed in 

detail. The model consists of a conceptual and mathematical 

model. The conceptual model explains the concept and the 
difference between the proposed algorithm and the original 
MPA, especially in the exploration and exploitation division 
and the improvement of the guided movement. The 
mathematical model consists of the main algorithm of SMPA-
MC and the mathematical formulae following the algorithm. 

Like MPA, this proposed algorithm consists of two sets of 
agents: preys and predators. Both preys and predators have 
equal population sizes. The relation between prey and predator 
is one-to-one. After the prey moves, then their fitness score is 
evaluated. If the prey’s fitness score is better than the 
predator’s fitness score, then the predator moves to the prey’s 
location. 

As a metaheuristic algorithm, SMPA-MC consists of two 
parts: initialization and iteration. In the initialization, the initial 
prey’ and predators’ location is generated randomly within the 
problem space using a uniform distribution. 

As a derivative version of MPA, the iteration affects the 
exploration and exploitation division in this proposed 
algorithm. Unlike MPA, where this division is divided into 
fixed three phases, this division is conducted based on a 
stochastic approach in this proposed algorithm. In the 
beginning, the probability of exploration is high. Contrary, the 
probability of exploitation is low. During the iteration, the 
probability of exploration declines linearly while the 
probability of exploitation climbs up linearly. At the end of the 
iteration, the probability of exploitation is high, while the 
probability of exploration is low. This mechanism is illustrated 
in Fig. 3. 

 
Fig. 3. Stochastic-based Exploitation and Exploration. 

The guided movement of the proposed algorithm is also 
different from the MPA. This proposed algorithm generates 
multiple candidates between the prey and the elite. The inter-
candidate distance is equal. One candidate whose fitness is the 
best among these candidates is then chosen as the best 
candidate. This mechanism is adopted from KMA, especially 
in the mating process between the highest quality male and the 
female [10]. The difference is that in KMA, sexual 
reproduction only produces two offspring. In this proposed 
algorithm, the guided movement generates multiple candidates. 
The best new generation or candidate becomes the replacement. 
Then, this best candidate location becomes the prey’s next 
location. This concept is illustrated in Fig. 4. 
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Fig. 4. Guided Movement with Multiple Candidates / Alternatives. 

Different mechanism also occurs during the eddy formation. 
During this process, there are two possible actions. The first is 
that the prey moves randomly within its local problem space. 
In the beginning, the local problem space is wide. During the 
iteration, this local problem space decreases linearly too. It also 
reflects the transition from exploration to exploitation during 
the iteration. The second action is that the prey moves to a 
location in the middle of the prey’s current location, and the 
other prey’s location is selected randomly. Although the 
mechanism during eddy formation is different, the motivation 
is the same. 

This conceptual model is then interpreted into sequential 
steps. These sequential steps are as follows. 

• Step 1: generate initial preys and predators. 

• Step 2: set initial iteration. 

• Step 3: generate several candidates based on the 
movement that is chosen stochastically. 

• Step 4: select the best candidate to replace the current 
prey. 

• Step 5: update the related predator. 

• Step 6: implement eddy formation. 

• Step 7: if the maximum iteration has not been reached, go 
to step 3. Otherwise, iteration stops. 

• Step 8: select the best predator to become the final 
solution. 

This conceptual model is then transformed into a 
mathematical model. The mathematical model consists of two 
parts: main algorithm and formulae. The main algorithm is 
shown in algorithm 1. Meanwhile, several annotations used in 
the mathematical model are as follows. 

bl lower bound 
bu upper bound 
c candidate 
cbest best candidate 
C set of candidates 
f fitness 
fad fish aggregating devices 
P population 
r predator 
R set of predators 
t time / iteration 
th time threshold 
tmax maximum iteration 
y prey 
Y set of preys 

 

algorithm 1: SMPA-MC main algorithm 
1 //initialization 
2 for i = 1 to n(P)   
3   generate (yi) 
4   generate (ri) 
5 end 
6 //iteration 
7 for t = 1 to tmax 
8   generate (th) 
9   for i = 1 to n(P) 
10     if U(0, 1) < th then 
11       for j = 1 to n(C)  
12         generate-guided-exploitation (cj, yi, ri) 
13       end  
14       cbest = select best candidate (C) 
15     else   
16       for j = 1 to n(C) 
17         generate-guided-exploration (cj , yi, ri) 
18       end 
19       cbest = select best candidate (C) 
20     end if 
21     yi = cbest 
22     ri = update (yi, ri) 
23     if U(0,1) < fad then 
24       yi = limited random move (yi, th, li) 
25     else 
26       ysel = U(Y) 
27       yi = half move (yi , ysel) 
28     end if 
29   end 
30 end 
31 sfinal = find best (R) 

All predators’ and preys’ initial location is generated in the 
initialization process. This initial location is generated 
randomly within the problem space. This process is formalized 
by using (1) and (2). Equation (1) generates the prey’s initial 
location, while (2) is used to generate the predator’s initial 
location. All predators and prey are distributed randomly 
within the problem space. 

𝑦 = 𝑈(𝑏𝑙 , 𝑏𝑢)                (1) 

𝑟 = 𝑈(𝑏𝑙 , 𝑏𝑢)                (2) 

The iteration process runs after the initialization process 
ends. At the beginning of every iteration, a time threshold is 
calculated. This threshold determines whether this iteration is 
conducted for guided exploitation or guided exploration. The 
time threshold is calculated by using (3). 

𝑡ℎ = 𝑡
𝑡𝑚𝑎𝑥

                (3) 

A random number is then generated, and it follows uniform 
distribution as shown in algorithm 1. If this random number is 
less than the time threshold, guided exploitation is conducted. 
Otherwise, guided exploration is conducted. In both guided 
exploration and exploitation, several candidates are generated. 
Then, the best candidate is selected among these candidates. 
After the best candidate is selected, this candidate replaces the 
related prey. This process is formalized by using (4) to (6). 
Equation (4) is used for the guided exploitation. Equation (5) is 
used for the guided exploration. Equation (6) formalizes the 
best candidate selection. 

𝑐𝑗 = 𝑟 + 𝑗
𝑛(𝐶)

(𝑟 − 𝑦)               (4) 

𝑐𝑗 = 𝑦 + 𝑗
𝑛(𝐶)

(𝑟 − 𝑦)               (5) 
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𝑐𝑏𝑒𝑠𝑡 = 𝑐 ∈ 𝐶 ∧ min�𝑓(𝑐)�              (6) 

The predator location is then evaluated after a prey moves 
to its new location. If this prey’s fitness score is better than the 
predator’s fitness score, then this prey becomes the new 
predator. This process is formalized by using (7). 

𝑟′ = �𝑦, 𝑓(𝑦) < 𝑓(𝑟)
𝑟, 𝑒𝑙𝑠𝑒                (7) 

The last process in every iteration is applying the eddy 
formation. There are two possible actions in this process. The 
selection determined stochastically end depends on the fish 
aggregating devices value. This process can be limited to 
random movement or half movement. A prey will move 
randomly within its local problem space in the limited random 
movement. On the other hand, in the half movement, a prey 
will move to the middle between its current location and other 
prey selected randomly. The limited random movement is 
formalized using (8), while the half movement is formalized 
using (9). 

𝑦′ = 𝑦 + (2𝑈(0,1) − 1)(1 − 𝑡ℎ)(𝑏𝑢 − 𝑏𝑙)             (8) 

𝑦′ = 𝑦 + 𝑦𝑠𝑒𝑙−𝑦
2

                (9) 

The complexity of this algorithm, as it is presented in big O 
notation, is O(tmax.n(P).n(C)). This presentation means that the 
complexity is the multiplication between the maximum 
iteration, population size, and the number of candidates. 

IV. SIMULATION AND RESULT 
The proposed algorithm is then implemented into a 

simulation to observe its performance. There are five 
simulations conducted in this work. The first simulation is 
conducted to evaluate its performance in solving mathematical 
problems. The second simulation is conducted to evaluate its 
performance in achieving the convergence condition. The third 
simulation is conducted to evaluate the proposed algorithm’s 
performance related to the fishing aggregate devices. The 
fourth simulation is conducted to evaluate the performance 
related to the number of candidates. The fifth simulation is 
conducted to evaluate its performance in solving a real-world 
problem. 

In this simulation, the proposed SMPA-MC algorithm is 
compared with several algorithms: PSO, HS, hide object game 
optimizer (HOGO), KMA, and MPA. The reason for choosing 
these algorithms as a comparison is that these algorithms use 
distinct exploration-exploitation mechanisms. PSO and HS 
represent the well-known old-fashioned algorithm. HOGO and 
KMA represent the shortcoming algorithms that hybridize 
many common methods. MPA is chosen to observe the 
performance improvement due to modifying its basic form. 

PSO is a well-known algorithm that is developed based on 
swarm intelligence. In PSO, each agent moves to a new 
location depending on the weighted cumulative method among 
its current location, its local best, and the global best [23]. The 
global best represents the collective intelligence shared among 
agents, and it is updated every time a new local best is found 
[23]. 

HS represents the non-population-based metaheuristic 
algorithm. Moreover, this algorithm is the simplest one among 
other algorithms. The exploration-exploitation decision is 
conducted based on the stochastic approach [24]. A new 
solution can be generated from the harmony memory 
(exploitation) or anywhere else within the problem space 
(exploration) based on the harmony memory considering rate 
(HMCR) [24]. 

HOGO represents a game-based algorithm. It mimics the 
behavior of the old hide-object game. This algorithm is also a 
population-based algorithm that consists of a set of agents. The 
agent’s movement depends on the global best, the global worst, 
and the randomly selected agent through a weighted 
cumulative method [25]. An agent tends to move toward the 
global best and avoid the global worst [25]. 

KMA represents a hybrid metaheuristic algorithm. It 
combines swarm intelligence and an evolution system. The 
males conduct the PSO-like movement by moving toward the 
better big males [10]. On the other hand, the evolution system 
is conducted by the female by mating with the highest quality 
big male to generate better offspring [10]. Meanwhile, 
exploration is conducted by parthenogenesis or asexual 
reproduction [10]. 

MPA represents an algorithm where the current iteration 
affects the decision to conduct exploration or exploitation. In 
KMA, HOGO, HS, and PSO, the iteration does not affect the 
decision. It also represents a population-based algorithm where 
an agent consists of two engaged agents: prey and predator. 

There are several common parameters used in the 
simulation. These parameters are shown in Table I. The value 
of population size and maximum iteration represents the 
moderate computation process. The weights in PSO represent 
the balance movement. 

TABLE I. PARAMETERS DEFAULT VALUE 

Parameters Default Value 

population size 20 

maximum iteration (except HS) 200 

maximum iteration (HS) 4000 

fishing aggregate devices (MPA and SMPA-MC) 0.2 

current speed weight (PSO) 0.5 

social weight 0.5 

cognitive weight 0.5 

number of candidates (SMPA-MC) 10 

In the first simulation, the proposed algorithm is 
implemented to solve or find the global optimal of the given 
functions. There are 23 functions to be solved. Seven functions 
are unimodal functions. Six functions are multimodal functions. 
Ten functions are fixed dimension multimodal functions. The 
seven unimodal functions include Sphere, Schwefel 2.22, 
Schwefel 1.2, Schwefel 2.21, Rosenbrock, Step, and Quartic. 
The multimodal functions include Schwefel, Rastrigin, Ackley, 
Griewank, Penalized, and Penalized-2. The fixed dimension 
multimodal functions include Foxholes, Kowalik, Six Hump 
Camel, Branin, Goldstein-Price, Hartman 3, Hartman 6, Shekel 
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5, Shekel 7, and Shekel 10. The detail of the functions, which 
consists of formulae, dimension, problem space, and global 
optimal, is shown in Table II. Meanwhile, the result is shown 
in Table III. 

Table III shows that in general, the proposed algorithm 
performs well and meets the metaheuristic criteria in finding 
the near-optimal solution and avoiding the local optimal trap. 
Moreover, the proposed algorithm can find the true optimal 
solution in solving five multimodal functions: Shekel Foxholes, 
Kowalik, Six Hump Camel, Branin, and Goldstein-Price. 
Unfortunately, its performance is not so good in solving 
Hartman 3 function. 

Compared to other algorithms, the proposed model is 
competitive enough. Its performance is superior in solving 10 

functions. Meanwhile, HOGO has become the most 
challenging algorithm due to its outstanding performance in 
solving 9 functions. Compared with MPA, the proposed 
SMPA-MC is better at solving 13 functions. Most of these are 
multimodal functions, especially the fixed dimension 
multimodal functions with narrow problem space. The 
proposed algorithm also outperforms at least three algorithms 
in solving 22 functions. 

The second simulation is conducted to evaluate the 
performance of the proposed algorithm in achieving the 
convergence situation. This simulation is conducted by solving 
the 23 benchmark functions.  There are three maximum 
iterations in this simulation: 50, 100, and 150. The result is 
shown in Table IV. 

TABLE II. BENCHMARK FUNCTIONS 

No Function Model Dimension Problem Space Global Opt. 

1 Sphere ∑ 𝑥𝑖2𝑑
𝑖=1   10 [-100, 100] 0 

2 Schwefel 2.22 ∑ |𝑥𝑖|𝑑
𝑖=1 + ∏ |𝑥𝑖|𝑑

𝑖=1   10 [-100, 100] 0 

3 Schwefel 1.2 ∑ �∑ 𝑥𝑗𝑖
𝑗=1 �

2𝑑
𝑖=1   10 [-100, 100] 0 

4 Schwefel 2.21 max{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑑}  10 [-100, 100] 0 

5 Rosenbrock ∑ (100(𝑥𝑖+1 + 𝑥𝑖2)2 + (𝑥𝑖 − 1)2)𝑑−1
𝑖=1   10 [-30, 30] 0 

6 Step ∑ (𝑥𝑖 + 0.5)2𝑑−1
𝑖=1   10 [-100, 100] 0 

7 Quartic ∑ 𝑖𝑑
𝑖=1 𝑥𝑖4 + 𝑟𝑎𝑛𝑑𝑜𝑚 [0,1]  10 [-1.28, 1.28] 0 

8 Schwefel ∑ −𝑥𝑖 sin��|𝑥𝑖|�𝑑
𝑖=1   10 [-500, 500] -4189.8 

9 Ratsrigin 10𝑑 + ∑ �𝑥𝑖2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖)�𝑑
𝑖=1   10 [-5.12, 5.12] 0 

10 Ackley −20 ⋅ 𝑒𝑥𝑝 �−0.2 ⋅ �1
𝑑
∑ 𝑥𝑖2𝑑
𝑖=1 � − 𝑒𝑥𝑝 �1

𝑑
∑ cos 2𝜋𝑥𝑖𝑑
𝑖=1 � + 20 + 𝑒𝑥𝑝(1)  10 [-32, 32] 0 

11 Griewank 1
4000

∑ 𝑥𝑖2𝑑
𝑖=1 − ∏ 𝑐𝑜𝑠 �𝑥𝑖

√𝑖
�𝑑

𝑖=1 +1 10 [-600, 600] 0 

12 Penalized 
𝜋
𝑑
�10 sin(𝜋𝑦1) + ∑ �(𝑦𝑖 − 1)2�1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)��𝑑−1

𝑖=1 + (𝑦𝑑 − 1)2�+
∑ 𝑢(𝑥𝑖 , 10,100,4)𝑑
𝑖=1   

10 [-50, 50] 0 

13 Penalized 2 
0.1 �𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ �(𝑥𝑖 − 1)2�1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖+1)��𝑑−1

𝑖=1 + (𝑥𝑑 − 1)2�1 +

𝑠𝑖𝑛2(2𝜋𝑥𝑑)�� + ∑ 𝑢(𝑥𝑖, 5,100,4)𝑑
𝑖=1   

10 [-50, 50] 0 

14 Shekel Foxholes � 1
500

+ ∑ 1

𝑗+∑ �𝑥𝑖−𝑎𝑖𝑗�
62

𝑖=1

25
𝑗=1 �

−1
  2 [-65, 65] 1 

15 Kowalik ∑ �𝑎𝑖 −
𝑥1�𝑏𝑖

2+𝑏𝑖𝑥2�
𝑏𝑖
2+𝑏𝑖𝑥3+𝑥4

�
2

11
𝑖=1   4 [-5, 5] 0.0003 

16 Six Hump Camel 4𝑥12 − 2.1𝑥14 + 1
3
𝑥16 + 𝑥1𝑥2 − 4𝑥22 + 4𝑥24  2 [-5, 5] -1.0316 

17 Branin �𝑥2 −
5.1
4𝜋2

𝑥12 + 5
𝜋
𝑥1 − 6�

2
+ 10 �1− 1

8𝜋
� cos(𝑥1) + 10  2 [-5, 5] 0.398 

18 Goldstein-Price �1 + (𝑥1 + 𝑥2 + 1)2(19− 14𝑥1 + 3𝑥12 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥22)�. �30 +
(2𝑥1 − 3𝑥2)2(18− 32𝑥1 + 12𝑥12 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥22)�  

2 [-2, 2] 3 

19 Hartman 3 −∑ �𝑐𝑖𝑒𝑥𝑝 �−∑ �𝑎𝑖𝑗�𝑥𝑗 − 𝑝𝑖𝑗�
2�𝑑

𝑗=1 ��4
𝑖=1   3 [1, 3] -3.86 

20 Hartman 6 −∑ �𝑐𝑖𝑒𝑥𝑝 �−∑ �𝑎𝑖𝑗�𝑥𝑗 − 𝑝𝑖𝑗�
2�𝑑

𝑗=1 ��4
𝑖=1   6 [0, 1] -3.32 

21 Shekel 5 −∑ �∑ �𝑥𝑗 − 𝑐𝑗𝑖�
2 + 𝛽𝑖𝑑

𝑗=1 �
−1

5
𝑖=1   4 [0, 10] -10.1532 

22 Shekel 7 −∑ �∑ �𝑥𝑗 − 𝑐𝑗𝑖�
2 + 𝛽𝑖𝑑

𝑗=1 �
−1

7
𝑖=1   4 [0, 10] -10.4028 

23 Shekel 10 −∑ �∑ �𝑥𝑗 − 𝑐𝑗𝑖�
2 + 𝛽𝑖𝑑

𝑗=1 �
−1

10
𝑖=1    4 [0, 10] -10.5363 
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TABLE III. SIMULATION RESULT (MEANS) 

Function PSO HS KMA HOGO MPA Proposed 
Model Better than 

Sphere 329.99 505.1458 507.3948 4.4651e-11 0.1662 0.1857 PSO, HS, KMA 

Schwefel 2.22 3.0223e-18 0 0.0021 1.1295e-7 0 0 PSO, KMA, HOGO 

Schwefel 1.2 1,410.4218 1,203.6542 1,677.9713 0.1747 0.8628 13.5649 PSO, HS, KMA 

Schwefel 2.21 14.2562 16.0000 14.4289 0.0008 0.2600 0.8221 PSO, HS, KMA 

Rosenbrock 39,750.9494 48,923.1329 58,963.9907 8.6153 10.5113 21.5729 PSO, HS, KMA 

Step 199.4486 327.0324 457.9096 0.0120 2.0221 0.0776 PSO, HS, KMA, MPA 

Quartic 0.1062 0.0901 0.3252 0.1152 0.0030 0.0046 PSO, HS, KMA, HOGO 

Schwefel -3,342.1276 -3,328.4096 -3,172.5575 -2,758.9118 -2,031.1057 -3,212.5081 KMA, HOGO, MPA 

Ratsrigin 31.9483 24.1875 37.1191 14.6673 0.1469 7.1187 PSO, HS, KMA, HOGO 

Ackley 7.6684 9.0253 9.4044 0.6494 0.3033 1.1982 PSO, HS, KMA 

Griewank 3.9131 5.4470 5.9587 0.0559 0.1842 0.3709 PSO, HS, KMA 

Penalized 15.2125 17.6490 12.2738 0.0175 0.7669 0.5726 PSO, HS, KMA, MPA 

Penalized 2 17,158.3907 7,766.3057 6,452.3411 0.0864 2.7432 0.1720 PSO, HS, KMA, MPA 

Shekel Foxholes 10.1559 0.9980 7.1567 5.9722 5.1568 0.9980 PSO, HS, KMA, HOGO 

Kowalik 0.0102 0.0017 0.0111 0.0047 0.0027 0.0004 PSO, HS, KMA, HOGO 

Six Hump Camel -1.0316 -1.0308 -1.0278 -1.0313 -1.0280 -1.0316 PSO, HS, KMA, HOGO 

Branin 0.3980 0.3984 0.4167 0.4086 0.8053 0.3980 PSO, HS, KMA, HOGO 

Goldstein-Price 3.0000 3.0000 3.9038 3.0195 4.1111 3.0000 PSO, HS, KMA, HOGO 

Hartman 3 -3.4724 -0.0495 -0.7724 -0.0495 -3.7843 -0.0495 - 

Hartman 6 -3.2106 -3.2723 -3.0073 -3.2157 -2.0356 -3.3221 PSO, HS, KMA, HOGO 

Shekel 5 -6.4334 -5.8036 -7.9029 -4.6978 -2.0375 -10.1310 PSO, HS, KMA, HOGO 

Shekel 7 -5.7752 -7.4658 -8.0417 -5.9069 -2.4365 -10.3892 PSO, HS, KMA, HOGO 

Shekel 10 -4.8883 -5.0071 -6.0913 -6.1175 -2.2369 -10.5257 PSO, HS, KMA, HOGO 

Table IV shows that in general, the convergence 
performance of the proposed algorithm is good. It achieves 
convergence in the early iteration while solving all fixed 
dimension multimodal functions. Besides, it also achieves 
convergence in the early iteration in solving the Schwefel 2.22 
and Shekel Foxholes functions. Otherwise, it needs a higher 
maximum iteration to achieve convergence. 

The third simulation is conducted to observe the sensitivity 
of the fishing aggregate devices related to the proposed 
algorithm’s performance. The fishing aggregate devices are 
chosen due to its role in determining the exploration 
mechanism. In this simulation, there are three values of the 
fishing aggregate devices: 0.25, 0.5, and 0.75. These values 
represent the low, moderate, and high fishing aggregate 
devices. The result is shown in Table V. 

Table V shows that the sensitivity of the fishing aggregate 
devices is various depend on the problem to solve. The 
increase of the fishing aggregate devices worsens the proposed 
algorithm’s performance in solving the most of unimodal 
functions, except Schwefel 2.22. On the other hand, the fishing 
aggregate devices do not affect the proposed algorithm’s 
performance in solving most of the multimodal functions. 

The fourth simulation is conducted to evaluate the 
sensitivity of the number of candidates related to the proposed 
algorithm’s performance. In this simulation, there are three 
values of the number of candidates: 5, 10, and 15. These values 
represent the low, moderate, and high number of candidates. 
The result is shown in Table VI. 

Table VI shows that in general, the number of candidates 
has positive relation the proposed algorithm’s performance. 
The increase of the number of candidates tends to improve the 
performance. This circumstance occurs in all functions: 
unimodal functions and multimodal functions. In the beginning, 
the improvement is significant. But, after the algorithm reaches 
its peak performance, the improvement is less significant. In 
some functions, such as Schwefel 2.22 and Goldstein-Price, the 
peak performance is achieved in the small number of 
candidates. 

The fifth simulation is conducted to evaluate the 
performance of the proposed algorithm in solving the real-
world optimization problem. An algorithm test using a real-
world optimization problem is needed to prove that the 
algorithm is good theoretically and practically. In this 
simulation, the proposed algorithm is implemented to optimize 
the production planning process in a manufacturing company. 
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TABLE IV. CONVERGENCE TEST RESULT 

Function 
Average Fitness Score 

tmax = 50 tmax = 100 tmax = 150 

Sphere 46.4677 3.2242 0.7576 

Schwefel 2.22 0.0020 0 0 

Schwefel 1.2 148.1581 57.4689 21.4743 

Schwefel 2.21 4.8131 2.5311 1.3052 

Rosenbrock 652.8542 131.7495 54.1151 

Step 24.0461 2.0388 0.2480 

Quartic 0.0145 0.0077 0.0051 

Schwefel -2,639.4568 -2,975.1690 -3,115.1478 

Ratsrigin 9.5166 10.0503 7.2051 

Ackley 4.4461 2.5475 1.7403 

Griewank 1.3237 0.7802 0.5090 

Penalized 2.6256 0.9555 0.5157 

Penalized 2 9.6735 1.6905 0.2997 

Shekel Foxholes 1.0821 0.9980 0.9980 

Kowalik 0.0008 0.0004 0.0004 

Six Hump Camel -1.0316 -1.0316 -1.0316 

Branin 0.3981 0.3981 0.3981 

Goldstein-Price 3.0000 3.0000 3.0000 

Hartman 3 -0.0495 -0.0495 -0.0495 

Hartman 6 -3.2780 -3.3199 -3.3217 

Shekel 5 -9.6085 -10.0459 -10.0976 

Shekel 7 -10.1142 -10.1338 -10.1073 

Shekel 10 -10.0074 -10.4680 -10.5128 

TABLE V. RELATION BETWEEN FISHING AGGREGATE DEVICES AND 
FITNESS SCORE 

Function 
Average Fitness Score 

fad = 0.25 fad = 0.5 fad = 0.75 

Sphere 4.3085 7.4816 13.1763 

Schwefel 2.22 0 0 0 

Schwefel 1.2 40.6408 58.1769 124.8039 

Schwefel 2.21 2.4441 2.9302 3.5865 

Rosenbrock 131.9147 105.0508 305.1955 

Step 1.5093 5.1901 10.8524 

Quartic 0.0077 0.0134 0.0195 

Schwefel -2,955.7188 -3,184.1091 -3,358.1613 

Ratsrigin 10.4572 15.6704 19.3374 

Ackley 2.6340 2.8596 3.2112 

Griewank 0.8104 0.8855 1.1047 

Penalized 1.1464 0.5891 1.3944 

Penalized 2 1.1628 1.7262 3.2667 

Shekel Foxholes 0.9981 0.9980 0.9980 

Kowalik 0.0004 0.0010 0.0009 

Six Hump Camel -1.0316 -1.0316 -1.0316 

Branin 0.3981 0.3981 0.3981 

Goldstein-Price 3.0000 3.0000 3.0002 

Hartman 3 -0.0495 -0.0495 -0.0495 

Hartman 6 -3.3202 -3.3209 -3.3211 

Shekel 5 -10.0811 -10.0605 -10.0372 

Shekel 7 -10.3100 -10.3351 -10.2997 

Shekel 10 -10.4786 -10.4635 -10.4343 

TABLE VI. RELATION BETWEEN NUMBER OF CANDIDATES AND FITNESS 
SCORE 

Function 
Average Fitness Score 

n(C) = 5 n(C) = 10 n(C) = 15 

Sphere 10.2168 4.2298 1.5692 

Schwefel 2.22 0 0 0 

Schwefel 1.2 63.8637 54.9011 41.1862 

Schwefel 2.21 3.7031 2.5755 2.4947 

Rosenbrock 173.8898 167.1175 98.5991 

Step 4.2628 2.3263 1.2434 

Quartic 0.0111 0.0017 0.0068 

Schwefel -2,584.2545 -3,054.2677 -3,016.2328 

Ratsrigin 17.5424 11.0106 8.1328 

Ackley 3.1073 2.3593 2.4817 

Griewank 0.9317 0.6514 0.7018 

Penalized 1.2564 0.8481 0.5831 

Penalized 2 2.7543 0.8494 1.0848 

Shekel Foxholes 1.3601 0.9980 0.9980 

Kowalik 0.0008 0.0004 0.0004 

Six Hump Camel -1.0316 -1.0316 -1.0316 

Branin 0.3980 0.3980 0.3980 

Goldstein-Price 3.0000 3.0000 3.0000 

Hartman 3 -0.0495 -0.0495 -0.0495 

Hartman 6 -3.0389 -3.3195 -3.3216 

Shekel 5 -9.8176 -10.1143 -10.0888 

Shekel 7 -10.3370 -10.3906 -10.3829 

Shekel 10 -10.3174 -10.4665 -10.4899 

The simulation scenario is Muslim socks manufacturer in 
Bandung, Indonesia. This company produces 40 product items. 
Half of them are long socks, while half others are short socks. 
Six items are fast-moving products while the others are 
moderate ones. The most fast-moving products are the light 
brown socks, both short and long. The other fast-moving 
products are white socks and black socks. Each item should be 
produced within the minimum and maximum production 
ranges. On the other hand, there is a limitation in the storage 
and financial capacity so that all produced socks cannot surpass 
the total production quantity. The maximum total capacity is 
only 5,250 dozen. The characteristics of every item are shown 
in Table VII. The production quantity is presented in dozen 
while the price is presented in rupiah. The objective is to 
maximize total gross profit. 
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TABLE VII. PRODUCT DESCRIPTION 

Product 
ID 

Min. Production 
(dozen) 

Max. Production 
(dozen) 

Gross Profit 
(rupiah/dozen) 

1 500 1000 24,000 

2, 3 200 400 24,000 

4-20 50 100 24,000 

21 500 1000 30,000 

22, 23 200 400 30,000 

24-40 50 100 30,000 

This optimization problem can be seen as a Knapsack 
optimization problem. The concept of the Knapsack problem is 
that there is a space with a limited capacity [26]. On the other 
hand, there are several products to pick up. The objective is to 
determine the items, and the quantity picked to minimize or 
maximize the objective parameters. 

The proposed algorithm is compared with PSO, HS, KMA, 
and MPA in this simulation. Due to its characteristic as a 
multi-dimension problem with a large search space, the 
maximum iteration for PSO, KMA, MPA, and SMPA-MC is 
set at 300. Meanwhile, the maximum iteration for HS is set at 
12.000. The result is shown in Table VIII. 

TABLE VIII. REAL-WORLD PRODUCTION PLANNING SIMULATION RESULT 

Algorithm Total Gross Profit (rupiah) 

proposed (SMPA-MC) 186,589,200 

PSO 171,114,000 

HS 188,959,800 

MPA 157,104,600 

KMA 143,143,100 

Table VIII shows that the proposed SMPA-MC 
outperforms three algorithms in creating better total gross 
profit. Its total gross profit is 9% higher than PSO, 19% higher 
than MPA, and 30% higher than KMA. On the other hand, its 
performance is only 1% lower than HS. This result shows that 
although HS is inferior in solving a theoretical mathematic 
problem, its performance is superior in solving real-world high 
dimension problems. 

V. DISCUSSION 
In general, Table III shows that the proposed SMPA-MC 

algorithm is better than the original MPA in solving 
multimodal functions. Its superiority especially occurs in 
solving multimodal functions with low dimension and narrow 
problem space, as indicated by the last ten functions. On the 
other hand, MPA is better at solving unimodal functions. The 
proposed algorithm is better at avoiding local optimal trap 
(exploration), while the MPA is better at finding the near-
optimal solution or more precise solution. In the context of the 
method used in these algorithms, it is shown that the Levy 
movement creates more precise solutions than a uniform 
random or simple random walk. 

There are several notes due to the competitiveness of the 
proposed algorithm. All metaheuristic algorithms use iteration 
to improve their current solution [6]. The result in Table IV 

shows this circumstance. Some functions can be solved faster, 
while others need more iteration, such as high dimension 
functions or functions with large problem space. Besides, an 
algorithm may be better in the early iteration, which means 
they are better in finding the convergence. On the other hand, 
some algorithms may be worse in the early iteration but better 
in the long run. 

Metaheuristic is also identic with adjusted parameters. 
These parameters are provided to tune the algorithm’s 
performance in the adaptation of many optimization problems. 
The inferior performance of PSO, HS, and KMA in Table III 
may come from the adjustment. By implementing different 
adjustments, an algorithm may perform better or worse 
depending on the problem it faces. It means that competing 
with one algorithm with the others is not the only tool to judge 
the algorithm’s performance. 

The adjustment also affects to the performance as it is 
shown in Table V and Table VI. Although exploration is 
important to avoid the local optimal trap, targeted exploration 
is proven more effective rather than the fully randomized 
exploration, especially in the later iteration. Higher fishing 
aggregate devices makes the probability of the fully 
randomized exploration higher. It means, the searching process 
will restart at location somewhere in the problem space and it 
is not productive in the later iteration. In some circumstance, 
the number of candidates gives positive results. But, after the 
algorithm reaches its peak performance, the increase of the 
number of candidates does not improve the algorithm’s 
performance significantly. 

Table III also strengthens the no-free-lunch theory [27]. 
Although, in general, PSO and HS are inferior compared to 
HOGO, MPA, and the proposed SMPA-MC, they are still 
superior in solving several functions. PSO is superior in 
solving four functions, while HS is superior and can find the 
true optimal solution in solving three functions. 

As shown in Table VIII, the real-world simulation result 
demonstrates that superiority in solving a high-precision 
mathematical problem may not work in solving real-world 
problems. In theoretical mathematic problems, the parameters 
are usually represented in floating-point numbers. Very little 
difference between two floating-point numbers may give a 
significant gap in the result. An algorithm can achieve better 
performance by generating a more precise floating-point 
number. This process can usually be conducted by making 
small and high-precision step sizes during the guided 
movement. Small step size is usually achieved by generating a 
more precise random number, for example by using Levy 
movement or normal distribution. On the other hand, uniform 
random is usually less precise. 

On the other hand, many real-world problems do not need 
very precise floating-point numbers. Many of them usually use 
integer numbers, especially in operations research. Many 
studies in operations research use integer numbers, for example, 
to find the number of products that should be produced or 
ordered. It is impossible to produce goods, for example, shoes, 
cars, and so on, in a fractional quantity. This circumstance 
makes the high precision optimization algorithm, such as KMA, 
MPA, or HOGO, lose their advantage. 
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Moreover, the objective function in real-world problems is 
simpler than the theoretical mathematic problems. In real-
world problems, especially in operations research problems, 
most of their objectives can be presented in multi-variate linear 
functions, such as minimizing total tardiness [28], production 
cost [29], travel distance [30], and so on. This objective can be 
achieved by accumulating these parameters in all dimensions, 
for example by accumulating all due date penalties of all 
executed orders or accumulating the total quantity of all 
unexecuted orders due to limited production or storage 
capacity. This objective is even simpler than Sphere and 
Schwefel 2.22 functions, which are the simplest among 23 
benchmark functions. But in real-world problems, some 
optimization problems use a multi-objective model. 

This circumstance is also related to the popularity of the 
algorithm. Many studies in optimization, especially operations 
research, still use old-fashioned algorithms, such as genetic 
algorithm, tabu search, simulated annealing, or variable 
neighborhood search. This phenomenon indicates that these 
algorithms are still well-proven and competitive enough to 
solve real-world problems. However, they are often beaten by 
the shortcoming algorithms in solving mathematical functions. 
Besides, the mechanism of these old-fashioned algorithms is 
simple so that they are easy to modify or hybridize. 

VI. CONCLUSION 
This work has demonstrated that the proposed algorithm, 

the stochastic marine predator algorithm with multiple 
candidates, has proven as a good metaheuristic algorithm. It 
has achieved two main objectives of metaheuristic algorithm: 
finding a near-optimal solution and tackling the local optimal. 
The simulation result shows that its performance is competitive 
in solving optimization problems theoretically and practically. 
Among 23 benchmark functions, it achieves true optimal 
solution in solving 5 functions. Compared with other 
algorithms, its performance is also superior in solving 10 
functions. This algorithm also outperforms the original form of 
the marine predator algorithm in solving 13 functions, which 
means 57 percent of total functions. Practically, it is also 
competitive in solving real-world problems. It outperforms 
particle swarm optimization, marine predator algorithm, and 
Komodo mlipir algorithm in optimizing production planning 
problems. Its performance is 9%, 19%, and 30% better than 
these three algorithms consecutively. 

This work has shown that improving the existing algorithm 
is also important compared to proposing a new algorithm. This 
improvement can be conducted by modifying the current form 
of the algorithm or hybridizing this algorithm with another 
algorithm to combine the advantage of every algorithm. In the 
future, modifying the marine predator algorithm is still possible 
and challenging. Besides, implementing this proposed 
algorithm to solve more real-world optimization problems is 
still potential, especially in solving combinatorial problems, 
such as scheduling, timetabling, etc. 
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