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Abstract—Data analysis is very important for the 

development of any business today. It helps to identify 

organizational bottlenecks, optimize business processes, foresee 

customers’ demands and behavior, and provides summarized 

data that could help reducing costs and increase profits. Having 

this information when designing new products or services highly 

increases the chances of their success, and thus provides an 

additional competitive advantage over other businesses. 

However, having a single data analyst with a computer is far 

from enough in the era of big data. There are powerful data 

analytical software tools, but they are either expensive or hard to 

deploy and require multiple high-performance servers to run. 

Buying expensive hardware and software, and hiring high-

qualified IT experts, is not affordable for all companies, 

especially for smaller ones and start-ups. Therefore, this article 

proposes an architecture for integration of a company’s 

heterogeneous data (stored within a database of any type, or in 

the file system) to a remote Hadoop cluster, providing powerful 

data analytical services on demand. This is an affordable and 

cost-effective cloud-based solution, suitable for a company of any 

size. Businesses are not required to by any hardware or software, 

but use the data analytical services on demand, paying a small 

processing fee per request or by subscription. 

Keywords—Hadoop integration; data analytical tools; 

heterogeneous data integration; Hadoop distributed file system 
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I. INTRODUCTION 

Data acquisition and analysis are very important for the 
development of any business today. They help to better 
understand the underlying business processes and allow their 
subsequent optimization and reorganization. The analysis of 
the collected data provides the company the ability to identify 
dependencies among processes, objects and subjects; to 
optimize resource planning; to analyze consumers’ needs and 
behavior; to foreseen customers’ actions and demand; and 
many others. All these analyses give a significant competitive 
advantage to the company over the other competitors, since it 
can easily detect trends or bottlenecks and identify ineffective 
processes to optimize. 

For all this to happen, however, the company must have 
the necessary computer hardware, software and the human 
resources to do the analysis. In case of processing large 
volumes of data, having a computer and an expert in the field 
is far from enough. Manual analysis of big data by a single 
person is practically impossible. Instead, automated, 

computer-based tools should be applied in order to analyze big 
data efficiently and effectively. However, these tools are quite 
expensive and not every company can afford to buy them, 
especially start-ups. There are free tools either, some of them 
very powerful, but not that user-friendly, requiring highly-
qualified programmers and IT administrators to deploy and 
configure them. 

A set of powerful data analytical tools is provided by the 
Hadoop ecosystem [1],[2]. They are built on top of the 
Hadoop Distributed File System (HDFS). Most of them are 
distributed as open source applications developed and 
maintained by community of enthusiast professionals, under 
the auspices of the Apache Software Foundation. The tools are 
quite powerful, but as distributed computing applications they 
should be installed and configured on multiple servers. So, a 
company that wishes to build its own data analytics 
infrastructure should buy multiple high-performance servers 
and hire IT experts to deploy and configure the entire cluster. 

Although there are third party installation and management 
wizards, for example Cloudera Manager, installation of 
Hadoop services is far from trivial and easy. There are many 
dependencies that should be considered in advance. For 
example, since all services run on top of HDFS, if the HDFS 
itself is not properly installed and configured, the installation 
of the data analytics tools may fail. The biggest problem is 
that in case of failure, a subsequent reinstallation is not an 
option at all, since there are many files left in the server’s 
filesystem from the previous installation. A subsequent 
reinstallation will just make things messier. Installation and 
deployment should be done by really qualified and 
experienced IT experts. Their wages however could be even 
higher than the money spent for dozens of high-performance 
servers. As a result, installation and maintenance of own 
Hadoop infrastructure could be quite expensive and not 
affordable for small and medium size enterprises, especially 
for star-up companies. 

Fortunately, there is a cost-effective, more flexible and 
easier way to use Hadoop ecosystem’s data analytics tools 
than building a company’s own Hadoop infrastructure. The 
cloud computing model can help a lot here. An experienced IT 
company, a service provider, could build the entire Hadoop 
infrastructure on its own servers, and then offers all the 
Hadoop’s data analytics tools to other companies as services 
for rental. The idea could be named “Hadoop as a Service 
(HaaS)”. 
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How could an external organization/company take 
advantage of the data analytics resources of the service 
provider? By integrating its data to the Hadoop cluster of the 
service provider. And this could be done at much lower cost 
for the external company than if it had to build its own 
infrastructure for data analysis. During integration however, it 
should be taken into account that both the Hadoop 
infrastructure and the company’s database are already existing 
systems. Not just existing systems, but heterogeneous systems. 
The latter is very important and implies that some 
intermediate layer should be developed and deployed on top 
of the Hadoop cluster that will allow external 
applications/users to communicate with it regardless of their 
own architecture and implementation technologies. 
Furthermore, there is another key requirement as well – 
together with the data integration, the service provider should 
support data separation. Data separation means that data 
shared by one company should be invisible and inaccessible to 
all other companies working with the cluster. That is a key 
requirement from any business – to prevent illegal industrial 
espionage and stealing of sensitive data. In this sense, 
probably the most reliable, flexible and appropriate integration 
strategy is by implementing a service-oriented architecture 
(SOA).  According to it, the service provides should deploy a 
wrapping web service (soap-based or rest-based) on top of the 
entire Hadoop cluster that will allow external authorized users 
(could be applications or people) to load and analyze data 
within the cluster. 

The aim of this article is to propose an architecture for 
integration of a company’s heterogeneous data (stored within 
a database of any type, or in the filesystem) to a remote 
Hadoop cluster, providing data analytical services on demand. 
Such integration will give the company (business 
organization) an affordable, cost-effective, access to powerful 
big data analytical tools as the ones included in the Hadoop 
Ecosystem.  The paper is structured as follows: Section 2 
reviews some previous work done by other researchers. 
Section 3 proposes architecture for integration of a company’s 
data to a remote Hadoop cluster accessible as a service. 
Finally, Section 4 ends the article with a conclusion, outlining 
the usefulness of the proposed solution. 

II. RELATED WORK 

Big data management has introduced some challenges 
(maintaining heterogeneous data, large data volumes and 
increased data throughput) for applications, related to data 
processing. Currently NoSQL databases are proposed to 
address these challenges by offering horizontal scalability, 
high availability and data storage without using fixed 
schemas. NoSQL databases, however, do not have a standard 
query language, which makes developers’ life harder. On the 
other hand, the traditional relational databases and the SQL 
language are very popular for processing and storage critical 
data, but not suitable for large volumes of data. 

As a result, multiple approaches have been proposed to 
define, process and store large volumes of relational data in 
NoSQL databases by using similar to SQL interfaces. They all 
focus on both scalability and availability. Schreiner et al. 
present a comparative analysis [3] of these approaches based 

on their architectural solutions. The authors motivate their 
research with the fact that the use of generalized architectural 
solutions is a proper strategy for relational-based applications, 
which could be used to move/migrate relational data to 
NoSQL databases. One of the approaches for that is to 
propose a way to access NoSQL databases by SQL-like 
commands. Suggested methods, however, convert the 
relational data model to a single NoSQL data model and 
sometimes directly to a specific NoSQL database management 
system (DBMS). Schreiner et. al. present a canonical 
approach, called SQLToKeyNoSQL [4], which converts 
relational schemas and SQL commands to equivalent schemas 
and data access methods for any NoSQL DBMS, based on the 
key-value data model, the document data model, and the 
column-oriented data model. The authors propose architecture 
of a layer, focusing on strategies for data transformation and 
mapping. 

The analysis of the relational and the non-relational 
databases leads to the conclusion that these data storage and 
processing systems are to some extent complementary. 
Unfortunately, the complementary behavior has a negative 
effect on the integration possibilities, both in terms of data 
model and data processing. In terms of performance, it may be 
useful to rely on multi-lingualism, multi-model approach or 
multi-step modeling, or even to transform the SQL schema 
into a NoSQL model and then to migrate the data. Another 
option is to integrate relational and non-relational databases by 
the help of a third-party data model. This option is discussed 
by Pokorný in [5]. Together with that, the author presents 
some new methods for designing such integrated database 
architectures. He also discusses that it is not possible to simply 
apply traditional approaches for integration of relational and 
non-relational DBMSs, due to the complementary nature of 
these two types of databases. The author reviews multiple 
methods for integration of these heterogeneous databases. The 
heterogeneity itself leads to a new set of problems. NoSQL 
databases are flexible, but their data design also requires 
specific modeling solutions that affect their performance in the 
integrated architectures. 

Integration of data stored in heterogeneous systems is a 
quite challenging task as well and very difficult to solve. 
Vathy-Fogarassy and Hugyák propose a new data integration 
methodology [6] in order to provide personalized data queries 
to multiple relational and NoSQL database management 
systems. Their solution does not support joins and aggregation 
of data from multiple sources, but it just collects and migrates 
data from/to the different individual sources. The method is 
based on a metamodel approach and covers the heterogeneity 
of the source systems in terms of their structure, semantic and 
syntactic features. 

Due to the complex management of organizations, the 
corporate applications could contain a vast number of tables 
with multiple relationships and constraints among them. 
Organizations are currently still using relational databases, but 
the NoSQL systems are constantly increasing their market 
share due to their excellent performance and high availability. 
So, more and more migration tools will be needed to migrate 
relational to non-relational data models. The database schema 
is important not just for the relational databases, but for the 
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NoSQL systems as well, since it could provide better query 
execution. Although the NoSQL databases do not explicitly 
require database schemas, maintaining such information is 
important for activities such as data integration, data 
validation and operational compatibility. Frozza et. al. suggest 
in [7] a process to automatically extract schemas of NoSQL 
databases relying on the column-oriented data model. The 
authors use JSON as a canonical data representation format 
and test their approach by extracting schemas from HBase. 
Dai discusses a transformation technique [8] that is capable of 
transforming database schemas, and translate and optimize 
queries. Other approaches to design and transform schemas 
could be found in [9],[10]. 

Processing and storage of large data volumes by using 
conventional techniques is not possible. Nowadays, 
organizations should target their development to non-
relational (NoSQL) systems since they support more flexible 
data models. It is a great challenge for business organizations 
to transform their existing relational data to NoSQL data 
models, especially when having in mind the heterogeneity and 
the complexity of their data. Furthermore, big data 
management faces an additional challenge – data cleaning and 
flushing. Ramzan et al. suggest a solution that supports two 
modules [11] – data transformation module and data cleaning 
module. The first phase transforms the relational database to a 
NoSQL database by applying an appropriate transformation 
model. Then the second phase provides data cleaning, aiming 
to improve data quality and prepare them for further (big data) 
analyses. 

Most data model transformation methods target a single 
(specific) NoSQL model and provide a little or no support for 
transformation’s personalization. Kuszera et al. present an 
approach [12] for transforming relational to NoSQL databases 
that supports the document-oriented and the column-oriented 
data models. Their method uses as an input a set of directed 
acyclic graphs (DAGs) that represent the targeted NoSQL 
model. DAGs are used to generate data transformation 
commands. The approach supports different relations’ 
cardinality and the transformation commands could be 
personalized. The authors developed a tool that interprets the 
input DAGs and supports multiple transformation strategies. 

Since big data processing applications, based on Cloud 
Computing become more and more popular, many existing 
systems will upscale their services in order to support the 
increasing volumes of data. Liao et al. propose a data 
transformation system [13] that provides hybrid architecture, 
including both relational and NoSQL databases. It supports 
simultaneous query processing and data transformation, and 
data synchronization. The authors focused their work on the 
transformation speed and the diversity of the data. 

Modern applications that process different data formats 
often use several types of databases, and the need to migrate 
data between them is common. Although there are multiple 
methods to perform data model conversion, the process of 
choosing the ideal data structuring for specific application 
requirements is not a trivial task. Kuszera et al. describes an 
approach for converting relational databases to NoSQL ones, 
consisting of multiple steps [14] for defining, evaluating and 

comparing alternative NoSQL schemas (data structuring), 
before migrating the data. 

III. ARCHITECTURE FOR INTEGRATING A COMPANY’S 

HETEROGENEOUS DATA TO AN EXISTING REMOTE HADOOP 

INFRASTRUCTURE 

The existing approaches, reviewed in the related work, 
offer an integration of a relational database management 
system to a non-relational one with a specific target data 
model. This is important for companies to move their data 
from an old relational database management system to a 
modern, flexible NoSQL one, supporting data models suitable 
for big data processing. However, this data model 
transformation does not provide any data analytics at all. It 
just transforms the existing data. In contrast, the architecture 
proposed here allows integration of any type of data to an 
existing Hadoop infrastructure, providing powerful data 
analytical tools. 

In order to make the most of the data analytical capabilities 
of the Hadoop Ecosystem, the company should be able to 
share not only its database, but also files whose content could 
be analyzed as well. So, integration is needed on multiple 
levels: 

 Integration with the Hadoop Distributed File System 
(HDFS). 

 Integration with the real-time column-oriented database 
management system HBase. 

 Integration with the Hive service and obtaining 
aggregated analyses of it. 

Integration with HDFS allows the company to share data 
exported from any type of database managements systems 
(DBMSs) – relational or NoSQL. Data could be exported in 
the form of CSV (comma separated values) data files or in 
other format. Once loaded in HDFS, these files could be later 
imported in any Hadoop’s data analytics service. This 
approach provides very high level of flexibility and 
abstraction from the specific DBMS, and allows integration of 
any type of data to the Hadoop cluster. Integration could be 
implemented by using HDFS’s REST API, called WebHDFS. 
There is other alternative as well – through the HDFS client 
distributed together with Hadoop, but the WebHDFS provides 
higher flexibility. 

If it is needed the company’s data to be stored in real time 
within the Hadoop infrastructure, then an integration with the 
column-oriented database management system HBase 
[15],[16] is necessary. It could be done through: 

 The HBase’s REST API. 

 Thrift Server. 

There is a third way as well – by storing data in files and 
loading them in HDFS, but it is not suitable for real-time 
operations. 

The HBase’s REST API provides an easy access to HBase, 
and since communication is done over the HTTP protocol, the 
client could be implemented in any programming language. 
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The problem however is that both the RESTAPI and the Thrift 
Server do not provide any access control by default. If a user 
knows the namespaces and the tables’ names of another user, 
then the first one could easily steal the data of the second user. 
A possible solution of that is to use the Kerberos 
authentication protocol [1]. An alternative solution is to 
develop a wrapping web service around the HBase’s REST 
API (or the Thrift Server) that should handle user 
authentication and perform access control. 

Another useful integration is with the Hive service [1],[2]. 
Hive is not a database, but just a query engine that allows 
searching and retrieving data from different data stores by 
using a language that is almost identical to SQL. It is called 
HQL – Hive query language. The key point here is that data 
could be retrieved and analyzed from different data stores. 
Actually, HQL runs over temporarily virtual tables that could 
be built from multiple sources – HBase, ordinary files from 
HDFS and other sources. This is the highest strength of Hive – 
it allows using SQL to search and process data from files. 
Usually, files which are mapped as virtual tables are csv and 
tab-delimited data files, but could be also MS Excel or other 
sources of structured or semi-structured data. So, Hive could 
be used to perform data aggregation and analyses of: real 
database data; system log files; application log files; 
accounting data files; csv and MS Excel spreadsheets; and 
many others sources of data. Within the real world, such data 
files are generated as often as data stored within a database. 
Furthermore, Hive supports the Hadoop’s MapReduce 
framework, meaning that the HQL queries could be 
distributed among multiple servers and run in parallel, which 
allows analysis to be performed on very large amounts of data. 

Fig. 1 presents a conceptual architecture for a company’s 
data integration (database and filesystem) to an existing 
Hadoop cluster. It implies design and development of just two 
new modules (applications) – “the integration middleware / 
wrapping service” from the service provider’s side and the 
“Customer’s data integration tool” from the client’s side. All 
other components (except DBeaver) are existing services 
provided by Hadoop or “built-in” applications in the Hadoop 
Ecosystem. 

Modules marked in peach color are the main Hadoop 
services - HDFS, HBase, Hive and Hue [1],[2]. Modules 
marked in white within the cluster are accompanying 
application programming interfaces (APIs) that allows third 
party applications to interact with the Hadoop services (the 
modules in peach). These APIs are not directly built-in within 
the main Hadoop services, but implemented as separate 
(external) applications, which however are usually distributed 
together with the services. The easiest way to install all of 
them is by installing Cloudera Manager that deploys the 
Cloudera Distributed Hadoop (CDH). 

Cloudera Manager offers a user-friendly, comprehensive 
interface for installation and management of the entire Hadoop 
Ecosystem. It could be used to start, configure and stop 
individual services in the cluster. However, if services are 
installed as stand-alone applications, then the APIs should be 
started from a command-line interface and configured through 
xml files. 

DBeaver is a database client, in general, that could connect 
to multiple relational and non-relational DBMS, and to some 
services (including Hive) from the Hadoop Ecosystem as well. 
It provides a graphical user interface to execute SQL queries 
(and not only) and visualize the results. It can be used directly 
by end users, without any skills in system administration and 
programming. 

The company’s database could be of any type – relational, 
non-relational, or even file-based. Its data are retrieved based 
on the database type and then packed within the necessary 
data structures, which are sent to the “Integration 
Middleware” for further processing and storing within the 
cluster. 

The two custom and important modules are “Integration 
Middleware / Wrapping Service” and “Customer’s data 
integration tool”. They are the ones, which are directly 
responsible for data integration. In contrast to the others, they 
do not exist in advanced, but should be designed and 
implemented entirely for the purpose of integration. 

1) “Customer’s data integration tool”: provides a 

graphical user interface (GUI) that allows the company to 

manage the data it wants to integrate (including to choose 

what exactly to share) with the Hadoop cluster, and also to 

render/visualize the received results. This module exactly 

extracts the data from the local database and packs them in 

suitable data structures (usually JSON objects) that are later 

send to the “Integration Middleware / Wrapping Service”. The 

module should work with any type of database management 

systems (relational or non-relational) and pack the data in 

similar manner, regardless of their type. The customer’s data 

integration tool should allow browsing not only the local 

database, but the local filesystem as well. User should be able 

to browse, select and upload files to the remote HDFS 

filesystem for further processing and analysis by Hadoop’s 

data analytics services. 
2) “Integration Middleware / Wrapping Service (API)”: 

implements data integration on the service provider’s side. It 
works as a wrapping service around the entire Hadoop cluster. 
The customer’s data integration tool works with this module 
only, not directly with the Hadoop services or APIs. In this 
sense “Integration Middleware / Wrapping Service” serves as 
a mediator between the company (the client) and the 
WebHDFS API, HBase API and the Thrift Interface. But why 
such a mediation service is needed? Because all the three 
interfaces do not provide any user authentication and access 
control. For HBase, for example, if one user knows the 
namespaces and table names of another user, then the first one 
could steal the data of the second one. Similar apply to the 
Thrift interface as well – all connections to HBase are done 
through the same socket without any authentication. All users 
have access to everything, by default. And that is a big 
problem. No company will share its data if they become 
publicly available and easily accessible to competitors. To 
solve this problem the Kerberos authentication service could 
be installed and configured, or to implement a wrapping 
service around the APIs to perform user authentication and 
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access control. The latter could be easily integrated in this 
module and perform a flexible, custom access control. 

The second important task of this module is to convert the 
data from their source model (relational or whatever) to 
column-oriented one, suitable for loading in HBase. This is 
the module that is solely responsible for data conversion. They 
arrive from the “Customer’s data integration tool” packed as 
JSON objects, then they should be converted to suitable model 
and loaded to HBase through the API or the Thrift Interface. 

3) Conversion of source data models to the column-

oriented data model suitable for HBase: As already 

mentioned, conversion from a source data model to a target 

data model is important for data integration from 

heterogeneous systems. Research in data models 

transformation has intensified a lot during the last years – 

multiple approaches have been proposed, as seen from the 

related work section. Most of them apply the relational model 

as a source model, since there are many legacy data storage 

systems currently in use that relies mainly on the relational 

model. 

In contrast to the traditional relational databases, which are 
strictly normalized and should meet the requirements of the 3-
rd and the BCNF normal form, almost all NoSQL data stores 
are actually not normalized at all – data could be grouped and 
replicated in order to increase the read speed. Although the 
NoSQL databases also maintain some consistency, there may 
be inconsistencies in the data for a short period of time after 
performing an operation. As a result, the NoSQL databases are 
mainly suitable for OLAP systems, but not for OLTP systems, 
where support of the ACID properties is mandatory. 
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Fig. 1. Architecture for Integration of a Company’s Database and Filesystem to Hadoop Infrastructure. 
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Any data model could be transformed to any non-relational 
model by applying the methods and algorithms described in 
[17],[18],[19],[20]. Since this article is related to data 
integration with an existing Hadoop cluster, the target model 
here is the column-oriented data model, used by Apache 
HBase [15],[16]. Here is an intuitive heuristic approach for 
transforming the relational data model to a column-oriented 
one: 

1) Grouping all related data in a single column family. 

These are data that should be read/written from/into the 

database at once. These are the tables’ records (rows) in the 

relational databases. Actually, the column-oriented schema 

could be easily extracted from the relational schema, since the 

latter provides more than enough information about attributes’ 

relationships. Every table in the relational database becomes a 

table in the column-oriented database, and the primary keys of 

the former are used as row keys in the latter. All attributes 

within the relational table are group together in a single 

column family, in order to guarantee that they will be stored 

and read together. 

2) Convert the relationships between tables in the 

relational schema to “relationships” in the column-oriented 

schema. There are three types (cardinalities) of relationships 

in the relational schema: one-to-one; one-to-many; and many-

to-many. They will be reviewed separately since the 

conversion is done in different way: 

a) One-to-one. This is intuitive – a column with a 

foreign key is treated is an ordinary column and could be 

grouped together with other columns, based on rule 1. 

b) One-to-many. In the column-oriented data model, this 

relationship is actually implemented in the “opposite way” in 

comparison to the relational model. In the latter, the foreign 

keys (multiple values) are placed at the side of “many” of the 

relationship, since the database should meet 1-st and 2-nd 

normal form. However, in the column-oriented model, 

multiple values could be grouped together in a single column 

family. So, to create a one-to-many relationship, a new 

column family should be created at the side of “one”, which 

could keep multiple values, pointing to the keys at the side of 

“many”. In other words, in the column-oriented model, all the 

foreign keys are kept at the side of “one”. 

c) Many-to-many. Implementing this relationship is 

even easier in the column-oriented data model. In the 

relational model, many-to-many relationships are created by 

the help of a third (called “connection”) table that keeps and 

combines the foreign keys of the other two tables. However, in 

the column-oriented model, a single column family can 

contain multiple values. So, to create a many-to-many 

relationship, a new column family needs to be created at each 

table, containing the values of the row keys of the other table. 

There is no need of a third table at all. 

In the relational model, the relational database 
management system (RDBMS) guarantees data integrity and 
relationships integrity. However, in the column-oriented data 
model, this is not the case, so the application itself, which uses 

the data, should be designed to check, maintain and validate 
data integrity. This responsibility is moved from the DBMS to 
the software developer. As a result, it is possible to have data 
inconsistencies for a short period of time, until the next read. 

IV. CONCLUSION 

Data analysis is very important for the development of 
business organizations. It helps them to identify organizational 
bottlenecks, optimize business processes and increase 
efficiency and profits. In the era of big data, their analysis 
could not be done manually. There are powerful data 
analytical software tools, but they are either expensive or hard 
to deploy and requires multiple high-performance servers to 
run. Buying expensive hardware and software, and hiring 
high-qualified IT experts, is not affordable for all companies, 
especially for smaller ones and start-ups. 

The architecture proposed in this article allows integration 
of a company’s heterogeneous data (both database and 
filesystem) to a remote Hadoop infrastructure, providing 
powerful data analytical services on demand. This is an 
affordable and cost-effective cloud-based solution, suitable for 
any type company, from start-ups to large-size companies. 
Businesses are not required to buy any (expensive) hardware 
or software, but use the data analytical services on demand, 
paying a small processing fee per request or by subscription. 
The architecture could be easily implemented by developing 
just two data integration modules – an integration middleware 
or a wrapping service around the Hadoop data analytics 
services, at the service provider’s side; and a graphical user 
interface (GUI) to work with the integration middleware, at 
the company’s side. 

The major difference between the proposed architecture 
and the existing approaches, reviewed in the related work, is 
that they offer an integration of a relational database 
management system to a non-relational one with a specific 
target data model. Instead, our architectural approach provides 
integration of data of any type (including relational, non-
relational and even ordinary text files) to an existing Hadoop 
cluster. The purpose of this integration is to provide 
companies with cost-effective and easy to use access to the 
Hadoop’s data analytical tools, not to permanently convert 
their data to other data models. 

Since the proposed architecture will be very useful to the 
business organizations, providing them an easy access to 
powerful data analytical tools, and is fairly easy to deploy in 
the same time, our next goal is to implement it and prove its 
real usefulness and effectiveness. In general, it allows 
integration of any type of data to an existing Hadoop 
infrastructure. However, for this to happen, the source data 
model should be recognized and data should be parsed 
properly before sending them to the “Integration Middleware” 
module. For that reason, we plan to introduce data type 
documents (DTDs) that contain a formal definition of the 
source data models and the relevant parsers for these DTDs. 
Then the integration of a new, even custom, source data model 
will be quite easy – just by uploading the associated DTD. The 
use of DTDs highly increase flexibility of the proposed 
approach and allows integration of virtually any type of data. 
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