
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

49 | P a g e

www.ijacsa.thesai.org

Hadoop as a Service: Integration of a Company’s

Heterogeneous Data to a Remote Hadoop

Infrastructure

Yordan Kalmukov, Milko Marinov

Department of Computer Systems and Technologies, University of Ruse, Ruse, Bulgaria

Abstract—Data analysis is very important for the

development of any business today. It helps to identify

organizational bottlenecks, optimize business processes, foresee

customers’ demands and behavior, and provides summarized

data that could help reducing costs and increase profits. Having

this information when designing new products or services highly

increases the chances of their success, and thus provides an

additional competitive advantage over other businesses.

However, having a single data analyst with a computer is far

from enough in the era of big data. There are powerful data

analytical software tools, but they are either expensive or hard to

deploy and require multiple high-performance servers to run.

Buying expensive hardware and software, and hiring high-

qualified IT experts, is not affordable for all companies,

especially for smaller ones and start-ups. Therefore, this article

proposes an architecture for integration of a company’s

heterogeneous data (stored within a database of any type, or in

the file system) to a remote Hadoop cluster, providing powerful

data analytical services on demand. This is an affordable and

cost-effective cloud-based solution, suitable for a company of any

size. Businesses are not required to by any hardware or software,

but use the data analytical services on demand, paying a small

processing fee per request or by subscription.

Keywords—Hadoop integration; data analytical tools;

heterogeneous data integration; Hadoop distributed file system

(HDFS); HBase; hive

I. INTRODUCTION

Data acquisition and analysis are very important for the
development of any business today. They help to better
understand the underlying business processes and allow their
subsequent optimization and reorganization. The analysis of
the collected data provides the company the ability to identify
dependencies among processes, objects and subjects; to
optimize resource planning; to analyze consumers’ needs and
behavior; to foreseen customers’ actions and demand; and
many others. All these analyses give a significant competitive
advantage to the company over the other competitors, since it
can easily detect trends or bottlenecks and identify ineffective
processes to optimize.

For all this to happen, however, the company must have
the necessary computer hardware, software and the human
resources to do the analysis. In case of processing large
volumes of data, having a computer and an expert in the field
is far from enough. Manual analysis of big data by a single
person is practically impossible. Instead, automated,

computer-based tools should be applied in order to analyze big
data efficiently and effectively. However, these tools are quite
expensive and not every company can afford to buy them,
especially start-ups. There are free tools either, some of them
very powerful, but not that user-friendly, requiring highly-
qualified programmers and IT administrators to deploy and
configure them.

A set of powerful data analytical tools is provided by the
Hadoop ecosystem [1],[2]. They are built on top of the
Hadoop Distributed File System (HDFS). Most of them are
distributed as open source applications developed and
maintained by community of enthusiast professionals, under
the auspices of the Apache Software Foundation. The tools are
quite powerful, but as distributed computing applications they
should be installed and configured on multiple servers. So, a
company that wishes to build its own data analytics
infrastructure should buy multiple high-performance servers
and hire IT experts to deploy and configure the entire cluster.

Although there are third party installation and management
wizards, for example Cloudera Manager, installation of
Hadoop services is far from trivial and easy. There are many
dependencies that should be considered in advance. For
example, since all services run on top of HDFS, if the HDFS
itself is not properly installed and configured, the installation
of the data analytics tools may fail. The biggest problem is
that in case of failure, a subsequent reinstallation is not an
option at all, since there are many files left in the server’s
filesystem from the previous installation. A subsequent
reinstallation will just make things messier. Installation and
deployment should be done by really qualified and
experienced IT experts. Their wages however could be even
higher than the money spent for dozens of high-performance
servers. As a result, installation and maintenance of own
Hadoop infrastructure could be quite expensive and not
affordable for small and medium size enterprises, especially
for star-up companies.

Fortunately, there is a cost-effective, more flexible and
easier way to use Hadoop ecosystem’s data analytics tools
than building a company’s own Hadoop infrastructure. The
cloud computing model can help a lot here. An experienced IT
company, a service provider, could build the entire Hadoop
infrastructure on its own servers, and then offers all the
Hadoop’s data analytics tools to other companies as services
for rental. The idea could be named “Hadoop as a Service
(HaaS)”.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

50 | P a g e

www.ijacsa.thesai.org

How could an external organization/company take
advantage of the data analytics resources of the service
provider? By integrating its data to the Hadoop cluster of the
service provider. And this could be done at much lower cost
for the external company than if it had to build its own
infrastructure for data analysis. During integration however, it
should be taken into account that both the Hadoop
infrastructure and the company’s database are already existing
systems. Not just existing systems, but heterogeneous systems.
The latter is very important and implies that some
intermediate layer should be developed and deployed on top
of the Hadoop cluster that will allow external
applications/users to communicate with it regardless of their
own architecture and implementation technologies.
Furthermore, there is another key requirement as well –
together with the data integration, the service provider should
support data separation. Data separation means that data
shared by one company should be invisible and inaccessible to
all other companies working with the cluster. That is a key
requirement from any business – to prevent illegal industrial
espionage and stealing of sensitive data. In this sense,
probably the most reliable, flexible and appropriate integration
strategy is by implementing a service-oriented architecture
(SOA). According to it, the service provides should deploy a
wrapping web service (soap-based or rest-based) on top of the
entire Hadoop cluster that will allow external authorized users
(could be applications or people) to load and analyze data
within the cluster.

The aim of this article is to propose an architecture for
integration of a company’s heterogeneous data (stored within
a database of any type, or in the filesystem) to a remote
Hadoop cluster, providing data analytical services on demand.
Such integration will give the company (business
organization) an affordable, cost-effective, access to powerful
big data analytical tools as the ones included in the Hadoop
Ecosystem. The paper is structured as follows: Section 2
reviews some previous work done by other researchers.
Section 3 proposes architecture for integration of a company’s
data to a remote Hadoop cluster accessible as a service.
Finally, Section 4 ends the article with a conclusion, outlining
the usefulness of the proposed solution.

II. RELATED WORK

Big data management has introduced some challenges
(maintaining heterogeneous data, large data volumes and
increased data throughput) for applications, related to data
processing. Currently NoSQL databases are proposed to
address these challenges by offering horizontal scalability,
high availability and data storage without using fixed
schemas. NoSQL databases, however, do not have a standard
query language, which makes developers’ life harder. On the
other hand, the traditional relational databases and the SQL
language are very popular for processing and storage critical
data, but not suitable for large volumes of data.

As a result, multiple approaches have been proposed to
define, process and store large volumes of relational data in
NoSQL databases by using similar to SQL interfaces. They all
focus on both scalability and availability. Schreiner et al.
present a comparative analysis [3] of these approaches based

on their architectural solutions. The authors motivate their
research with the fact that the use of generalized architectural
solutions is a proper strategy for relational-based applications,
which could be used to move/migrate relational data to
NoSQL databases. One of the approaches for that is to
propose a way to access NoSQL databases by SQL-like
commands. Suggested methods, however, convert the
relational data model to a single NoSQL data model and
sometimes directly to a specific NoSQL database management
system (DBMS). Schreiner et. al. present a canonical
approach, called SQLToKeyNoSQL [4], which converts
relational schemas and SQL commands to equivalent schemas
and data access methods for any NoSQL DBMS, based on the
key-value data model, the document data model, and the
column-oriented data model. The authors propose architecture
of a layer, focusing on strategies for data transformation and
mapping.

The analysis of the relational and the non-relational
databases leads to the conclusion that these data storage and
processing systems are to some extent complementary.
Unfortunately, the complementary behavior has a negative
effect on the integration possibilities, both in terms of data
model and data processing. In terms of performance, it may be
useful to rely on multi-lingualism, multi-model approach or
multi-step modeling, or even to transform the SQL schema
into a NoSQL model and then to migrate the data. Another
option is to integrate relational and non-relational databases by
the help of a third-party data model. This option is discussed
by Pokorný in [5]. Together with that, the author presents
some new methods for designing such integrated database
architectures. He also discusses that it is not possible to simply
apply traditional approaches for integration of relational and
non-relational DBMSs, due to the complementary nature of
these two types of databases. The author reviews multiple
methods for integration of these heterogeneous databases. The
heterogeneity itself leads to a new set of problems. NoSQL
databases are flexible, but their data design also requires
specific modeling solutions that affect their performance in the
integrated architectures.

Integration of data stored in heterogeneous systems is a
quite challenging task as well and very difficult to solve.
Vathy-Fogarassy and Hugyák propose a new data integration
methodology [6] in order to provide personalized data queries
to multiple relational and NoSQL database management
systems. Their solution does not support joins and aggregation
of data from multiple sources, but it just collects and migrates
data from/to the different individual sources. The method is
based on a metamodel approach and covers the heterogeneity
of the source systems in terms of their structure, semantic and
syntactic features.

Due to the complex management of organizations, the
corporate applications could contain a vast number of tables
with multiple relationships and constraints among them.
Organizations are currently still using relational databases, but
the NoSQL systems are constantly increasing their market
share due to their excellent performance and high availability.
So, more and more migration tools will be needed to migrate
relational to non-relational data models. The database schema
is important not just for the relational databases, but for the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

51 | P a g e

www.ijacsa.thesai.org

NoSQL systems as well, since it could provide better query
execution. Although the NoSQL databases do not explicitly
require database schemas, maintaining such information is
important for activities such as data integration, data
validation and operational compatibility. Frozza et. al. suggest
in [7] a process to automatically extract schemas of NoSQL
databases relying on the column-oriented data model. The
authors use JSON as a canonical data representation format
and test their approach by extracting schemas from HBase.
Dai discusses a transformation technique [8] that is capable of
transforming database schemas, and translate and optimize
queries. Other approaches to design and transform schemas
could be found in [9],[10].

Processing and storage of large data volumes by using
conventional techniques is not possible. Nowadays,
organizations should target their development to non-
relational (NoSQL) systems since they support more flexible
data models. It is a great challenge for business organizations
to transform their existing relational data to NoSQL data
models, especially when having in mind the heterogeneity and
the complexity of their data. Furthermore, big data
management faces an additional challenge – data cleaning and
flushing. Ramzan et al. suggest a solution that supports two
modules [11] – data transformation module and data cleaning
module. The first phase transforms the relational database to a
NoSQL database by applying an appropriate transformation
model. Then the second phase provides data cleaning, aiming
to improve data quality and prepare them for further (big data)
analyses.

Most data model transformation methods target a single
(specific) NoSQL model and provide a little or no support for
transformation’s personalization. Kuszera et al. present an
approach [12] for transforming relational to NoSQL databases
that supports the document-oriented and the column-oriented
data models. Their method uses as an input a set of directed
acyclic graphs (DAGs) that represent the targeted NoSQL
model. DAGs are used to generate data transformation
commands. The approach supports different relations’
cardinality and the transformation commands could be
personalized. The authors developed a tool that interprets the
input DAGs and supports multiple transformation strategies.

Since big data processing applications, based on Cloud
Computing become more and more popular, many existing
systems will upscale their services in order to support the
increasing volumes of data. Liao et al. propose a data
transformation system [13] that provides hybrid architecture,
including both relational and NoSQL databases. It supports
simultaneous query processing and data transformation, and
data synchronization. The authors focused their work on the
transformation speed and the diversity of the data.

Modern applications that process different data formats
often use several types of databases, and the need to migrate
data between them is common. Although there are multiple
methods to perform data model conversion, the process of
choosing the ideal data structuring for specific application
requirements is not a trivial task. Kuszera et al. describes an
approach for converting relational databases to NoSQL ones,
consisting of multiple steps [14] for defining, evaluating and

comparing alternative NoSQL schemas (data structuring),
before migrating the data.

III. ARCHITECTURE FOR INTEGRATING A COMPANY’S

HETEROGENEOUS DATA TO AN EXISTING REMOTE HADOOP

INFRASTRUCTURE

The existing approaches, reviewed in the related work,
offer an integration of a relational database management
system to a non-relational one with a specific target data
model. This is important for companies to move their data
from an old relational database management system to a
modern, flexible NoSQL one, supporting data models suitable
for big data processing. However, this data model
transformation does not provide any data analytics at all. It
just transforms the existing data. In contrast, the architecture
proposed here allows integration of any type of data to an
existing Hadoop infrastructure, providing powerful data
analytical tools.

In order to make the most of the data analytical capabilities
of the Hadoop Ecosystem, the company should be able to
share not only its database, but also files whose content could
be analyzed as well. So, integration is needed on multiple
levels:

 Integration with the Hadoop Distributed File System
(HDFS).

 Integration with the real-time column-oriented database
management system HBase.

 Integration with the Hive service and obtaining
aggregated analyses of it.

Integration with HDFS allows the company to share data
exported from any type of database managements systems
(DBMSs) – relational or NoSQL. Data could be exported in
the form of CSV (comma separated values) data files or in
other format. Once loaded in HDFS, these files could be later
imported in any Hadoop’s data analytics service. This
approach provides very high level of flexibility and
abstraction from the specific DBMS, and allows integration of
any type of data to the Hadoop cluster. Integration could be
implemented by using HDFS’s REST API, called WebHDFS.
There is other alternative as well – through the HDFS client
distributed together with Hadoop, but the WebHDFS provides
higher flexibility.

If it is needed the company’s data to be stored in real time
within the Hadoop infrastructure, then an integration with the
column-oriented database management system HBase
[15],[16] is necessary. It could be done through:

 The HBase’s REST API.

 Thrift Server.

There is a third way as well – by storing data in files and
loading them in HDFS, but it is not suitable for real-time
operations.

The HBase’s REST API provides an easy access to HBase,
and since communication is done over the HTTP protocol, the
client could be implemented in any programming language.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

52 | P a g e

www.ijacsa.thesai.org

The problem however is that both the RESTAPI and the Thrift
Server do not provide any access control by default. If a user
knows the namespaces and the tables’ names of another user,
then the first one could easily steal the data of the second user.
A possible solution of that is to use the Kerberos
authentication protocol [1]. An alternative solution is to
develop a wrapping web service around the HBase’s REST
API (or the Thrift Server) that should handle user
authentication and perform access control.

Another useful integration is with the Hive service [1],[2].
Hive is not a database, but just a query engine that allows
searching and retrieving data from different data stores by
using a language that is almost identical to SQL. It is called
HQL – Hive query language. The key point here is that data
could be retrieved and analyzed from different data stores.
Actually, HQL runs over temporarily virtual tables that could
be built from multiple sources – HBase, ordinary files from
HDFS and other sources. This is the highest strength of Hive –
it allows using SQL to search and process data from files.
Usually, files which are mapped as virtual tables are csv and
tab-delimited data files, but could be also MS Excel or other
sources of structured or semi-structured data. So, Hive could
be used to perform data aggregation and analyses of: real
database data; system log files; application log files;
accounting data files; csv and MS Excel spreadsheets; and
many others sources of data. Within the real world, such data
files are generated as often as data stored within a database.
Furthermore, Hive supports the Hadoop’s MapReduce
framework, meaning that the HQL queries could be
distributed among multiple servers and run in parallel, which
allows analysis to be performed on very large amounts of data.

Fig. 1 presents a conceptual architecture for a company’s
data integration (database and filesystem) to an existing
Hadoop cluster. It implies design and development of just two
new modules (applications) – “the integration middleware /
wrapping service” from the service provider’s side and the
“Customer’s data integration tool” from the client’s side. All
other components (except DBeaver) are existing services
provided by Hadoop or “built-in” applications in the Hadoop
Ecosystem.

Modules marked in peach color are the main Hadoop
services - HDFS, HBase, Hive and Hue [1],[2]. Modules
marked in white within the cluster are accompanying
application programming interfaces (APIs) that allows third
party applications to interact with the Hadoop services (the
modules in peach). These APIs are not directly built-in within
the main Hadoop services, but implemented as separate
(external) applications, which however are usually distributed
together with the services. The easiest way to install all of
them is by installing Cloudera Manager that deploys the
Cloudera Distributed Hadoop (CDH).

Cloudera Manager offers a user-friendly, comprehensive
interface for installation and management of the entire Hadoop
Ecosystem. It could be used to start, configure and stop
individual services in the cluster. However, if services are
installed as stand-alone applications, then the APIs should be
started from a command-line interface and configured through
xml files.

DBeaver is a database client, in general, that could connect
to multiple relational and non-relational DBMS, and to some
services (including Hive) from the Hadoop Ecosystem as well.
It provides a graphical user interface to execute SQL queries
(and not only) and visualize the results. It can be used directly
by end users, without any skills in system administration and
programming.

The company’s database could be of any type – relational,
non-relational, or even file-based. Its data are retrieved based
on the database type and then packed within the necessary
data structures, which are sent to the “Integration
Middleware” for further processing and storing within the
cluster.

The two custom and important modules are “Integration
Middleware / Wrapping Service” and “Customer’s data
integration tool”. They are the ones, which are directly
responsible for data integration. In contrast to the others, they
do not exist in advanced, but should be designed and
implemented entirely for the purpose of integration.

1) “Customer’s data integration tool”: provides a

graphical user interface (GUI) that allows the company to

manage the data it wants to integrate (including to choose

what exactly to share) with the Hadoop cluster, and also to

render/visualize the received results. This module exactly

extracts the data from the local database and packs them in

suitable data structures (usually JSON objects) that are later

send to the “Integration Middleware / Wrapping Service”. The

module should work with any type of database management

systems (relational or non-relational) and pack the data in

similar manner, regardless of their type. The customer’s data

integration tool should allow browsing not only the local

database, but the local filesystem as well. User should be able

to browse, select and upload files to the remote HDFS

filesystem for further processing and analysis by Hadoop’s

data analytics services.
2) “Integration Middleware / Wrapping Service (API)”:

implements data integration on the service provider’s side. It
works as a wrapping service around the entire Hadoop cluster.
The customer’s data integration tool works with this module
only, not directly with the Hadoop services or APIs. In this
sense “Integration Middleware / Wrapping Service” serves as
a mediator between the company (the client) and the
WebHDFS API, HBase API and the Thrift Interface. But why
such a mediation service is needed? Because all the three
interfaces do not provide any user authentication and access
control. For HBase, for example, if one user knows the
namespaces and table names of another user, then the first one
could steal the data of the second one. Similar apply to the
Thrift interface as well – all connections to HBase are done
through the same socket without any authentication. All users
have access to everything, by default. And that is a big
problem. No company will share its data if they become
publicly available and easily accessible to competitors. To
solve this problem the Kerberos authentication service could
be installed and configured, or to implement a wrapping
service around the APIs to perform user authentication and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

53 | P a g e

www.ijacsa.thesai.org

access control. The latter could be easily integrated in this
module and perform a flexible, custom access control.

The second important task of this module is to convert the
data from their source model (relational or whatever) to
column-oriented one, suitable for loading in HBase. This is
the module that is solely responsible for data conversion. They
arrive from the “Customer’s data integration tool” packed as
JSON objects, then they should be converted to suitable model
and loaded to HBase through the API or the Thrift Interface.

3) Conversion of source data models to the column-

oriented data model suitable for HBase: As already

mentioned, conversion from a source data model to a target

data model is important for data integration from

heterogeneous systems. Research in data models

transformation has intensified a lot during the last years –

multiple approaches have been proposed, as seen from the

related work section. Most of them apply the relational model

as a source model, since there are many legacy data storage

systems currently in use that relies mainly on the relational

model.

In contrast to the traditional relational databases, which are
strictly normalized and should meet the requirements of the 3-
rd and the BCNF normal form, almost all NoSQL data stores
are actually not normalized at all – data could be grouped and
replicated in order to increase the read speed. Although the
NoSQL databases also maintain some consistency, there may
be inconsistencies in the data for a short period of time after
performing an operation. As a result, the NoSQL databases are
mainly suitable for OLAP systems, but not for OLTP systems,
where support of the ACID properties is mandatory.

HBase

<<DBMS>>

Hive

<<subsystem>>

Hadoop Distributed File System (HDFS)

<<filesystem>>

HTTP

Apache Thrift Server

<<service>>

HBase REST API

<<service>>

HBase Java Client

(Hadoop built-in app)

<<application>>

Integration Middleware / Wrapping Service (API)

<<service>>

WebHDFS REST API

<<service>>

HTTP

TBinaryProtocol /

TJSONProtocol

Java-specific

bindings

Hue

<< GUI application >>

DBeaver

<< GUI application >>

T
C

P
 / IP

Customer’s

Data Integration Tool

<< GUI application >>

TCP / IP

Hadoop Cluster

Service Provider

HTTP

Company’s

Local Resources

Organization’s

Database

<<DBMS>>

Organization’s

Local File System

<<filesystem>>

files to be

analyzed

DB data

Fig. 1. Architecture for Integration of a Company’s Database and Filesystem to Hadoop Infrastructure.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

54 | P a g e

www.ijacsa.thesai.org

Any data model could be transformed to any non-relational
model by applying the methods and algorithms described in
[17],[18],[19],[20]. Since this article is related to data
integration with an existing Hadoop cluster, the target model
here is the column-oriented data model, used by Apache
HBase [15],[16]. Here is an intuitive heuristic approach for
transforming the relational data model to a column-oriented
one:

1) Grouping all related data in a single column family.

These are data that should be read/written from/into the

database at once. These are the tables’ records (rows) in the

relational databases. Actually, the column-oriented schema

could be easily extracted from the relational schema, since the

latter provides more than enough information about attributes’

relationships. Every table in the relational database becomes a

table in the column-oriented database, and the primary keys of

the former are used as row keys in the latter. All attributes

within the relational table are group together in a single

column family, in order to guarantee that they will be stored

and read together.

2) Convert the relationships between tables in the

relational schema to “relationships” in the column-oriented

schema. There are three types (cardinalities) of relationships

in the relational schema: one-to-one; one-to-many; and many-

to-many. They will be reviewed separately since the

conversion is done in different way:

a) One-to-one. This is intuitive – a column with a

foreign key is treated is an ordinary column and could be

grouped together with other columns, based on rule 1.

b) One-to-many. In the column-oriented data model, this

relationship is actually implemented in the “opposite way” in

comparison to the relational model. In the latter, the foreign

keys (multiple values) are placed at the side of “many” of the

relationship, since the database should meet 1-st and 2-nd

normal form. However, in the column-oriented model,

multiple values could be grouped together in a single column

family. So, to create a one-to-many relationship, a new

column family should be created at the side of “one”, which

could keep multiple values, pointing to the keys at the side of

“many”. In other words, in the column-oriented model, all the

foreign keys are kept at the side of “one”.

c) Many-to-many. Implementing this relationship is

even easier in the column-oriented data model. In the

relational model, many-to-many relationships are created by

the help of a third (called “connection”) table that keeps and

combines the foreign keys of the other two tables. However, in

the column-oriented model, a single column family can

contain multiple values. So, to create a many-to-many

relationship, a new column family needs to be created at each

table, containing the values of the row keys of the other table.

There is no need of a third table at all.

In the relational model, the relational database
management system (RDBMS) guarantees data integrity and
relationships integrity. However, in the column-oriented data
model, this is not the case, so the application itself, which uses

the data, should be designed to check, maintain and validate
data integrity. This responsibility is moved from the DBMS to
the software developer. As a result, it is possible to have data
inconsistencies for a short period of time, until the next read.

IV. CONCLUSION

Data analysis is very important for the development of
business organizations. It helps them to identify organizational
bottlenecks, optimize business processes and increase
efficiency and profits. In the era of big data, their analysis
could not be done manually. There are powerful data
analytical software tools, but they are either expensive or hard
to deploy and requires multiple high-performance servers to
run. Buying expensive hardware and software, and hiring
high-qualified IT experts, is not affordable for all companies,
especially for smaller ones and start-ups.

The architecture proposed in this article allows integration
of a company’s heterogeneous data (both database and
filesystem) to a remote Hadoop infrastructure, providing
powerful data analytical services on demand. This is an
affordable and cost-effective cloud-based solution, suitable for
any type company, from start-ups to large-size companies.
Businesses are not required to buy any (expensive) hardware
or software, but use the data analytical services on demand,
paying a small processing fee per request or by subscription.
The architecture could be easily implemented by developing
just two data integration modules – an integration middleware
or a wrapping service around the Hadoop data analytics
services, at the service provider’s side; and a graphical user
interface (GUI) to work with the integration middleware, at
the company’s side.

The major difference between the proposed architecture
and the existing approaches, reviewed in the related work, is
that they offer an integration of a relational database
management system to a non-relational one with a specific
target data model. Instead, our architectural approach provides
integration of data of any type (including relational, non-
relational and even ordinary text files) to an existing Hadoop
cluster. The purpose of this integration is to provide
companies with cost-effective and easy to use access to the
Hadoop’s data analytical tools, not to permanently convert
their data to other data models.

Since the proposed architecture will be very useful to the
business organizations, providing them an easy access to
powerful data analytical tools, and is fairly easy to deploy in
the same time, our next goal is to implement it and prove its
real usefulness and effectiveness. In general, it allows
integration of any type of data to an existing Hadoop
infrastructure. However, for this to happen, the source data
model should be recognized and data should be parsed
properly before sending them to the “Integration Middleware”
module. For that reason, we plan to introduce data type
documents (DTDs) that contain a formal definition of the
source data models and the relevant parsers for these DTDs.
Then the integration of a new, even custom, source data model
will be quite easy – just by uploading the associated DTD. The
use of DTDs highly increase flexibility of the proposed
approach and allows integration of virtually any type of data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

55 | P a g e

www.ijacsa.thesai.org

ACKNOWLEDGMENT

This paper is supported by project 2022–EEA–01
“Analysis of big data processing algorithms and their
application in multiple subject domains”, funded by the
Research Fund of the “Angel Kanchev” University of Ruse.

REFERENCES

[1] A. Holmes, Hadoop in practice, Manning Publications Co., 2015.

[2] B. Lublinsky, K. Smith, A. Yakubovich, Professional Hadoop solutions,
John Wiley & Sons, Inc., 2015.

[3] G.A. Schreiner, D. Duarte and R.D. Mello, “When Relational-Based
Applications Go to NoSQL Databases: A Survey”, Information, 10, 241,
2019.

[4] G.A. Schreiner, D. Duarte and R.D. Mello, “Bringing SQL databases to
key-based NoSQL databases: a canonical approach,” Computing, vol.
102, pp. 221-246, 2019.

[5] J. Pokorný, “Integration of Relational and NoSQL Databases”, Vietnam
Journal of Computer Science, vol. 6, no. 4, pp. 389-405, 2019.

[6] A.Vathy-Fogarassy and T. Hugyák, “Uniform data access platform for
SQL and NoSQL database systems”, Information Systems, vol. 69, pp.
93-105, 2017.

[7] А.А. Frozza, E.D. Defreyn and R. dos Santos Mello, “An Approach for
Schema Extraction of NoSQL Columnar Databases: the HBase Case
Study”, Journal of Information and Data Management, vol. 12, no. 5, pp.
384–395, 2021.

[8] J. Dai, “SQL to NoSQL: What to do and How”, IOP Conference Series:
Earth and Environmental Science, vol. 234, 2019.

[9] K. Herrmann, H. Voigt, T.B. Pedersen and W. Lehner, “Multi-schema-
version data management: data independence in the twenty-first
century,” The VLDB Journal, vol. 27(4), pp. 547-571, 2018.

[10] M.J. Mior, K. Salem, A. Aboulnaga, R. Liu, “NoSE: Schema design for
NoSQL applications,” In Proc. of the 32nd International Conference on
Data Engineering (ICDE), pp. 181–192, 2016.

[11] S, Ramzan, I.S. Bajwa, B. Ramzan, and W. Anwar, “Intelligent Data
Engineering for Migration to NoSQL Based Secure Environments”,
IEEE Access, vol. 7, pp. 69042-69057, 2019.

[12] E.M. Kuszera, L.M. Peres and M.D. Fabro, “Toward RDB to NoSQL:
transforming data with metamorfose framework”, in Proc. of the 34th
ACM/SIGAPP Symposium on Applied Computing, 2019.

[13] Y. Liao, J. Zhou, C. Lu, S. Chen, C. Hsu, W. Chen, M. Jiang and Y.
Chung, “Data adapter for querying and transformation between SQL and
NoSQL database”, Future Generation Computer Systems, vol. 65, pp.
111-121, 2016.

[14] E.M. Kuszera, L.M. Peres, and M.D. Fabro, “Exploring data structure
alternatives in the RDB to NoSQL document store conversion process”,
Information Systems, vol. 105, 2022.

[15] M. Kerzner, S. Maniyam, HBase Design Patterns, Packt Publishing Ltd.,
2014.

[16] R. Choudhry, HBase High Performance Cookbook, Packt Publishing
Ltd., 2017.

[17] L. Stanescu, M. Brezovan and D. Dan Burdescu, "Automatic mapping of
MySQL databases to NoSQL MongoDB." In Proc. of 2016 Federated
Conference on Computer Science and Information Systems (FedCSIS),
pp. 837-840, 2016.

[18] M.C.d. Freitas, D. Souza and A. Salgado, “Conceptual mappings to
convert relational into NoSQL databases,” in: Proc. of the 18th
International Conference on Enterprise Information Systems, ICEIS, pp.
174–181, 2016.

[19] R. Ouanouki, A. April, A. Abran, A. Gomez and J.M. Desharnais,
"Toward building RDB to HBase conversion rules," Journal of Big Data,
vol. 4(1), pp. 1-21, 2017.

[20] J. Yoo, K. Lee and Y. Jeon, "Migration from RDBMS to NoSQL using
column-level denormalization and atomic aggregates", Journal of
Information Science & Engineering, vol. 34(1), pp. 243-259, 2018.

