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Abstract—Protecting data privacy is of extremely importance
for users who outsource their data to a third-party in cloud
computing. Although there exist plenty of research work on data
privacy protection, the problem of protecting user’s preference
information has received less attention. In this paper, we consider
the problem of how to prevent user preference information
leakage from the third-party when processing ranked queries.
We propose two algorithms to solve the problem, where the first
one is based on distortion of preference vector and the second
one is based on homomorphic encryption. We conduct extensive
experiments to verify effectiveness of our approaches.
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I. INTRODUCTION

Ranked queries are useful in many real world applications
for users to express their tastes in queries, such that the
returned query results are the most preferable ones than the
other records in database. Currently, there are two kinds
of approaches to capturing user’s preferences, that is, the
quantitative approach [1] and qualitative approach [2]. In the
paper, we focus on quantitative approach for modeling user
preference.

Given a relational database D = {A1, A2,..., Ad} with
numerical attribute Ai, i = 1,..., d, i.e., a linear function q =
ω1 ∗A1+ω2 ∗A2+ ...+ωd ∗Ad, where ω1, ω2,..., ωd are non-
negative weights given by the user as preferences toward the
corresponding attributes, and ω1+ω2+ ...+ωd = 1. Upon re-
ceiving a user ranked query q, for each record ri ∈ D the server
computes its preference score as Score(i) =

∑d
j=1 ωj ∗ ri.Aj ,

j = 1,..., d, and returns to the user the top k records with the
highest scores.

Although there are extensive research work on processing
ranked queries, the privacy issue of user preferences so far has
not received attention. There is no doubt that user’s preference
is a strong and direct link to his/her identity, which the user
wants to keep in private, otherwise the information may be
utilized by an adversary to against he/she. Thus, one may want
to hide his/her preference embedded in the ranked query in
order to protect privacy. To illustrate, we give two examples
below.

Example 1. Consider a user looking for a second-hand car
at a website running by a car dealer. The dealer maintains a
used car database, recording for all the cars the features such
as Make, Model, Year, MPG (miles per gallon), Mileage, and
Price, etc. The user may care more about some of the features,
such as MPG, mileage, and Year, and want to find a suitable
car for him with the lowest price. By collecting and observing
user’s queries with preferred features, the dealer knows that the

user strongly favors MPG. So the dealer may want to increase
a bit the prices of the cars with favorable MPG, such that he is
expected to profit more from the user. To have the edge over
the car dealer while making a deal, the user wishes to hide his
preferences during the querying process.

Example 2. Consider a customer searching for financial
information of NYSE-listed companies, through websites such
as Yahoo! finance or Google finance. By giving preferences on
attributes such as cash flow, P/E (price-to-earnings) ratio, ROA
(return on assets) ratio, and debt ratio, the customer intends to
search through query interface the favorable companies, based
on which he/she may make buy or sale decision for his/her
investment portfolio management. On the other hand, a curious
adversary may sniff the search results of the customer at the
server side and extract the preferable attributes, which may be
used to infer the possible investment of the customer. Since
customer’s portfolio information is critical for him/her to stand
up to the fierce business competition, he/she may strongly
oppose the exposure of his/her preferences to anyone else.

Problem Statement: Our model includes the user and the
service provider (the server). The server maintains a database
D and processes users’ queries with difference preference on
the attributes of D. We assume that the server is semi-honest,
that is, the server correctly performs the query processing and
returns the results, but he is curious and tries to find out the
user’s preferences. Each user composes his ranked query as
a weight vector f = {ω1, ω2,..., ωd} on attributes of D, and
submits it to the server for processing. Our objective is to
prevent the server from knowing the exact preferences, i.e.,
the weight vector of the user, without deteriorating the query
processing efficiency and accuracy.

The contributions of this paper are as follows:

• We consider the problem of protecting user’s prefer-
ences in ranked queries, which is of great importance
in many real world applications.

• We propose a simple strategy to distort user’s true
preferences, and give a test to the strategy.

• To strengthen the privacy level, we devise another al-
gorithm based on homomorphic encryption to protect
user’s preference.

• We conduct extensive experiments to verify effective-
ness of the proposed approaches.

II. BACKGROUND

A. Preliminaries

Ranked query. Ranked query [3] is very useful in many
real-world applications. It is a powerful technology to simulate
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users’ personalized information needs, which has attracted
great attention of researchers all over the world. It allows
users to express their preferences for queries and specify the
specific weight of each query limit, so that the returned query
results meet the needs of users better than other data records
in the database. At present, there are two methods to describe
user preferences, namely qualitative method and quantitative
method.

The qualitative method [2] usually uses the preference
formula to evaluate which data tuple is more favorable over
the others, i.e. determining the partial order relationship be-
tween tuples. The quantitative method [1] defines a preference
function to express the user’s preference for different data
attributes, and then finds the data records that best meet the
user’s needs from the database according to the preference
function, that is, measured by specific values. For example,
given a hotel dataset containing three dimensions D = {d1,
d2, d3}, where d1 represents price, d2 represents score, d3

represents distance, preference function is defined as f =
ω1 ∗ d1 + ω2 ∗ d2 + ω3 ∗ d3 according to user preference f
= {ω1, ω2, ω3}. The highest score is the most desirable.

In practical applications, ranked query is often directly
related to other problems, such as skyline computing [4] and
top-k query [5], [6]. Combining multiple queries can usually
get the results you want most quickly.

Top-k query. Top-k query [7], [8] refers to returning the
best k data records according to an objective function. It is
widely used in many fields, such as e-commerce, recommen-
dation system, search engine and so on. When the Top-k query
is associated with the preference problem, it will calculate the
score of each data record according to the preference function
given by the user, and then return the k objects with the
smallest (or largest) scores.

The concept of Top-k query has been around for many
years and is widely used in real life. So far, many algorithms
for Top-k query have been proposed, which can be roughly
divided into three categories. The first is index based algorithm
[9], [10]. Its main idea is to divide the whole data set into
multiple layers according to the division rules, then index and
mark each layer, and finally retrieve layer by layer according
to the index order to return the best k results, such as Onion
algorithm [11]. The second is the Top-k query algorithm
based on view [12]. This kind of algorithm first calculates the
scores corresponding to each tuple according to the preference
function provided by the user and arranges them in order. The
view contains the identifier and score of tuples. After these
preparations, it finally returns the Top-k query results. The
third is the Top-k query algorithm based on ordered list [13],
[14], which is realized by using multiple column files.

B. Related Work

Skyline query. Skyline query problem [4], [15], [16] is a
popular technology for processing user preferences and Top-k
query. It is used to select a series of objects that meet user
preferences and are not dominated by other objects. Given a
dataset D with d-dimensions {d1, d2,..., dd} and n objects{A1,
A2,..., Ad}, where Ai.dj denotes the j-th dimension value of
object Ai. The definition of dominance and skyline are as
follows:

Dominance: An object Ai ∈ D is said to dominate another
object Aj ∈ D, denoted as Ai ≺ Aj , if Ai.dr ≤ Aj .dr(1 ≤
r ≤ d) for all d dimensions and Ai.dt < Aj .dt(1 ≤ t ≤ d) for
at least one attribute. We call such Ai as dominant object and
such Aj as dominated object between Ai and Aj .

Skyline: An object Ai is said to be a skyline object of D,
if and only if there is no such object Aj ∈ D(j ̸= i) that
dominates Ai. The skyline of D is the set of skyline objects in
D.

At present, there are mainly two kinds of methods for
skyline query processing. The first kind of methods do not
need to preprocess the data set, but retrieve the query by
scanning the whole database at least once, such as block
nested loop (BNL), divide and conquer, etc. BNL algorithm
[17] adopts the most straightforward method, that is, a point
p is compared with each other point to decide whether it is
dominated by other points, so as to determine whether the
point is part of the skyline. Divide and conquer algorithm [17]
divides the universe into several regions, calculates the skyline
in each region, and produces the final skyline from the regional
skylines. Therefore, the performance of this kind of methods
is low because of scanning the whole database.

The second [18] is to reduce the query cost by using the
index structure, such as nearest neighbor(NN), branch and
bound skyline(BBS), etc. NN and BBS find the skyline by
using an R-tree. NN algorithm [19] divides the data space
iteratively based on the nearest object in the space, and prunes
the dominant object quickly and effectively. However, BBS
algorithm [20] uses heap to realize progressive search without
redundant query in subspace. Obviously, the difference is that
NN issues multiple NN queries [21], whereas BBS performs
only a single traversal of the tree. It has been proved [22] that
BBS is I/O optimal; that is, it accesses the least number of
disk pages among all algorithms based on R-trees (including
NN).

Homomorphic encryption(HE). Homomorphic crypto-
graphic system [23], [24] is a public-key cryptosystem that
can provide user with the ability to directly perform algebraic
operations on ciphertext without decrypting the ciphertext.

Given two messages m1 and m2, suppose a homomorphic
cryptographic system encrypts them, using public key PK, to
ciphertexts C1 = E(PK, m1) and C2 = E(PK, m2). Without
knowing the corresponding secret key, one can compute E(PK,
m1 + m2), i.e., the ciphertext of the addition of m1 and m2, by
simply multiplying the two ciphertexts C1×C2. This property
is called additive homomorphicsm. Similarly, a crytographic
system is multiplicatively homomorphic if one can derive
E(PK, m1 ×m2) from C1 and C2 directly.

The concept of homomorphic encryption [25], [26] is
proposed to directly perform operations in the encryption
domain, that is, the results obtained by decrypting the op-
erations performed in the ciphertext domain are consistent
with those obtained by performing the same operations in the
plaintext domain. However, most existing homomorphic en-
cryption schemes only support accurate computing operations
in some discrete spaces, so these schemes can not be applied
to tasks requiring floating-point or real number computing.
For example, in the bit-wise encryption scheme, the integer
is first converted into binary, and then encrypted by bit. The
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addition and multiplication operations are also based on bits.
This scheme cannot be applied to floating-point numbers. For
the word-wise encryption scheme, multiple numbers can be
encrypted in a single ciphertext, but the rounding operation is
difficult to evaluate because it is not expressed as a decimal
polynomial.

After Regev [27] introduced the learning with errors (LWE)
problem, approximate homomorphic encryption was proposed
one after another. Since the key of the method based on
LWE problem is realized through matrix, its efficiency will
decrease rapidly with the increase of security parameters.
Then the ring-LWE problem [28] is proposed. The key of
the encryption scheme based on this problem is expressed by
several polynomials, which greatly reduces the size of the key
and speeds up the encryption and decryption operations. The
scheme based on RLWE problem include BFV [26], BGV [29]
and HEAAN [30]. BFV and BGV encryption scheme only
support accurate computing operations on integers.

However, HEAAN scheme can encrypt floating-point num-
bers. And the goal of this scheme is efficient approximate cal-
culation on HE. Its main idea is to add a noise to the plaintext
number that can reflect important information, so that the addi-
tion and multiplication operations of encrypted messages can
be approximately calculated. In HEAAN encryption scheme,
its decryption structure of the form ⟨c, sk⟩ = m + e (mod
q) where e is a small error inserted to guarantee the security.
In addition, HEAAN also provides a rescaling operation to
remove the error of the least significant bit, which ensures
that the length of the error bit increases linearly in proportion
to the number of levels consumed, rather than exponentially.
The efficiency of HEAAN [30] has been proved in many
practical applications, and is still being improved by better
bootstrapping algorithms [31], [32]. Therefore, considering
that the data used in this paper are floating-point numbers,
HEAAN homomorphic encryption scheme will be adopted.

Approximate Algorithm for Comparison Function. Log-
ical operation has always been a difficult point in HE. Bit-
wise FHEs encrypt data in a bit-by-bit manner. They support
fast logical operations, such as comparison. But they can not
support floating point encryption. On the contrary, word-wise
FHEs, which store messages as their word-sized numbers,
support high-speed arithmetic operations between messages.
Therefore, in order to calculate the comparison function, an
approximate form of the comparison function is proposed by
using polynomials.

Cheon et al. [33] first proposed a new identity
comp(a, b) = limk→∞ ak/(ak + bk), and showed that the
identity can be computed by an iterative algorithm. Because of
the iterative feature, this algorithm is slow in HE implemen-
tation. Then, they proposed a new comparison methods SIMD
[34], using composite polynomial approximation on the sign
function, which is equivalent to the comparison function. That
is, repeated compositions of (2n+1)-degree polynomial fn(x)
and gn(x) output the approximate value of the sign function.

We denote the approximate comparison for two inputs x,y
by (x > y) or (y < x). According to the conclusion of [34],
given iteration numbers df and dg , (x > y) is computed as
follows

(x > y) := (fdfn ◦ gdg
n (x− y) + 1)/2 (1)

TABLE I. AN EXAMPLE DATABASE

Record A1 A2

r1 1.4 4.4

r2 2.5 2.9

r3 3.5 1.0

r4 3.3 4.1

r5 4.2 2.8

r6 1.9 2.3

Here fd means f ◦ f ◦ · · · ◦ f, i.e., the operation is performed d
times.

III. OUR APPROACHES FOR PREFERENCE PROTECTION

Ranked queries are complementary to traditional SQL
query semantics. The preferences expressed by the user are
considered as soft constraints of the queries, whereas the hit-
or-miss query conditions, e.g., ≤, >, and ̸=, are known as
hard constraints [1], [2], [35]. To evaluate a ranked query q, the
server computes the sum of the linear combination of attributes
of the records, based on the user preference vector f = {ω1,
ω2,.., ωd}(note we use vector and weight interchangeably),
then returns to the user the top-k objects with the highest sum.

Table I gives an example of a toy database with 2 attributes
A1 and A2. Suppose the user expresses in a query his pref-
erence as f = {0.4, 0.6}, and wants to pull top 3 favorable
records from the server. Starting from the first record r1, the
server computes its preference score score(r1) = 0.4 ∗ 1.4 +
0.6 ∗ 4.4 = 3.2, and the scores of the rest records. Among the
computed scores {3.2, 2.7, 2, 3.8, 3.4, 2.1}, r1, r4, and r5 are
the top 3 records with highest scores and they are returned as
result to the user. As this example shows, there is no protection
for user queries, which means that the server can easily obtain
the preference information of a user. In this section, we propose
two approaches to prevent leakage of user preference, which
are described below.

A. The First Approach

Our first approach is called PD, which is based on pref-
erence distortion. So far in the model we assume that there
is no encryption involved, i.e., the user queries and database
content are all in plaintext. We defer discussion of the case in
which encryption is employed in the next section.

Our strategy to protect user’s true preference is simple, and
goes as follows. Instead of directly submitting to the server the
true preference vector f, the user distorts f by randomly adding
to or subtracting from the components of f a small number, then
sends the modified preference vector to the server. Specifically,
given a preference vector f = {ω1, ω2,.., ωd}, we transform f
into a new vector f ’ = {ω′

1, ω′
2,.., ω′

d}, such that ω′
i ∈ [0, 1]

and
∑d

i ω
′
i = 1. Suppose the increment/decrement added to

component ωi of f is δi, based on the relation ω′
i = ωi + δi

we can easily verify the following equation

δ1 + δ2 + ...+ δd = 0 (2)

where −ωi ≤ δi ≤ 1− ωi.

We outline the preference distortion in Algorithm 1. We
generate d random numbers, and normalize them to maintain
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the convex property. These random numbers are sorted in
descending order, such that the relative preference relation
among attributes is maintained. For example, we are given a
vector f = {0.3, 0.5, 0.2}, and the generated random numbers
are R = {0.4, 0.2, 0.8}. After normalization and sorting, we
get R = {0.6, 0.3, 0.1}, from which we get the distorted vector
f ’ = {0.3, 0.6, 0.1}, and the increment/decrement vector ∆ =
{0, 0.1, -0.1}. It is obvious that after distortion, the new vector
still preserves the relative preference relation among attributes
as in the original vector, but the actual value of preference
weights have been changed.

Algorithm 1: Preference Distortion
input : Preference vector f = {ω1, ω2,.., ωd}
output: Distorted preference vector f ’

1 R’ = ∆ = f ’ = ∅;
2 Generate a set R of d random numbers;
3 for ∀randi ∈ R do
4 rand′i = randi∑

j
randj

;

5 Insert rand′i into R’;
6 end
7 Sort R’ in descending order;
8 count = len(f );
9 j = 1;

10 while count > 0 do
11 i = the index of the greatest weight in f;
12 ω′

i = rand′j ;
13 δi = ω′

i − ωi;
14 f [index] = 0;
15 Insert ω′

i and δi into f ’ and ∆,respectively;
16 count = count - 1;
17 j = j + 1;
18 end
19 Return f ’;

Having obtained the distorted vector f ’, the user sends it
to the server for processing, where at the server side the query
processing is just as the same as before and the query results
and scores are sent back to the user. Since the scores do not
reflect the true values for the original preference vector, the
user has to revert the scores returned by the server. Consider
the score of a record ri with respect to f ’, score(i) = f ’ · ri,
which can be represented as

(ω1 + δ1 × ri.a1 + ω2 + δ2 × ri.a2 + ...+ ωd + δd × ri.ad)

After re-arrangement of the above formula we have

(ω1 × ri.a1 + ...+ωd × ri.ad)+ (δ1 × ri.a1 + ...+ δd × ri.ad)

It is clear that the first parenthesized part is the correct score
with respect to f, and the second part is the noise artificially
added by the distorted vector f ’. Thus, the user computes the
noise for each ri of the return top k records by multiplying ∆
with ri, and then subtracting the noise from the returned score.
After the reverting procedure, the user re-orders the resulting
records according to the restored scores. We summarize the
reverting procedure in Algorithm 2.

The algorithm of preference distortion is simple and effi-
cient for protecting user preferences, however it may introduce

Algorithm 2: Score Reverting
input : Query result set S, and the set Score
output: The restored score set Score’

1 Score = ∅;
2 for Score(i) ∈ Score do
3 Noise = δ1 × ri.a1 + ...+ δd × ri.ad;
4 Score’(i) = Score(i)− Noise;
5 Insert Score’(i) into Score’;
6 end
7 Sort the records in S according to Score’;
8 Return Score’;

false negative and false positive query result, as we will show
in the next section.

Security Discussion. When the user sends the preference
vector to the server for query, even if the preference vector
is disturbed, the server may predict the user’s real vector
according to the returned top k result, that is, the higher
the precision, the higher the probability of being predicted.
It is known that the weight of the user preference vector is a
decimal between [0,1], and the server cannot know the specific
decimal places of each weight in the real vector. Obviously, the
top k result corresponding to the vector in a small range is the
same. Therefore, when the server predicts the user preference
vector according to the top k query results, there are countless
possibilities in the case of uncertain decimal places of each
weight in the vector. Especially when the dimension is higher
and the number of decimal places is more, there is a lower
probability of being predicted by the server.

B. The Second Approach

To further strengthen the privacy level of user’s preferences,
in this section we propose the second approach called HE,
which is based on homomorphic encryption.

Considering that the attributes of a record are floating-
point numbers, and HEAAN [30] scheme is selected as the
encryption scheme. Assume the secrete/public key pair of
HEAAN homomorphic encryption system is ⟨SK,PK⟩. The
user encrypts his plaintext preference weights f = {ω1, ω2,...,
ωd} by using the public key PK, which gives the encrypted
weights E(f) = {E(ω1), E(ω2),..., E(ωd)}(see Algorithm 3).

Algorithm 3: Preference Encryption
input : Preference vector f,the public key of

CKKS encryption system PK
output: Encrypted preference vector E(f)

1 E(f) = ∅;
2 for ∀ωi ∈ f do
3 E(ωi) = ⟨ωi, PK⟩;
4 Insert E(ωi) into E(f);
5 end
6 Return E(f);

After the preference vector encryption operation is com-
pleted, the next step is to perform the linear weighted sum-
mation operation on the data records in the data set, and
select the k results with the top scores through comparison.
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The comparison operation of ciphertext is realized by SIMD
[34] scheme. In order to reduce the computational consumption
of encryption, we consider that the server first performs K-
Skyband operation on the dataset D, and then only calculates
and compares the data records in the K-Skyband dataset.
Similar to K nearest-neighbor queries, a K-Skyband [22]
query reports the set of points which are dominated by at most
K − 1 points.The definition of K-Skyband is as follows.

K-Skyband: An object Ai ∈ D is said to be a K-Skyband
object of D, if Ai is dominated by at most K − 1 objects in
D.

As can be seen from the definition, K-Skyband [22] is a
variant of skyline, in which K can be regarded as the thickness
of skyline; the case K = 0 corresponds to a conventional
skyline. Thus, we implement K-Skyband by modifying the
BBS algorithm. Based on this, the specific process of query is
shown in algorithm 4.

Algorithm 4: Query Evaluation
input : Encrypted preference vector E(f )
output: Result records and their encrypted scores

1 Score = ∅;
2 Compute the set Bandk of k-skyband points of D;
3 for ∀ri ∈ Bandk do
4 E(score(i)) =

∑
∀aj∈ri

E(ωj) ∗ aj ;
5 Insert E(score(i)) into Score,and compare;
6 end
7 Send Score and Bandk to the user;

Security Discussion. This scheme encrypts the preference
vector. The IND-CPA security nature of FHE scheme ensures
that any opponent with the result homomorphic operation be-
tween ciphertext and ciphertext cannot extract any information
of the message in the ciphertext, our HE method is secure
based on the security of FHE, because the server can only
access the ciphertext. There is no information leak of user
preference.

IV. EXPERIMENTAL RESULTS

In this section we conduct extensive experiments to eval-
uate performance of the proposed two approaches, and all
experiments are conducted on a PC running Ubuntu 18.04.2
LTS. We discuss experiment settings below.

Dataset. We use synthetic datasets of three data distri-
butions, namely, independent (uniform), correlation and anti-
correlation, with dimensionality d varying in the range [2,5]
and cardinality N in the range [1k,20k], respectively.

Performance Indicators. For our first approach PD, since
it is an approximate method, we focus on precision and recall
indicator, i.e., how many real results can be found for PD.
On the other hand, for our second approach HE, since it is
an exact method, i.e., HE can find all the correct results, we
employ running time as the performance indicator for the HE
approach. The precision and recall indicator is defined as

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

where TP indicates that the number of positive query results
retrieved, FP indicates the number of points which the re-
trieved positive ones are actually negative, FN indicates the
number of points which it has not been retrieved but they are
actually positive. Each precision and each recall result is the
average of 10 trails.

Suppose Q(x) is defined as the number of data points in
area x. Based on the premise of Top-k preference query in this
paper, it is easy to obtain

Q(TP ) +Q(FP ) = k

and
Q(TP ) +Q(FN) = k

then Q(FP ) = Q(FN). Therefore, the results of precision and
recall are the same.

A. Effect of Dimensionality d

We vary data dimensionality d from 2 to 5. As shown in
Fig. 1, the cardinality N is 10k and K is 50. And it can be
seen that the average precision and recall results of datasets
with independent (uniform), correlation and anti-correlation
distribution are basically stable and were not be affected by
the dimensionality. It is obvious that the average precision and
recall results of correlation data set are the highest, while that
of anti-correlation are poor.

B. Effect of K

In order to study the effect of K we carried out experiments
when K = 10, 20, 50, 100. Fig. 2 shows the precision and
recall corresponding to each case. Obviously, the query results
are not affected by the K value.

C. Effect of Cardinality N

Fig. 3 shows the precision and recall results when the
cardinality N in the range [1k,20k]. It can be clearly seen that
the precision and recall values of the three types of datasets
tend to be stable.

In conclusion, our proposed distortion algorithm has little
relationship with the size of K, data dimension and data set
cardinality. Thus, the disturbance scheme is practical and will
not be affected by other factors. In addition, it can be clearly
seen that it has a good precision and recall result in correlation
datasets but poor in anti-correlation datasets.

D. Discussion

From the above experimental results, it can be obviously
seen that precisions are float up and down. That is due to the
existence of false negative and false positive points, and the
number of them is uncertain.

For ease of discussion, we use the example database in
Table I, and assume the data space range for attribute A1, A2

are x = [0,Ux], y = [0,Uy], respectively, and k = 3 for the
returned top k results. Now consider an original vector f =
{ω1, ω2} and the corresponding transformed vector f ’ = {ω′

1,
ω′
2 }. After examining each vector against the records in D, the

qualified records (represented as data points in 2-D space) are
highlighted in Fig. 4(A). Specifically, the top 3 records with
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(a) precision (b) recall

Fig. 1. Precision & Recall on a Dataset with Top-50 Query, 10k Records and Varying Dimensionality d.

(a) precision (b) recall

Fig. 2. Precision & Recall on a Dataset of 10k Records in 3D Versus K.

(a) precision (b) recall

Fig. 3. Precision & Recall on a Dataset with Top-50 Query and Varying Cardinality N .

Fig. 4. Original and Distorted Ranked Queries.

respect to the original vector f include r4, r5, r1, whereas the
answers for distorted vector f ’ are r4, r5 and r3. There is a
false positive result, r3, and a false negative r1, due to the
weight distortion.

To evaluate the original and distorted preference vector,
one has to quantify the number of false positive and negative
results. As depicted in Fig.4(B), it is clear that the larger striped
area (denoted by FN ) contains false negative points, and the
smaller striped area (denoted by FP ) false positive points. The
area of FN and FP can be easily calculated by computing
the following integrals.

FN =

∫ x0

0

(Uy − f)dx+

∫ x1

x0

(f ’ − f)dx (5)

FP =

∫ x2

x1

(f − f ’)dx (6)

Under the assumption of uniform distribution of the data
records in D, we can estimate the number of false negative and
false positive results as N∗FN and N∗FP respectively, where
N is the cardinality of D. On the other hand, the computation
of the FP and FN becomes complicated in the case of high
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Fig. 5. Running Time on a Dataset by Varying K.

dimensional data. However, one may resort to techniques such
as Monte Carlo method to approximate the integral in high-
dimensional case. This is a future direction of our work.

E. Performance of HE Approach

For HEAAN, we fix the dimension N = 217, ∆ = 240,
and hamming weight h = 128 and the secret key is chosen
from the ring with ternary secret distribution, i.e., all nonzero
coefficients of secret key are ±1. For SIMD, we employs the
approximate comparison method where fn and gn are chosen
by n = 3, where

f3(x) = (35x− 35x3 + 21x5 − 5x7)/24 (7)
g3(x) = (4589x− 16577x3 + 25614x5 − 12860x7)/210 (8)

We conduct experiments with different k and dimensional-
ity d varying in the range [2,5], and report the corresponding
running time. Fig. 5 shows the running time when k = 10, 20,
50, 100 with 10k objects.

When K in K-Skyband is large, the data to be calculated
decreases relatively, but the running time still increases steadily
with the increase of dimensionality.

V. CONCLUSION

In order to protect user preference privacy information,
we propose two approaches to solve the problem of user
preference privacy protection in ranked queries. The first
method, called PD, hides the user’s real preference information
by introducing perturbation to the user ranked query vector.
This scheme will lead to a slight degradation in precision in the
query results. Moreover, the experiment results also show that
PD achieves the best performance on dataset with correlation
distribution, whereas it performs relatively poor on dataset
with anti-correlation distribution. Therefore, PD is suitable for
real-time ranked query processing scenarios with less accurate
requirement for the query result. In order to get exact query
result, a homomorphic encryption-based method called HE is
proposed to encrypt the preference vector, which enables the
third-party server to process ranked query by calculating the
ciphertext, so as to fully protect the privacy of user preference.
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