
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

522 | P a g e

www.ijacsa.thesai.org

Framework to Deploy Containers using Kubernetes

and CI/CD Pipeline

Manish Kumar Abhishek, D. Rajeswara Rao, K. Subrahmanyam

Department of CSE

Koneru Lakshmaiah Education Foundation

Vaddeswaram, India

Abstract—Containers are continuously replacing the usage of

virtual machines and gaining popularity in terms of scalability

and agility in IT Industry. The key concept behind containers is

Operating system based virtualization. In cloud, computing

containers are getting deployed in terms of computing instances

whereas in premises they are getting deployed using Docker as a

part of CI/CD pipelines using Jenkin Server. When containers

are going to be increased in number, its deployment and resource

management is always a concern which is managed using the

Kubernetes. Kubernetes is used to deploy and manage the

containers in an autonomous manner and Rancher is used to

manage the Kubernetes Cluster in an efficient manner. First

Analysis is done for the scheduler, resource management which is

used by Kubernetes to deploy the containers and proposed a

framework which will automate the whole process using the

helm-charts, ansible scripts from container deployment to the

management of Kubernetes Cluster in a scalable manner. It is

fully automated framework and can be used to deploy the

scalable applications in form of containers as Docker images.

CI/CD pipeline is also considered using Jenkin Server.

Keywords—Containers; Docker; Jenkin; Kubernetes; rancher;

virtualization

I. INTRODUCTION

In an agile environment, the application needs to be
scalable, performant and highly available based on customer
requirements and to achieve the same, containers are widely
used in IT industry. The releases are so frequent in terms of
delivery in cloud based SaaS (Software as a Service)
environment. This is one of the main reasons containers are
gaining popularity and used in cloud computing environments
and High Performance Computing [1]. Containers are very
lightweight in terms of application deployment as one whole
package including its required libs, binaries and other
dependencies, if any. When an application is split in terms of
micro services, every feature is implemented as a micro service
and going to be deployed using containers. As a whole
Product, the entire application is split in terms of multiple
micro services and to have scalability and high availability,
every application has a fail back mechanism and to avail the
same, each application is deployed with at least two containers.
In case one is down another will be available to serve the
request or both are used to distribute the workload. In result of
this if one product has n numbers of application then need n
multiply by two containers. The huge numbers of containers
are going to be deployed and then needs to be managed. This
requirement of managing high number of containers

deployment is always a concern. These containers are
provisioned using the Docker images. Docker is an open
source platform to bundle the services in form of containers.
Using various components, the applications are bundled as
Docker images. The required libraries, binaries and other
dependencies are defined as a part of configuration in terms of
Docker File. Docker file is converted in form of image and
then deployed by running commands. Using commands, the
image is deployed and the application starts running within
container within few seconds. The complete lifecycle of the
application revolves around the container lifecycle. Using
Docker the state of application is also maintained via commit
the container state as an image and tagging it with multiple
versions accordingly. If at one point, application crashes, the
committed state of container in form of image can be easily
deployed again and application will start running with same
state when it is committed. This is one of the reason containers
provides fault-tolerance and high availability for applications.
They are highly trending for application deployment and
wherever micro services are getting designed. In comparison of
virtual machines, more weightage has been given to the
containers in cloud computing as well as in high performance
computing. The overhead of application deployment is reduced
as it runs on an operating system isolated layer which is
portable without use of a hypervisor.

Kubernetes is used for cluster systems to support the
container based application deployment. Containers where they
are going to be deployed in known as “pod” and it manages
thee multiple pod deployment across the physical servers,
scaling out the application at run time with multiple workloads.
It provides multiple services and tools which are widely
available. It is used to avoid downtime of an application. If one
container gets stopped or crashed, the another one needs to be
up and running in next second. This is the behaviour which is
handled easily by Kubernetes. It also offers service registry and
load balancing. Multiple containers can reside within a pod to
use its file systems and other services belong to a particular
pod. The functional or dynamic programming where resource
provisioning is so frequent in terms of milliseconds and
containers are used, the deployment and its performance need
to be monitored. For example: AWS Lambda where multiple
user streams are generating the events which are processed by
a lambda function. The whole process is executed by deploying
a container and billed at 100ms interval of time. The container
will be stopped as the function completes its execution. This
container deployment, management, monitoring where lambda

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

523 | P a g e

www.ijacsa.thesai.org

function is hosted and its performance impacts the provider
ability to facilitate the more efficient charging alternatives to
the users to process the stream based applications.

Framework is proposed for deploying the containers using
Kubernetes based on high performance and fully automated to
process the requests which need multiple deployments of
containers within few milliseconds. It will identify the required
states associated with pods and containers. It can be further
used as a configuration to monitor the resources and other
details acquired from a Kubernetes Cluster deployment. Using
this framework, individuals can plan the capacity support for
applications scalability and can do the evaluation of containers
and pods which can impact the application performance.

The structure of this paper is as follows: the second section
is the analysis and related work; the third section describes the
proposed design of framework using Jenkin server and CI/CD
pipeline; the fourth section is the evaluation and results; and
the fifth section is the conclusion and acknowledgement.

II. ANALYSIS AND RELATED WORK

Hardware virtualization and operating system virtualization
in terms of virtual machines and containers are always being a
research topic from a performance perspective in terms of
computing resources such as CPU, memory and storage
workloads [2]. In spite of being so much analysis, it is found
that many are not familiar or reluctant to use the formal
methods. Cloud computing is using a minimal amount of work
done on using the formal methods from a performance
perspective [3]. Under [4], it is provided as a cyclic design
based on particular functional algorithm specifications. Later, it
went with the computing resource availability specifications
holding the data, control and resources workflow. It was based
on Petri Net model [5] capturing the details of functionalities
and computing resources requirements involved in the running
environment. It starts first with the analyses of the application
deployment lifecycle and then understanding of the execution
behaviour at run time. It combines the analyses with simulation
and predicts the non-functional and functional requirements.
Over a time of period, this model is enhanced with the
inclusion of performance minimal and maximum boundaries. It
allows the competition of resources consumption via
formulating the model which is not considered in nude queued
networks. The requirement of these models to work is the
historical data which need to be feed in form of temporary data.
The virtual machine performance has been evaluated in cloud
computing environments [6]. Using [7], [8] the containers and
virtual machines performance have been evaluated with
multiple performance metrics. The few designed have been
evaluated in past to manage the containers using Docker and
Kubernetes but there is a limitation exists in research area
around containers deployment and its management using the
Kubernetes architecture. In [9], Containers using Docker
performance results into a degradation of network and CPU
based negligible performance impact in specified
configurations. Kubernetes is not using fully nested-container
strategy. It uses the partial one having pod concept where the
same IP is used across the containers deployed within that pod.
It uses multiple performance metrics for Pod start up and

REST API request-response time. Kubemark is used for the
Kubernetes Cluster performance evaluation.

Kubernetes is not a traditional platform based system. It
operates at container and offers flexibility, monitoring, scaling,
load balancing and deployment of containers [10]. There is no
limitation for application type with any amount of workload. It
is used for containers not for source code deployment. Using
its API, required specifications can be declared for the
containers which eliminate the requirement of orchestration
where steps are executed one by one in sequential order. It is
holding a complete independent set of controlled processes
which drives continuously the present state to the targeted one.
How to reach from one point to another does not matter which
make it easy to use extensible and resilient. It is formed using a
set of worker machines known as nodes which are used to
execute the application in containers and mainly hosts the
pods. There is a control panel which is responsible to manager
the worker nodes and pods in the Kubernetes Cluster including
scheduling, start-up of the new pod, detecting and responding
to the triggered events.

Kube-API server is used for the API which is the frontend
of control panel and offers horizontal scalability. Fig. 1 shows
the high level flow of container’s deployment using the
Kubernetes. Kube-Scheduler is used to select a node to the
newly created pod to run on. For scheduling the node to the
pod several factors need to be considered which includes
resources requirements, specifications, deadline and
infrastructure based policy constraints. There is also kube-
controller manager which manages the different type of
controllers. For example: Job Controller, Node Controller,
Service Account & Token Controller and Endpoint Controller.
etcd is used to store the info about the cluster in terms of key-
value pair. For cloud based environment, it also offers cloud-
controller manager which links the Kubernetes cluster to the
cloud based API. Multiple components are also running on the
nodes which manage the running pods. Kubelet and kube-
proxy are among those components. Kubelet is an agent which
runs on the node to make sure that containers are running fine
in pod where kube-proxy manages the network rules to make
the communication inside and outside of cluster. Containerd is
one of the container runtime used by Kubernetes which is
mainly holding the responsibility of running the containers
[11]-[13]. Kubernetes monitors the container resources via
saving the time-series based metrics in a centralised data base.
It offers an UI in form Dashboard using which users can
monitor the resources and can search on logging i.e. view the
logged activity perform against the running application in
container. The pod will live till the containers are running
which are deployed inside it. Its lifecycle depends on the
container lifecycle. The pod required to be waiting till the
containers have been created. Using Object Nets [14]-[15]
abstraction, pods and containers can be represented as System
and Token Nets. To improvise the legibility, the creation part
is hidden and apart from this, it is assumed that as long as
resources are present, the scheduler is going to allocate a single
node to a single pod. If the resource exhausted, the pods will
reside in the waiting queue. The node represents the
management of resources. For every node, there will be a token
which identify the node and its available computing resources.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

524 | P a g e

www.ijacsa.thesai.org

The allocated resources to a pod will be released based on the
policy value i.e. “release” or “failure”. Containers creation will
get started only when pod is going to be assigned to node. The
pod will wait in waiting queue till containers creation will get
over. Once all containers get created, pod will be moved to the
running state. It will remain in same state till the time
containers will not terminate. If any container gets terminated,
pod will go in runningFailed state. If container gets restarted
without any failure, pod will come back to running state and
come to the success state once all containers finished without
any failure. Fig. 2 shows the same behaviour. The different
transition states are represented from TS1 to TS7. Table I
elaborates all the transition states.

Fig. 1. Container Deployment using Kubernetes.

Fig. 2. Transition States Model.

TABLE I. TIME BASED TRANSITION STATES IN THE MODEL

Transition States Description

TS1 Creation time of a conatiner.

TS2 Execution time of a container

TS3 Time until next failure

TS4, TS5 Time taken to restart a container

TS6, TS7 Successful termination of a conatiner

III. PROPOSED DESIGN

Here, the proposed framework is explained to deploy the
containers using the Kubernetes cluster which is going to be
managed by Rancher. The applications are bundled in form of
a single entity as container which will get deployed on a pod.
Multiple applications are considered based on different
workloads and resource requirements. It consist multiple stages
from building the application to its deployment. At first the
application will be built and bundled in terms of a jar/war or
based on application type. Secondly, Docker file will be
created that will hold the multiple instructions, configurations
required to execute the application. Once Docker file will be
defined, Docker image will be created using the same; it will
be tagged based on release version. Using the Jenkin server the
application will be built as a part of CI/CD pipeline which will
be responsible to take care of whole process from building the
application till its execution. Helm Charts have been used in
form of YAML files to deploy these container images. In these
YAML files, multiple steps have been defined. For example:
version, stages from checkout to deployment , repository from
where it is needed to checkout the application source code,
building the Docker image with name, Docker file, its tag,
working directory and deployment details. Ansible scripts have
been used to install the helm charts in an automated manner.
Whenever the new version of application is available, using
CI/CD pipeline; it will be checkout, built, converted into a
Docker image and gets installed using the helm-charts via
running the Kubernetes commands [16]. Fig. 3 shows the
proposed architecture to deploy the containers using
Kubernetes followed by CI/CD pipeline.

Fig. 3. Proposed Model using Kubernetes followed by CI/CD Pipeline.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

525 | P a g e

www.ijacsa.thesai.org

A. Jenkin Server

Jenkin Server is used to automate the whole process of
check out the application source code, getting compiled, and
bundled in appropriate package/build and its conversion to the
Docker image and persist it to Docker registry. The main
advantage of using the Jenkin server is facilitating the CI/CD
pipeline [17] to deploy the containers in form of helm charts
using Kubernetes Cluster. It is easily configurable and
extendible. For every application, one pipeline is defined with
respective set of instructions in Jenkin Server. It also helps us
to check the error at run time by using its flexible UI. For
Docker images and helm charts, leveraged its plugin
architecture and found it really helpful at every stage of
pipeline.

B. Continuous Integration and Deployment (CI/CD)Pipeline

Jenkin Server is used for delivering and deploying the
application as container in form Continuous Integration and
deployment pipeline which is split into multiple stages. Main
branch of source code is targeted to pull the source code. In the
first stage of CI/CD pipeline [18], whenever the code will be
pushed to the respective release branch, it will start building
the application in terms of Docker image. The second pipeline
will be created for the helm install. It will first setup the
infrastructure in terms of database, ElasticSearch, Kafka,
Zookeeper if any. After the infrastructure build, it will start
pushing the helm packages and charts to respective node. The
helm package will be extracted and start executing the YAML
files using the ansible scripts. It will run the helm install
commands to deploy the containers on pod. As a next stage of
pipeline, it will check the health of container. If it is up and
running, it will end the pipeline successfully else in case of
failure, it will wait for some time as retry else will terminate
the container and exists. The Kubernetes Cluster is responsible
for the containers deployment but to manage the multiple
Kubernetes Cluster health, Rancher Server is used [19]. It
provides a Dashboard using which multiple Kubernetes Cluster
are monitored and managed.

IV. EVALUATION AND RESULT

Evaluation is carried out and benchmarked the overhead
during the deployment of containers using Kubernetes with the
consideration of following scenarios. (i) Multiple containers
i.e. 17 in count are deployed within single pod. (ii) Multiple
pods i.e. 4 in count and single container deployment per pod.
These 4 pods are deployed on single physical host of 16 cores
on Kubernetes node. Mean is represented by symbol (µi) and
standard deviation is represented by symbol (σi). For
comparing the results it is equated like N0 which is the
difference both means as µ1 - µ2 = 0 and N1 is going to be the
difference as: µ1 - µ2 ≠ 0. TC represents the total number of
containers.

For the CPU intensive benchmarking used the pov-ray 3.7
for the measurement of overhead over the pods. Kubernetes
allows the containers CPU reservation based on Docker.
Sharing of multiple CPUs is directly proportional to the
Docker-based reservations. IN scenario (i), as there are
multiple containers on a single pod, so it is going to be

distributed but in scenario (ii) where single container is
deployed per pod, one container can consume the all CPU
cores. Table II shows the results for same where execution time
is linear. It is found that for the CPU usage, Kubernetes has
introduced about 13% overhead. It is concluded that for CPU
intensive applications instead of deploying single container per
pod, multiple containers deployment on a single pod is
recommended. Multiple containers are not resulting into the
addition of any type of overhead. If application has the
extensive tasks to do at the same time then deployment of
application in terms of one replica is not recommendable.

For the I/O intensive, BZip is used for the measurement of
overhead. During this experiment, N0: µ1 - µ2 = 0 is targeted.
Table III shows the outcome of measured results of using the
BZip for all 17 containers execution time during the
compression of the UNIX kernel. It is found that I/O intensive
applications are not impacting the deployment. The overhead
is almost negligible even the file system is shared across all the
deployed containers.

For the network benchmarking, used the iperf server [20]
and client deployment on the pods. Server and client are on
same physical machine. The containers are deployed in a pod is
going to share the IP address in terms of network connection.
The TCP based traffic has been monitored by running the tests
for about 1 minute. Both the scenarios (i) and (ii) have been
considered to find out the impact of network connection.
Tables IV and V show the results for both scenarios where
single container per pod and multiple container in a pod. It is
found that for the running application more than 5 containers.
It is concluded that group of few containers on a single pod is
better than having higher number of containers deployed
within a pod. This number can be fine-tuned based on
workloads and application type.

TABLE II. POV-RAY FOR CPU INTENSIVE BASED APPLICATION

TC Scenario 1 Scenario 2 N0?

 µ1 σ1 µ2 σ2

1 122..34 0.42 122.23 0.38 Yes

5 467.56 0.94 469.14 0.59 No

9 936.80 0.71 936.58 0.68 Yes

13 1411.66 1.57 1414.30 1.25 No

17 2360.22 1.14 2364.37 3.87 Yes

TABLE III. BZIP FOR INPUT / OUTPUT INTENSIVE BASED APPLICATION

TC Scenario 1 Scenario 2 N0?

 µ1 σ1 µ2 σ2

1 15.04 0.15 14.97 0.23 Yes

5 15.93 0.14 15.916 0.15 Yes

9 18.19 1.40 18.88 0.53 Yes

13 21.73 1.42 20.33 1.09 Yes

17 35.34 2.67 34.58 0.98 Yes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

526 | P a g e

www.ijacsa.thesai.org

TABLE IV. N/W BENCHMARKING USING C-PERF CLIENT FOR SCENARIO 1

TC µ1(GB) σ1 ∑BWi/TC(GB)

1 1.86 0.07 1.86

5 9.62 0.24 2.14

9 16.65 0.11 1.90

13 15.98 0.25 1.26

17 17.87 1.23 2.13

TABLE V. N/W BENCHMARKING USING C-PERF CLIENT FOR SCENARIO 2

TC µ1(GB) σ1 ∑BWi/TC(GB) N0?

1 1.88 0.05 1.88 Yes

5 9.82 0.08 2.19 Yes

9 16.95 0.12 2.04 Yes

13 17.18 0.20 1.16 No

17 18.17 1.35 2.19 No

V. CONCLUSION

For containers deployment, Kubernetes is highly
recommendable. Wherever there is a need to provision the high
number of computing instances frequently within seconds, the
overhead attached to the containers and resource allocation is a
limitation. In this paper proposed a flexible, automated and
performance based framework that can be used by developers
or students in their labs to deploy the containers using
Kubernetes. It can be used for any application release, capacity
planning and for resource management. It is highly flexible in
nature using the helm-charts. In this framework not only the
deployment of containers are outlined but also focused on
managing the Kubernetes cluster using the Rancher. The life
cycle of container is also elaborated and pods internally. The
CI/CD pipeline based on Jenkin Server is making this
framework fully automated. It is not only offering the fault-
tolerance but also support the horizontal scalability of an
application in terms of containers. The fully automated
framework is elastic in nature without any single manual
interruptions.

ACKNOWLEDGMENT

I am really thankful to the Koneru Lakshmaiah Education
Foundation for allowing me to choose my research area as per
my interest and my guide optimistic nature as well as other
staff members who encouraged me to complete this research
work.

REFERENCES

[1] Abhishek, Manish. (2020). Containerization for shipping Scientific
Workloads in Cloud. International Journal of Advanced Trends in
Computer Science and Engineering. 9. 5327.
10.30534/ijatcse/2020/166942020.

[2] Abhishek, Manish. (2020). High Performance Computing using
Containers in Cloud. International Journal of Advanced Trends in
Computer Science and Engineering. 9. 5686.
10.30534/ijatcse/2020/220942020.

[3] V. Rastogi, C. Niddodi, S. Mohan, and S. Jha, “New directions for
container debloating,” in Proceedings of the 2017 Workshop on Forming
an Ecosystem Around Software Transformation, ser. FEAST ’17. New
York, NY, USA: ACM, November 2017.

[4] Merino, Alberto & Tolosana-Calasanz, Rafael & Bañares, José &
Colom, José. (2015). A Specification Language for Performance and
Economical Analysis of Short Term Data Intensive Energy Management
Services. xxx-yyy. 10.1007/978-3-319-43177-2_10.

[5] T. Murata, "Petri nets: Properties, analysis and applications," in
Proceedings of the IEEE, vol. 77, no. 4, pp. 541-580, April 1989, doi:
10.1109/5.24143.

[6] J. Hwang, S. Zeng, F. y. Wu and T. Wood, "A component-based
performance comparison of four hypervisors," 2013 IFIP/IEEE
International Symposium on Integrated Network Management (IM
2013), 2013, pp. 269-276.

[7] W. Felter, A. Ferreira, R. Rajamony and J. Rubio, "An updated
performance comparison of virtual machines and Linux containers,"
2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2015, pp. 171-172, doi:
10.1109/ISPASS.2015.7095802.

[8] M. Raho, A. Spyridakis, M. Paolino and D. Raho, "KVM, Xen and
Docker: A performance analysis for ARM based NFV and cloud
computing," 2015 IEEE 3rd Workshop on Advances in Information,
Electronic and Electrical Engineering (AIEEE), 2015, pp. 1-8, doi:
10.1109/AIEEE.2015.7367280.

[9] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar and M.
Steinder, "Performance Evaluation of Microservices Architectures Using
Containers," 2015 IEEE 14th International Symposium on Network
Computing and Applications, 2015, pp. 27-34, doi:
10.1109/NCA.2015.49.

[10] Abhishek M.K., Rajeswara Rao D. (2022) A Scalable Framework for
High-Performance Computing with Cloud. In: Tuba M., Akashe S.,
Joshi A. (eds) ICT Systems and Sustainability. Lecture Notes in
Networks and Systems, vol 321. Springer, Singapore.
https://doi.org/10.1007/978-981-16-5987-4_24.

[11] M ondal, S.K., Pan, R., Kabir, H.M.D. et al. Kubernetes in IT
administration and serverless computing: An empirical study and
research challenges. J Supercomput 78, 2937–2987 (2022).
https://doi.org/10.1007/s11227-021-03982-3.

[12] A. Tesliuk, S. Bobkov, V. Ilyin, A. Novikov, A. Poyda and V. Velikhov,
"Kubernetes Container Orchestration as a Framework for Flexible and
Effective Scientific Data Analysis," 2019 Ivannikov Ispras Open
Conference (ISPRAS), 2019, pp. 67-71, doi:
10.1109/ISPRAS47671.2019.00016.

[13] Wei-guo, Zhang & Xi-lin, Ma & Jin-zhong, Zhang. (2018). Research on
Kubernetes' Resource Scheduling Scheme. ICCNS 2018: Proceedings of
the 8th International Conference on Communication and Network
Security. 144-148. 10.1145/3290480.3290507.

[14] Valk, Rüdiger. (2003). Object Petri Nets -- Using the Nets-within-Nets
Paradigm. 819-848. 10.1007/b98282.

[15] Kummer, Olaf & Wienberg, Frank & Duvigneau, Michael &
Schumacher, Jörn & Köhler-Bußmeier, Michael & Moldt, Daniel &
Rölke, Heiko & Valk, Rüdiger. (2004). An Extensible Editor and
Simulation Engine for Petri Nets: Renew. Applications and Theory of
Petri Nets 2004. 3099. 484-493. 10.1007/978-3-540-27793-4_29.

[16] Spillner, Josef. (2019). Quality Assessment and Improvement of Helm
Charts for Kubernetes-Based Cloud Applications.

[17] Moutsatsos, Ioannis & Hossain, Imtiaz & Agarinis, Claudia &
Harbinski, Fred & Abraham, Yann & Dobler, Luc & Zhang, Xian &
Wilson, Christopher & Jenkins, Jeremy & Holway, Nicholas &
Tallarico, John & Parker, Christian. (2016). Jenkins-CI, an Open-Source
Continuous Integration System, as a Scientific Data and Image-
Processing Platform. Journal of Biomolecular Screening. 22.
1087057116679993. 10.1177/1087057116679993.

[18] S. A. I. B. S. Arachchi and I. Perera, "Continuous Integration and
Continuous Delivery Pipeline Automation for Agile Software Project
Management," 2018 Moratuwa Engineering Research Conference
(MERCon), 2018, pp. 156-161, doi: 10.1109/MERCon.2018.8421965.

[19] Vergara Vargas, Jeisson & Umaña, Henry. (2017). A Model-Driven
Deployment Approach for Scaling Distributed Software Architectures
on a Cloud Computing Platform.

[20] Tirumala, Ajay & Cottrell, Les & Dunigan, Tom. (2003). Measuring
end-to-end bandwidth with Iperf using Web100. 10.2172/813039.

https://doi.org/10.1007/978-981-16-5987-4_24
https://doi.org/10.1007/s11227-021-03982-3

