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Abstract—Standard classification algorithms often face a 

challenge of learning from imbalanced datasets. While several 

approaches have been employed in addressing this problem, 

methods that involve oversampling of minority samples remain 

more widely used in comparison to algorithmic modifications. 

Most variants of oversampling are derived from Synthetic 

Minority Oversampling Technique (SMOTE), which involves 

generation of synthetic minority samples along a point in the 

feature space between two minority class instances. The main 

reasons these variants produce different results lies in (1) the 

samples they use as initial selection / base samples and the 

nearest neighbors. (2) Variation in how they handle minority 

noises. Therefore, this paper presented different combinations of 

base and nearest neighbor’s samples which never used before to 

monitor their effect in comparison to the standard oversampling 

techniques. Six methods; three combinations of Only Danger 

Oversampling (ODO) techniques, and three combinations of 

Danger Noise Oversampling (DNO) techniques are proposed. 

The ODO’s and DNO’s methods use different groups of samples 

as base and nearest neighbors. While the three ODO’s methods 

do not consider the minority noises, the three DNO’s include the 

minority noises in both the base and neighbor samples. The 

performances of the proposed methods are compared to that of 

several standard oversampling algorithms. We present 

experimental results demonstrating a significant improvement in 

the recall metric. 

Keywords—Class imbalance; nearest neighbors; base samples; 

initial selection; SMOTE 

I. INTRODUCTION 

One of the most challenging machine learning problems to 
both the academia and industry in the last couple of decades is 
one associated with learning from data that is unbalanced [1]. 
This problem is known to arise in both binary and multiclass 
classification tasks when data instances from one class, known 
as the majority class occur more frequently than instances of 
other classes, known as the minority classes [2]. This obvious 
disproportion in the distribution of data instances across classes 
leans the classifier towards significant bias to the majority class 
which in turn results in the misclassification of instances of 
other classes [3]. What makes the class imbalance problem 
more interesting is the fact that the minority class is often the 

class of interest in most real-life application domain, thus, the 
cost of misclassifying the minority class is often higher than 
that of the majority class [4, 5]. For instance, given a machine 
learning fraud detection system, legitimate transactions occur 
more often than fraudulent ones, but the cost of misclassifying 
a fraudulent transaction as legitimate is greater than the 
opposite. Therefore, approaches to addressing class imbalance 
problem are aimed at increasing the accuracy and sensitivity of 
the classifier to the minority class. 

The approaches to dealing with class imbalance problem 
can broadly be grouped into two categories [6]. The first 
category entails algorithmic creation/modification to improve 
learning of the minority class samples. The second category of 
approaches is the most popularly used category, data level 
methods, which resamples the data distribution to ensure 
balanced data distribution across the respective classes via 
oversampling, under-sampling or their hybrid combination. 

This paper focuses on oversampling methods that involve 
the generation of synthetic data samples to augment the 
minority class. A leading oversampling method that serves as 
the basis for most of the recent oversampling methods is the 
Synthetic Minority Over-sampling Technique (SMOTE) 
algorithm [2]. SMOTE basically generates artificial samples 
along the length of the line joining neighboring minority class 
samples. 

SMOTE has also inspired several approaches to counter the 
issue of class imbalance. It is standard benchmark for learning 
from imbalanced data [7]. Based on SMOTE, several 
techniques have been proposed in the literature, and these 
techniques have been categorized according to some properties 
include: (1) initial selection of instances to be oversampled 
(technically called base samples), (2) integration with Under-
sampling as step in the technique, (3) type of interpolation, (4) 
operation with dimensionality changes, (5) adaptive generation 
of synthetic examples, (6) possibility of relabeling and (7) 
filtering of noisy generated instances. 

Each SMOTE-based extension might have different 
properties from the aforementioned aspects. However, a large 
number of them use the three common aspects include: initial 
selection, type of interpolation (the common type is ‘range 
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restricted’), and the adaptive generation of the new samples. 
This study, therefore, focuses on those three properties. 

The most common standard technique that utilizes initial 
selection and the ‘range restricted’ interpolation aspects is 
SMOTE_BORDERLINE [8]. This research, thus, started with 
adopting the same initial selection of instances to be 
oversampled in SMOTE-BORDERLINE. The common 
standard technique that uses adaptive generation of synthetic 
examples is ADASYN [9], and this is also adopted in this 
study to be used in our proposed techniques. The minority 
classes have been classified into three different groups namely 
safe, danger, and noise; according to its level of difficulty [8, 
10-12]. 

Consequently, six new oversampling techniques, namely, 
ODO1, ODO2, ODO3, DNO1, DNO2, and DNO3 are 
proposed. For the ODO techniques, only the borderline 
examples (Danger group) of the minority class are over-
sampled, while in case of the DNO techniques, both the 
minority danger and minority noise examples are oversampled. 
The main difference between the three ODO methods lies in 
the criteria for choosing the nearest neighbors (NN) group. In 
ODO1, the NN is the minority class except the minority noises, 
while in ODO2; the NN is the same as the base example which 
are the borderline examples (minority danger). In ODO3, the 
NN group includes the whole classes except the minority 
noises. 

Similarly, the main difference between the three DNO 
methods is the criteria for choosing the nearest neighbors. In 
DNO1, the NN is the minority class, while in DNO2, the NN 
are the same as the base examples which consist of the Danger 
and Noise examples. Lastly, in DNO3, the NN group consists 
of the whole classes (minority and majority). 

Table I shows how each of the proposed methods differs 
from the standard techniques (SMOTE, Borderline1, 
Borderline2, and ADASYN). Moreover, in this study, three 
aspects are added for more clarification about the methods and 
they are: (1) Nearest Neighbor group, (2) ‘how to choose from 
NN group’ and (3) ‘noise considered?’ 

Hence, the major contribution of this study includes the 
implementation of the proposed methods as well as a tabular 
overview showing the differences between the methods in 
details and more clarifications, and this includes the initial 
selection / base samples used, the NN groups, the method of 
NN selection, type of interpolation, adaptive generation, and 
the representation of the minority noises (noises considered?) 
as shown in Table I. The proposed oversampling techniques 
were experimentally analyzed using four classification 
algorithms and evaluation metrics across 15 publicly available 
datasets from Machine Learning Repositories. The 
performances of the proposed methods are compared to 
SMOTE, Borderline SMOTE and ADASYN oversampling 
methods. In addition, statistical analysis was also carried out 
using Friedman aligned and Holm’s tests. 

The organization of this article is as follows. An overview 
of pertinent studies and oversampling methods is provided in 
Section II while the procedure of the proposed methods is 
listed in Section III followed by the experimental design in 

Section IV. The experimental results and conclusion are 
respectively presented in Sections V and VI. 

II. RELATED WORK 

Given that this study focuses on oversampling through 
synthetic data generation which is a data level approach, a 
short review of related studies is presented here in this regard. 
References [7, 13, 14] are important articles for an in-depth 
review of imbalance resolution approaches. The most basic 
form of oversampling is known as Random Oversampling 
which involves random sampling of minority class samples 
with replacement till it matches the size of the majority class 
samples. A major drawback of this approach is high likelihood 
of overfitting that results from the exposure of the classifier to 
the same information. 

An oversampling approach that sidesteps the challenges 
associated with basic random oversampling is SMOTE which 
involves synthetic data generation along the length of the line 
joining neighboring minority class samples. SMOTE generates 
synthetic samples for any minority class including minority 
noises which also participate as nearest neighbors. However, 
when the separation between majority and minority class 
clusters is not clear, noisy samples may be generated [2]. On 
the other hand, borderline-SMOTE methods [8] intend to 
prevent producing noisy samples by detecting the boundary 
instances between the majority and minority classes, which are 
then utilized to identify useful informative minority class 
samples. Although both SMOTE-Borderline1 and SMOTE-
Borderline 2 do not generate any sample for minority noises, 
dealing with those noises as nearest neighbors may generate 
new samples located near the noises or overlap with them. The 
study in [9] aims to distribute the new synthetic samples 
according to the level of difficulties by making the most 
difficult samples have more new samples. However, this 
approach results in that minority noises will have the big 
portion of the new synthetic samples. 

From the afore-highlighted, it is obvious that the methods 
vary in how they deal with the base and nearest neighbor’s 
samples. Similarly, some of them give the minority noises the 
advantage of being more represented in the new samples while 
others ignore them completely. However, the use of other 
different groups is still lacking, therefore, using different 
sample groups of the base and nearest neighbors are needed. 

III. PROPOSED METHODS’ PROCEDURE 

Suppose that the whole training set is X, the minority class 
is P and the majority class is N, and P={p1,p2,…,pnum}, N = 
(n1,n2,…,nnum) Where pnum and nnum are the number of minority 
and majority examples. The detailed procedure of ODO1 
explained in Fig. 1. 

The difference between ODO1, ODO2, and ODO3 is the 
NN groups as we mentioned above. Additionally, the 
difference between ODO’s techniques and DNO’s techniques 
is that, in DNO’s methods, minority noises are added to both 
base samples and NN samples as declared in Table I. Further, 
In situations where the NN is from the majority class, a random 
value between 0 and 0.5 will be multiplied by the difference 
between the base example and its nearest negative example as 
in SMOTE_Borderline2 [8]. 
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TABLE I. DIFFERENCES BETWEEN THE OVERSAMPLING METHODS 

Method 
Initial Selection/ Base 

samples 
NN group 

How to 

choose from 

neighbors 

Type of interpolation 
Adaptive 

generation 

Noise 

considered? 

SMOTE Any from minority The 5 NN all minority Randomly 

On the line between base and 

NN 
New sample= base + 

(rand(0,1)*diff) 

- 
Base yes 
NN yes 

Borderline1 Minority_Danger (3,4) the 5 NN (minority) Randomly  
New sample= base + 

(rand(0,1)*diff) 
- 

Base NO 

NN yes 

Borderline2 Minority_Danger (3,4) 
the 5 NN (minority + 

majority) 
Randomly 

(range restricted) 

If NN is minority 

New sample= base + 
(rand(0,1)*diff) 

If NN is majority 

New sample= base + 
(rand(0,0.5)*diff) 

- 
Base No 

NN yes  

ADASYN Minority (1,2,3,4,5) the 5 NN all minority Randomly 

Weighted distribution 

New sample= base + 
(rand(0,1)*diff) 

Weighted 

distribution 

Base yes 

NN yes 

ODO1 Minority_Danger (3,4) 
the 5 NN (minority-

noise) 
Randomly 

New sample= base + 

(rand(0,1)*diff) 

Weighted 

distribution 

Base No 

NN No  

ODO2 Minority_Danger (3,4) 
the 5 NN (minority 

Danger) 
Randomly 

New sample= base + 

(rand(0,1)*diff) 

Weighted 

distribution 

Base No 

NN No  

ODO3 Minority_Danger (3,4) 
the 5 NN (minority-

noise) + majority 
Randomly 

(range restricted) 

If NN is minority 

New sample= base + 
(rand(0,1)*diff) 

If NN is majority 

New sample= base + 
(rand(0,0.5)*diff) 

Weighted 

distribution 

Base No 

NN No 

DNO1 
Minority_Danger and 

Noise (3,4,5) 
the 5 NN (minority) Randomly 

New sample= base + 

(rand(0,1)*diff) 

Weighted 

distribution 

Base Yes 

NN Yes  

DNO2 
Minority_Danger and 
Noise (3,4,5) 

the 5 NN (minority 
Danger and Noise) 

Randomly 
New sample= base + 
(rand(0,1)*diff) 

Weighted 
distribution 

Base Yes 
NN Yes 

DNO3 
Minority_Danger and 
Noise (3,4,5) 

the 5 NN (minority + 
majority) 

Randomly 

(range restricted) 

If NN is minority 
New sample= base + 

(rand(0,1)*diff) 

If NN is majority 
New sample= base + 

(rand(0,0.5)*diff) 

Weighted 
distribution 

Base Yes 
NN Yes 

IV. EXPERIMENTAL DESIGN 

The performance of the proposed methods is evaluated 
using 15 benchmark imbalanced datasets of varying imbalance 
rations (IR) from the Machine Learning Repositories (UCI, 
Kaggle, Keel, Datahub) and this is a common practice in class 
imbalance learning. Table II shows a summary of the 15 
datasets. The performances of the proposed oversampling 
techniques were evaluated and compared with SMOTE, 
SMOTE_Borderline1, SMOTE_Borderline2, and ADASYN. 
Since accuracy has been shown in representative works as an 
insufficient evaluation metric for imbalanced datasets, Recall, 
and F1-measure are employed in this study. Additionally, the 
four classifiers considered for evaluation in this study are 
Decision Trees (DT) [15], Logistic Regression (LR) [16], 
RandomForest (RF) [17] and Support Vector Machine (SVM) 
[18]. 

For each combination of dataset, classifier and evaluation 
metric, an aligned ranking score is used to rank each 
oversampling method including the baseline. In addition to the 
10 oversampling algorithms considered in this study, the 
performance of the classifiers on the original dataset without 
oversampling is also used as the baseline. 

Thus, the best performing method has the biggest ranking 
score while the smallest ranking score indicates the worst 
performing method. Additionally, two statistical tests, 
Friedman aligned ranks and Holm, were also used to further 
establish the significance of our findings. While the Friedman 
aligned rank’s test recognizes the difference in outcomes 
obtained from many attempts when the normality assumption 
may not hold, the Holm’s test is a nonparametric t-test used to 
establish whether a control method outperforms comparative 
methods. 
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Only Danger Oversampling (ODO1) algorithm: 

Step 1. Extract the X_min as the minority samples. 

Step 2. Define m_min and m_maj as the number of minority class examples  

 and the number of majority class examples, respectively. Therefore,  

 m_min ≤ m_maj and m_min+m_maj = X. 

Step 3. Calculate the degree of class imbalance: 

 d = m_min/m_maj, where d ∈ (0, 1]. 

Step 4. Calculate the number of synthetic data examples that need to be  

 generated for the minority class: 

 G = (m_maj – m_min) × β  

 Where β∈ [0, 1] is a parameter used to specify the desired balance  

 level after generation of the synthetic data. β = 1 means a fully  
 balanced data set is created after the generalization process. 

Step 5. Determine the three Minority groups (Noise, Danger, Safe) 

Step 6. Now, we find the KNN (K=5) for each example xi in the danger group  

 in the whole training dataset X. 

Step 7. calculate the ratio ri defined as: 

 ri = Δi/K, i = 1, ...,X_d. X_d is the number of examples in  

 Danger group.  
 where Δi is the number of examples in the K nearest neighbors of xi  

 that belong to the majority class, therefore ri ∈ [0, 1]. 

Step 8. Normalize ri according to ri
^ = ri / ∑      

   , so that ri
^ is a  

 density distribution (Σ ri
^ =1) 

Step 9. Calculate the number of synthetic data examples that need to be  

 generated for each minority_danger example xi: 

 gi = ˆri × G where G is the total number of synthetic data examples  
 that need to be generated for the minority_danger class. 

Step 10. Determine the minority group without noises  

 X_min_no_noise = (X_min)-(Noise) 

Step 11. find the KNN (K=5) for each example xi in the danger group in the  

 X_min_no_noise. In this step, we guarantee that we don’t use any  

 minority noise as a NN. 

Step 12. For each minority_danger class data example xi, generate gi synthetic 
 data examples according to the following steps: 

 

 Do the Loop from 1 to gi: 
  (i) Choose a minority data example (xzi)  

  randomly from the nearest neighbors for data xi. 

  (ii) Generate the synthetic data example: 
   si = xi + (xzi − xi) × λ 

 where (xzi − xi) is the difference vector in n dimensional spaces,  

 and λ is a random number: λ ∈ [0, 1]. 
 End Loop 

Fig. 1. ODO1 Algorithm. 

To evaluate the performance of the classifiers on each 
dataset and method, a stratified k-fold cross validation 
experimental setup was applied with k = 5. Each oversampling 
method is performed on only the training portion dataset during 
k-fold CV and tested on their respective test folds [19]. The 
presented results represent the means validation performance. 
When the data you are using to train a machine learning 
algorithm happens to have the information you are trying to 
predict that is called Data leakage [20]. Therefore, to prevent 
leaking the data, the data preparation was performed within 
cross validation folds. 

The hyperparameter tuning of the classifiers was done on 
the original datasets with no oversampling (baseline) and then 
the obtained optimal parameters are used when applying the 

oversampling methods to have fairness with all techniques, 
while the various oversampling algorithms’ hyperparameters 
were tuned using the default values, except an important 
parameter in this study that is k nearest neighbor which must 
be equal to 5 in all oversampling techniques since the proposed 
methods are built on this number of nearest neighbors. The 
classifiers and standard oversampling algorithms were 
implemented using Python modules Scikit-Learn [21] and 
Imbalanced-Learn [22]. 

V. EXPERIMENTAL RESULT AND DISCUSSION 

At first, in the favor of explaining more about the nature of 
work of the oversampling standard techniques and the 
proposed methods, this research visualized their generating of 
the new samples using a synthetic dataset as you can see in 
Fig. 2, in addition to the detail description in Table I. 

On your imbalanced classification problem, you can choose 
to use precision or recall. The number of false positive errors 
will be reduced if precision is maximized, while the number of 
false negative errors will be reduced if recall is maximized. As 
a result, precision may be a better fit for classification 
problems where false positives are a concern. Alternately, 
recall may be more appropriate on classification problems 
when false negatives are more important [23]. With dataset 
such as Breast Cancer, the concern is the recall, therefore, try 
to reduce the False Negative (FN) as possible as can, while 
with dataset such as Spam mails dataset, the task will be more 
focus on precision since it is needed to reduce the False 
Positive (FP) the most. This study tries to improve the recall 
without hurting the precision too much. 

For each combination of classifier and evaluation metric, 
the mean rankings of the oversampling approaches over data 
sets are shown in Table III. The Friedman aligned test is used 
to statistically confirm the conclusion and the results are shown 
in Table IV. As a result, the null hypothesis is rejected at a 
significance level of 0.05., i.e., the oversampling methods do 
not perform equally in mean rankings for all evaluation 
metrics. 

Table V shows that our proposed method DNO3 is always 
the first or the second winner with all classifiers when the 
metric measure is the recall, therefore, DNO3 oversampler is 
used as a control method in the Holm’s test to see if DNO3 
result is a significant or not. The adjusted p-values are shown 
in Table VI. 

DNO3 ranked as the best method among all techniques 
regarding the recall results, and then DNO1 coming as the 
second. By looking at the differences between the DNO1 and 
DNO3, the only difference is the NN samples. DNO3 will deal 
with all classes in the NN whether they are minority or 
majority class, while DNO1 will only consider the minority 
class in the NN. This shows the importance of considering both 
minority and majority classes in the nearest neighbors.
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Fig. 2. The Distribution of the New Synthetic Samples using different Oversampling Methods. 
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TABLE II. DATASETS’ DESCRIPTION 

Name  Instances Attributes IR 

abalone-20_vs_8-9-10 1916 8 72.69 

Adult 48842 7 3.18 

Covertype 38501 55 13.02 

pima-indians-diabetes 768 9 1.87 

glass4 214 9 15.47 

Ionosphere 351 35 1.79 

Mammography 11183 7 42.01 

oil-spill 937 50 21.85 

page-blocks0 5472 10 8.79 

Phoneme 5404 6 2.41 

poker-8_vs_6 1477 10 85.88 

poker-8-9_vs_6 1485 10 58.4 

Satimage 6435 37 9.28 

Vehicle Silhouttes_0 846 19 3.25 

yeast5 1484 8 32.73 

TABLE III. RESULTS FOR MEAN RANKING OF THE OVERSAMPLING METHODS ACROSS THE DATASETS. THE BOLD HIGHLIGHTS THE BEST PERFORMING METHOD 

Metric Baseline SMOTE BL1 BL2 ADASYN ODO1 ODO2 ODO3 DNO1 DNO2 DNO3 

Algorithm: DT 

Recall 35.97 89.33 73.37 103.83 87.30 67.73 53.63 
65.07

  
121.30

  

99.67

  
115.80

  

F1 124.70  101.80  96.00 63.43 74.97  109.00 92.10 66.03 69.10 
61.80
  

54.07 

Algorithm: LR 

Recall 9.80 80.53 80.97 106.50 90.40 80.00 58.53 95.83 101.50 96.50 112.43 

F1 77.73 114.80 86.00 71.93 76.17 111.93 99.80 81.77 73.63 61.07 58.17 

Algorithm: RF 

Recall 18.27  74.97 77.97 96.70 107.47 62.47 66.53 68.83 119.07 105.50 115.23 

F1 105.53 101.47 108.43 76.43 71.20 108.20 94.97 55.53 75.17 
70.67

  
45.40 

Algorithm: SVM 

Recall 19.50 74.70 73.00 82.27 96.73 57.57 77.37 95.87 106.93 106.70 122.37 

F1 86.50 100.67 85.43 54.43 76.93 101.60 105.63 88.77 81.87 76.47 54.70 

TABLE IV. RESULTS FOR FRIEDMAN’S TEST 

Metric P value 

Algorithm: DT 

Recall 0.00000 

F1 0.00042 

Algorithm: LR 

Recall 0.00000 

F1 0.00799 

Algorithm: RF 

Recall 0.00000 

F1 0.00078 

Algorithm: SVM 

Recall 0.00000 

F1 0.04599 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 4, 2022 

533 | P a g e  

www.ijacsa.thesai.org 

TABLE V. THE WINNING METHODS AMONG ALL METRICS AND CLASSIFIERS 

 Recall F1 

DT DNO1 None 

LR DNO3 SMOTE 

RF DNO1 BL1 

SVM DNO3 ODO2 

TABLE VI. RESULTS FOR HOLMS’ TEST. THE BOLD HIGHLIGHTS STATISTICAL SIGNIFICANCE (RECALL – CONTROL METHOD = DNO3) 

RECALL 

DT 
adjusted  

p_values 
LR 

adjusted 

p_values 
RF 

adjusted  

p_values 
SVM 

adjusted 

p_values 

Baseline 0.00005 Baseline 0.00000 Baseline 0.00000 Baseline 0.00000 

ODO2 0.00329 ODO2 0.01803 ODO1 0.02240 ODO1 0.00183 

ODO3 0.02908 ODO1 0.50404 ODO2 0.04196 BL1 0.03726 

ODO1 0.04105 SMOTE 0.50404 ODO3 0.05474 SMOTE 0.04402 

BL1 0.09000 BL1 0.50404 SMOTE 0.12593 ODO2 0.05936 

ADASYN 0.51162 ADASYN 1.00000 BL1 0.16331 BL2 0.10763 

SMOTE 0.51693 ODO3 1.00000 BL2 1.00000 ODO3 0.51500 

DNO2 1.00000 DNO2 1.00000 DNO2 1.00000 ADASYN 0.51500 

BL2 1.00000 DNO1 1.00000 ADASYN 1.00000 DNO2 0.73831 

DNO1 1.00000 BL2 1.00000 DNO1 1.00000 DNO1 0.73831 

Among the common standard techniques (SMOTE, 
SMOTE_BORDERLINE1 (BL1), SMOTE_BORDERLINE2 
(BL2), and ADASYN), the BL2 is the best in Recall results. 
Comparing SMOTE_BORDERLINE2’s structure with DNO3 
shows the importance of considering the minority noise in the 
base samples since SMOTE_BORDERLINE2 is not 
considering that, as well as the weighted distribution of the 
new samples used by DNO3 that creates more new samples for 
the most difficult samples which is not the way used in 
SMOTE_BORDERLINE2. 

From the above analysis this study depicts that there are 
three factors can affect the detection of the minority class; the 
first is that the minority’s noises and danger samples which 
should be considered in the initial selection / base samples, and 
the second factor is that the minority noises, danger, and also 
the majority samples should be considered in the nearest 
neighbors samples, and last but not least is that the distribution 
of the new synthetic samples should be also weighted 
distributed so that the more difficult samples will be given 
more new synthetic samples. These factors can help reducing 
the false negative (FN) examples and this, in turn, increases the 
recall. 

VI. CONCLUSION 

DNO’S techniques performances were the best in Recall, 
and specifically DNO3 that outperformed all standard 
techniques in recall metric. This study shows the importance of 
considering minority noises and danger samples whether as 
base samples or nearest neighbors’ group. Furthermore, the 
majority class samples should be under concern in the nearest 
neighbors’ group. Finally, the weighted distribution (adaptive 
generation) of the new samples can help to get better Recall 

result. Taking everything into account, next work should 
consider not only the minority danger and minority noise 
groups, but also different groups of difficult minority samples 
including the minority safe samples. 
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