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Abstract—To build a competitive global view from multiple
views which will represent all the views within a class label is
the primary objective of this work. The first phase involves the
extraction of spatio temporal features from videos of skeletal sign
language using a 3D convolutional neural network. In phase two,
the extracted spatio temporal features are ensembled into a latent
low dimensional subspace for embedding in the global view. This
is achieved by learning the weights of the linear combination
of Laplacian eigenmaps of multiple views. Subsequently, the
constructed global view is applied as training data for sign
language recognition.
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I. INTRODUCTION

Sign Language Recognition (SLR) is extremely coordi-
nated movements of hands captured through sensors as 1/2/3D
data and translated into text or voice by a machine learning
interface [1]. Sign language is a communication medium for
hearing impaired people which consists of hand movements
and finger shapes that operate independently or collaboratively
with respect to upper body parts. SLR is considered an exten-
sion of human action recognition (HAR) [2]. Automated HAR
or SLR is accomplished through machine learning approaches
on multi modal datasets such as RGB, Depth and skeletal
information in image, video and data formats. The RGB and
depth formats provide appearance information whereas the
skeletal joint data exclusively models pose details. Although
SL knowledge representation is largely modelled in RGB video
formats, it is bottlenecked by motion blurring and spatial
resolution of fingers with respect to the frame size. Therefore,
the skeletal data has obtained wide acceptance for human
action or sign language recognition problems. The 3D skeletal
data has been used as vectorized, image and RGB video
formats for recognition.

However, the pattern identification process on skeletal 3D
video data for building a real time application is a supremely
challenging task. Traditional models employed vectorized 3D
data for recognition with deep neural networks(DNN) [3].
Above all the DNN models on 3D skeletal action data,
long short-term memory (LSTM) [4] networks have shown
greater reliability and robustness for HAR tasks. Similarly,
3D skeletal SLR on vectorized data was successfully designed
and experimented with color coded Spatio-Temporal features
[5]. Singularly, most of these methods presented results related

to cross view testing with poor performance as these models
received only single view training. As a result, the above
methods failed to generalize on building a real time engine
for HAR or SLR.

Meanwhile, the above problem is finding solutions in the
form of multi view training on Deep Learning Models. Though
multi view processing of video data is having 2 decades of
research history, it has gained extensive attention in the last
few years due to the progress in deep learning approaches.
Earlier DNN proposed were constructed with multiple streams
feeding into individual views independently whose Softmax
scores are fused for getting a final recognition score. Later,
learning approaches have trained multiple CNNs for each view
and then learned the concatenated features in the dense layers.
This approach has allowed for multiple views to share features
across classes. Specifically, this process does not restrict the
features that were not significant in the decision making.
Additionally, the view specific features that play a major role
in articulating the desired outcome are ignored.

To overcome the above challenges, we propose to learn
a global synthesized target view by linearly combining the
independent multiple views as suggested in [6]. However, these
intra class independent views have shown to exhibit unequal
similarities with other views which biases the result towards
the false positives. Hence, to overcome this uniformity across
views that influence the target class, we propose higher order
Laplacian eigenmaps from [7]. This enables the target feature
reconstruction to have a complete non uniform distribution
across the multiple independent views. Consequently, we learn
a nonuniform linear combination of weights on independent
views which can be generalized for any target view. Finally,
the synthesized target view features of all classes are classi-
fied using standard deep learning architectures. The proposed
methodology called multi view spatio temporal feature embed-
ding (MVSTFE) is illustrated in the following Fig. 1.

The proposed MVSTFE is investigated on our 3D skele-
tal video datasets of sign language (KLEF3DSL 2Dskeletal)
[8] and four other multiview action datasets NTU RGB-
D [9], SBU Kinect Interaction [10], KLYoga3D [11] and
KL3D MVaction [12]. The performance of the proposed deep
networks was tested for the proposed method against the state-
of-the-art on datasets. The remaining paper is clustered into
four sections. The second section highlights the key historical
aspects associated with multi view learning, sign language
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Fig. 1. Illustration of the Proposed Multi View Spatio Temporal Feature
Embedding on Skeletal Sign Language Video Data.

recognition and deep networks. The methodology is packaged
in the third section and the obtained results for experimentation
with analysis are presented in section four. Finally, conclusions
were drawn from the analytical insights gained on the overall
performance of the proposed models.

II. LITERATURE REVIEW

This section of the paper dwells on the advantages and
disadvantages of the previous methods of sign language and
action recognition in multiple views. Additionally, it also
discusses the current models in deep metric learning.

With the advent of deep learning frameworks, the 2D video
based SLR has become powerful with the option of feature
learning rather than feature extraction. A large contingent of
them is available for perusal [13]. The accuracies reported
by these methods are not reproducible or they simply fail
to generalize on the video quality or the signer. This has
motivated researchers towards higher dimensional data such
as RGB D or 3D skeletal representations. Multi modal video
sequences that are fed into multiple streams of a CNN are
predominantly researched which have shown evidence of ex-
ceptional performances in real time for sign (action) recogni-
tion applications [14]. The recognition accuracies were better
than the single modal datasets. However, the training requires
higher computing powers, and the datasets are captured with
special devices making it an unfeasible deployable solution.

Eventually, to develop a real time SLR or HAR system, it is
intuitive to learn multi views across datasets. This has initiated
action recognition research to move in the direction of devel-
oping view-based learning algorithms [15], [16]. Multi view
HAR has evolved through research using dictionary learning
[17], neural networks with adaptable views [18], convolutional
neural networks [19] and deep attention models [20], to name
a few. However, the most widely researched and acknowledged
models are from deep learning networks. Moreover, visual
attention models with deep CNNs have established themselves
as a formidable solution to multi view learning [21]. Despite

their success, attention models are specific to a particular view
and the view specific features are to be fused accordingly
for classification by the dense layers. The fusion mechanisms
ensemble the view specific features into a multi view feature
vector that has failed to capture the variations in multi view
data [22].

Primarily multiview approaches were classified as multi-
view learning and view invariant models. In multiview learn-
ing, the video input is considered as a time series of data
frames in different views which are learned independently
by the classifier [23], [24]. Most of the methods used low
level observable features for generating discriminative features
[17]. Subsequently, multiple training methods were employed
for each of the views to find a set of consistent features
between a pair of views [25], [26]. The algorithms are used
for finding relationships between views canonical correlation
analysis(CCA) [27] and projection matrices [28]. Extending
to the above methods are matrix factorization [29] and low
rank constrained matrix factorization [30] for capturing view
similarities. All these models have shown good performance on
instances where the number of views were limited and require
extensive computational power for deployment.

Alternatively, view invariant models developed linear de-
scriptors to transfer information between views. Accordingly,
these models consider target views as a linear combination of
views within a class label [6], [7]. Subsequently, the weight
vectors are computed by applying optimization in Laplacian
space. Moreover, these works assume that all views contribute
equally to the target view features. However, in sign language
recognition with video data from multiple source views it
is difficult to impose the above assumption in real time. To
overcome the disadvantage of equal contribution by all views
to the target view, we propose to learn these contributions in
the Laplacian space using deep learning.

The following points make the proposed method unique
from the existing ones:

1) To design an unequal linear view combiner to extract
target view features.

2) To construct highly discriminative Spatio-Temporal
features in the Laplacian space.

3) To reconstruct learned target vectors into a Spatio-
Temporal feature representation with 3D CNNs.

In order to find an appropriate solution for multiview
problems, the following objectives are being formulated:

1) To design an unequally contributing linear view com-
biner to identify the linear combinations.

2) To learn the mapping function for generating a
singularly trainable view invariant Spatio-Temporal
feature.

3) To initiate anyone view testing model. We call our
proposed model multi view spatio temporal feature
embedding (MVSTFE).

III. MULTI VIEW SPATIO TEMPORAL FEATURE
EMBEDDING (MVSTFE)

This section describes the proposed multi view spatio tem-
poral feature embedding model for multi view sign language
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recognition on skeletal video datasets. First, a cluster of 3D
CNNs is trained independently on individual views for all
classes in the dataset. Secondly, a target view is selected
randomly which is referenced on the pre trained 3D CNNs
for feature extraction. The extracted features from independent
view streams are learned by compiling Laplacian eigenmaps to
construct a combined target view. This combined target view
features will represent a linear combination of Laplacian eigen
maps from multiple views generating a highly discriminative
feature for all views of the target view class. Finally, these
learned target view features will be used for training any deep
classifier for sign or action recognition.

A. Independent View 3D CNN Model

The primary step in the process of multi view sign language
recognition is to design and train a 3D convolutional neural
network (3D CNN). The 3D CNN takes input as the skeletal
video sequences as input for supervised training. The number

of 3D CNN streams are equal to the number of source views
available for training. The 3D CNN architecture used in this
work is shown in Fig. 2. The model has 4 pairs of 3D
convolutional layers with one set of batch normalization and
maximum pooling layers after each pair respectively. The
input of the network is a 2D skeletal video sequence of size
256 × 256 × 3 with 100 frames. The features at the end of
the convolutional layers are flattened and inputted to two fully
connected layers with the last layers being Softmax.

Let Xvc = (xv = {Sv} ∀v = 1 to V, c = 1 to C) be the
RGB skeletal video sequences in V views with V ∈ R3. The
3D CNN model will extract the features fv from xvwith
view specific labels yv using the trainable parameters θ3D by
optimizing a loss function L on the overall multi view dataset
as

θ3D = argmin
θ3D

L (θ3D;xv, yv) (1)

For classification tasks, we need a global loss function to

Fig. 2. 3D CNN Architecture for Training Multiple Views Independently across All Classes.
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discriminate the classes with the help of SoftMax layers. The
class label prediction is computed on the embedding space
using the cross-entropy loss functional defined as

lCrossEnt = −
C∑
i=1

(yi log (ŷi) + (1− yi) log (1− ŷi)) (2)

The lCrossEnt is the loss function for training the network.
The (ŷi) is the predicted label and yi is the actual. The C
defines the total number of classes in the dataset. Each stream
in the network is view independent with the specifications as
shown in Fig. 2. Consequently, weight and biases are initialized
using unit variance zero mean Gaussian random variable. The
filter sizes in all 3D CNN layers is fixed at 3 × 3 × 3.
Moreover, the learning rate is dynamically controlled with
10% decrease rate from the previous valued whenever the loss
became constant across 10 epochs. The initial learning rate
was selected as 0.0001. Stochastic gradient descent optimizer
is applied to update the wights and biases in the network.
This trained network will be used to extract spatio temporal
features from a target view which are further used to construct
a combined view features. These constructed view features
have the ability to represent all the views within a class label.

B. Combined View Feature Generation

Given a sign class in a specific target view xvt as input the
trained model θ3D, the output features fv at the end of dense
layers are represented as

{fv}v={1,V } =

I∑
i=1

J∑
j=1

xv (i, j)∗K (k − i, k − j)∀k ∈ kernel size

(3)

The features extraction network is shown in Fig. 3. The
network consists of four pairs of convolutional layers with rec-
tified linear activations followed by a 2×2 window maximum
pooling layer. The strides of the kernels in convolution layers
is one and that of maximum pooling is two. After maximum
pooling a batch normalization layer is added to standardize the
inputs to the deeper layers. Finally, two fully connected layers
are added to learn on the feature extracted in the convolutional
layers. Subsequently, the spatial features at the output of
dense layers are concatenated along the frames to generate
a complete spatio temporal feature matrix representing the
2D skeletal video sequence. Altogether, V streams operate
independently in the network generating view specific class
features F cv = {fic} ∀i = 1 to V ∈ Rg×N , Where g is the
dimensionality of the features and N is the number of frames.
The model is trained with categorical cross entropy loss with
stochastic gradient descent optimizer on the entire dataset. The
trained model θ̃3D is applied on all the input video frames to
extract the feature samples as

F cv = θ̃3D (w, b)× xc
vt∀V & C ∈ Rg×N (4)

The spatio temporal feature matrix F cv consists of the
target view features inferenced from independently trained
views across all classes. The objective is to generate a feature
matrix that will represent all views in a class as a linear combi-
nation of the extracted features. Traditionally, this is achieved
by considering the all the mixing coefficients are equally
distributed across all views. However, equally distribution of
information across all views has produced ambiguous recog-
nition accuracies. To overcome this, non-uniform distribution
is proposed [7] with Laplacian eigenmaps. In this work, we
incorporate the process of spectral embedding using Laplacian
eigenmaps to calculate the mixing coefficients of the linear
combination.

Fig. 3. The Inferencing Process on Trained 3D CNN Model with Features Extracted from Multiple Layers in the Network.
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C. Constructing the Non-uniform View Linear Combiner

Given a set of spatio temporal target view features F cv ∈
Rd×V from a particular class label yi∈C with V views, these
views can be linearly combined with coefficients as

F cv
Comb =

V∑
i=1

λiF cv(i) (5)

Where, V is the total number of source views and d is the
feature matrix dimensionality. F cv

Comb is the combined feature
representation of the target feature. The mixing coefficients
λi ∀ i = 1 to V is the weighted combination. The constraint
on the mixing coefficient is

V∑
i=1

λi = 1, λi > 0 (6)

The intent in the above representation is to generate a global
view that is compatible with all the views in the class. Mostly,
the coefficient λi is considered as the average 1/V across all
the views. However, in reality, the views that are in close
proximity with the target view contribute more than 1/V .
Consequently, the obtained linearly combined global view
features are least compatible for representing all the views
in a class. This problem is solved by evaluating the mixing
coefficients of individual views with the help of cost function
derived using Laplacian eigenmaps [7].

First, the target features are arranged a V data matrices
F =

{
F cv ∈ Rd

}V

v=1
∀d = Rg×N×V as shown in the output

of Fig. 3. The objective is to calculate a set of mixing coeffi-
cients λ =

{
λi
}V

i=1
. We start by initializing λ =

[
1
V , ..., 1

V

]
.

Subsequently, set the g × N feature points obtained from
trained network in the tth target view.

To compute the combined target view embedding features,
we subsequently compute the weighted adjacency matrix At

on the target features and the Laplacian matrix Li of the
individual views with i ∈ (1, 2, ..., V ). Consequently, the
global Laplacian LG of the entire target view class is computed
as a linear combination of initial weights. The spectral encod-
ing, Y G can be computed from eigen value decomposition
of LG as a Laplacian eigen map. Accordingly, select the
smallest eigen values other than the zeroth one, reconstruct
the spectral encoding Y G∗. Using the reconstructed spectral
encoding Y G∗ and Y G, update the mixing coefficients of the
linear combination λi. Optimize till the distance between the
reconstructed and the original spectral encoding are less than
a set experimental threshold.

D. Construction of Laplacian Eigenmaps and Spectral Embed-
ding

Given the feature data points in the tth target view{
F cv ∈ Rd

}V

v=1
with g × N data points, we first compute

the adjacency matrix At as

[
At

]
i,j

= e

(
−
∥Fci−Fcj∥2

2
σ2

)
∀ F ci & F cj are associated

(7)
Where, At is a symmetric matrix of size gN × gN . The value
of σ is selected as 2. The adjacency matrix establishes a link

between the target features extracted from trained CNN in Fig.
2 in all views. If the distance between the features is small,
the value in the (i, j)

th position tends towards 1 and vice
versa. Consequently, Atestablishes a relationship between the
features points formed by a set of d data points in multiple
views.

Subsequently, to compute a single view feature combina-
tion from multiple target view features Laplacian eigenmaps
were used from [30]. Laplacian eigenmaps reduces the data
by projecting data on a different spectral view without com-
promising on the relationships between the feature points.
Accordingly, the spectral encoding Y G∗ can be computed by
minimizing the cost function defined as

f
(
Y G

)
=

∑
i,j∈{∀gN}

∥∥yGi − yGj
∥∥2[At

]
i,j

(8)

The above representation gives the difference between two
embedding features in multiple views modulated by their
association values in adjacency matrix. If the feature points
in multiple views are in close proximity, the adjacency matrix
value is large, thus contributing more to cost function. As a
result of this, similar data points are preserved in the spectral
embedding from different views. Eventually, the solution to
the optimization is transformed into a minimization problem
as described in [30] as

Y G∗ = arg min
Y GT DY G=1,Y GT D1=0

tr
((

Y G
)T

LGY G
)

(9)

The global laplacian matrix LG is computed as LG = D−At,
where D gives the degree of connectivity in the data as

[D]i,i =
gN∑
j=1

[At]i,j . Computing Y G∗ in (9) is equivalent to

fining eigen vectors of Y G∗ as LGY G∗ = αDY G∗. The
spectral embedding Y G∗ can also be calculated by simply
computing the eigen values of LG. Finally, the laplacian eigen
maps LG and spectral embedding Y G∗ are used to compute
the cost function to find the mixing coefficients as

λi =
tr

((
Y G

)T
LiY G∗

)
V∑
i=1

tr
(
(Y G)

T
LiY G∗

) (10)

Overall, the convergence of (10) can be decided based on the
l2 norm between iterations as√√√√ V∑

i=1

(
λi
k − λi

k−1

)2
< δ (11)

Here, λi
k is the value of mixing coefficients at kth iteration and

λi
k−1 is the value at (k − 1)

th iteration. The constant δ is a
user defined parameter less than 1. Eventually, the value of λi

will be different from 1
V where multiple views are contributing

differently to the target view. Finally, by multiplying the
obtained mixing coefficients with target features from different
views, we obtain a global view feature that closely relates to
the target view features. Furthermore, the resulting single view
target view feature is highly discriminative across classes and
has found have close proximity with all the views from within
a class label. The following section describes the datasets and
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experiments conducted to ascertain the performance of the
proposed method.

IV. EXPERIMENTATION

The proposed view invariant method, Deep Metric Encoder
Decoder (DMED) was trained and tested on multi view skeletal
sign (action) video datasets in multiple ratios. We present a one
– to – one, one – to – many, many – to – one and many – to
– many cross view training and testing approaches on DMED.
Further, we compare the results of our approach with other
state – of – the – art multi view methods. Finally, multiple
CNNs architecture’s for classification were tested to check
the robustness of the proposed feature extraction process in
generating view invariant features.

A. Skeletal Video Datasets and Evaluation Metrics

The multi view sign language dataset
KLEF3DSL 2Dskeletal with V = 15 views, 200 classes
is generated at KL Biomechanics and Vision Computing
Research Centre using 3D motion capture technology [8].
Further, the proposed model is evaluated on multi view
benchmark skeletal action datasets such as NTU RGB-D
[9], SBU Kinect Interaction [10], KLYoga3D [11] and
KL3D MVaction [12]. A small subset of data sample from
KLEF3DSL 2Dskeletal is presented in Fig. 4 for a sign
basketball. In this work we are limiting our views to 15 due
to computational constraints. The training testing ratios are
kept constant across all networks and datasets. The selected
train test ratios are one – to – one and one – to – many. The
remaining views were also evaluated but are not presented
here as they have not produced any noticeable performance
changes when compared to the selected ones. Since there
are no multi view sign language datasets, we evaluated our
model on multi view benchmark action datasets. Despite the
availability of huge classes in action datasets, we selected
only 40 action classes for training with 15 views from each
class for maintaining uniformity during comparison. In some
cases, unavailability of views has prompted us to generate
random views by altering the viewing angles of joints. Here,
the evaluation is performed independent of the type of view
in which the action is recorded. Fig. 5(a), (b) and (c) shows
samples from NTU RGB-D, KL3D MVaction and KLYoga3D
dataset respectively. We used mean recognition accuracy
(mRA) for performance evaluations.

Fig. 4. KLEF3DSL 2Dskeletal Sign Language Video Dataset. A Sample
Frame in 15 Different Views from the Skeletal Video Sign “Basketball”.

The first 3D CNN network in Fig. 2 extracts the features
from skeletal sign (action) video datasets. The network in
Fig. 2 is trained on all the available views with similar hyper
parameters except for the learning rate and number of epochs.
The learning rate for KLEF3DSL 2Dskeletal sign language
video dataset is 0.001 and it was 0.005 for all other action
datasets. However, the KLYoga3D was trained on a learning
rate of 0.0001 for 200 epochs due to large number of skeletal
joints. The remaining datasets were trained for 150 epochs.
The maximum recognition accuracy achieved during training
was around 0.973 for KLEF3DSL 2Dskeletal sign language,
0.942 for NTU RGB-D, 0.845 for SBU Kinect Interaction,
0.902 for KLYoga3D and 0.985 for KL3D MVaction datasets
respectively. Consequently, these individual view trained 3D
CNN streams will be inferenced for all dataset samples to
generate global view features which represent all views within
a class label.

To accomplish the proposed objectives of MVSTFE, we
select a target view from each class for inferencing on the
trained 3D CNN in Fig. 2 as shown in Fig. 3. The output of
Fig. 3 are the features extracted from each of the individual
views for the inputted target view. These target view features
are combined using the non – uniform linear combiner by
computing the value of linear combination value λi using
spectral embedding of Laplacian eigenmaps. The hyperparam-
eter (δ)for MVSTFE on KLEF3DSL 2Dskeletal(δ = 0.54),
NTU RGB-D(δ = 0.71), SBU Kinect Interaction (δ = 0.94),
KLYoga3D (δ = 0.83) and KL3D MVaction (δ = 0.57) is
selected iteratively. Finally, the generated combined view target
features are used for classification. Specifically, to test the
robustness of the features in the classification process, we
standardized it by training and inferencing on benchmark CNN
architectures. However, these architectures are miniaturized in
layers and depth to source the feature inputs of size 100×100.
Moreover, the regular 2D Convolutional layers in these models
were replaced with 3D layers. This has been done to directly
extract spatio temporal features from the network. To demon-
strate the actual usefulness of these view invariant features,
which resulted in the formulation of multiple performance
evaluation procedures on the classifier as presented in the
following sections.

B. One – to – One Classifier Performance Evaluation

The one – to – one cross view recognition experiment is
conducted by training the classifier in Fig. 6. with one view
global target feature representing all views and inferencing on a
different views. Specifically, the key aspect of this experiment
is to test the robustness of the generated view invariant features
in estimating a class label based on its constituent views on
which it is formulated. To demonstrate this, we designed a
CNN network inspired from VGG-16 with 6 convolutional
layers, 3 maximum pooling, one flatten and 2 dense layers. The
network is trained with the generated view invariant features in
each class and tested with view specific features. Consequently,
we selected the learning rate of 0.01 for this network with
categorical cross entropy loss and Adam optimizer. Subse-
quently, the above procedure is repeated for all datasets with
the same hyper parameters. Furthermore, three benchmark
architectures such as Inception – V4, GoogleNet and ResNet
– 50 were trained and tested. However, vanishing gradients
and overfitting problem were eliminated by re-designing the
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Fig. 5. Multi View Benchmark Action Datasets for Model Evaluation.

architectures with only half the layers than the original models.
On the other hand, the structure of the original models were
preserved to achieve highest performance. Eventually, mRA is
computed during inferencing and the 10-fold maximum value
is presented in Table I for all the datasets.

After examining the mRA in Table I, it is evident that all
the models perform well on test views that have more visual
information when compared to views with overlapping joints.
The outcomes from Table I also suggests that the view target
global features have shown to reduce false positives in all

Fig. 6. CNN Architecture for Classification.
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TABLE I. ONE – TO – ONE PERFORMANCE EVALUATION OF THE SELECTED CLASSIFIERS ON SKELETAL VIDEO DATASETS TRAINED WITH THE ONE VIEW
OF TARGET VIEW FEATURE AND TESTED WITH ALL SPECIFIC VIEW FEATURES. THE PERFORMANCE OF THE CLASSIFIER IS MEASURED USING MRA

Classifiers Views Datasets V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

Tiny VGG – 16

KLEF3DSL 2Dskeletal 0.599 0.619 0.634 0.615 0.664 0.604 0.614 0.559 0.544 0.552 0.554 0.635 0.666 0.596 0.622
NTU RGB-D 0.578 0.631 0.64 0.62 0.676 0.622 0.6 0.601 0.599 0.624 0.594 0.611 0.662 0.602 0.661
SBU Kinect Interaction 0.58 0.593 0.589 0.601 0.584 0.591 0.595 0.531 0.529 0.5 0.52 0.566 0.619 0.602 0.59
KLYoga3D 0.622 0.629 0.663 0.652 0.698 0.652 0.641 0.595 0.601 0.629 0.619 0.689 0.701 0.601 0.622
KL3D MVaction 0.619 0.604 0.601 0.629 0.609 0.59 0.616 0.576 0.563 0.565 0.559 0.626 0.649 0.601 0.62

Inception - V4

KLEF3DSL 2Dskeletal 0.671 0.691 0.706 0.687 0.736 0.676 0.686 0.631 0.616 0.624 0.626 0.707 0.738 0.668 0.694
NTU RGB-D 0.65 0.703 0.712 0.692 0.748 0.694 0.672 0.673 0.671 0.696 0.666 0.683 0.734 0.674 0.733
SBU Kinect Interaction 0.652 0.665 0.661 0.673 0.656 0.663 0.667 0.603 0.601 0.572 0.592 0.638 0.691 0.674 0.662
KLYoga3D 0.694 0.701 0.735 0.724 0.77 0.724 0.713 0.667 0.673 0.701 0.691 0.761 0.773 0.673 0.694
KL3D MVaction 0.691 0.676 0.673 0.701 0.681 0.662 0.688 0.648 0.635 0.637 0.631 0.698 0.721 0.673 0.692

GoogleNet

KLEF3DSL 2Dskeletal 0.708 0.728 0.743 0.724 0.773 0.713 0.723 0.668 0.653 0.661 0.663 0.744 0.775 0.705 0.731
NTU RGB-D 0.687 0.74 0.749 0.729 0.785 0.731 0.709 0.71 0.708 0.733 0.703 0.72 0.771 0.711 0.77
SBU Kinect Interaction 0.689 0.702 0.698 0.71 0.693 0.7 0.704 0.64 0.638 0.609 0.629 0.675 0.728 0.711 0.699
KLYoga3D 0.731 0.738 0.772 0.761 0.807 0.761 0.75 0.704 0.71 0.738 0.728 0.798 0.81 0.71 0.731
KL3D MVaction 0.728 0.713 0.71 0.738 0.718 0.699 0.725 0.685 0.672 0.674 0.668 0.735 0.758 0.71 0.729

ResNet - 50

KLEF3DSL 2Dskeletal 0.665 0.718 0.727 0.707 0.763 0.709 0.687 0.688 0.686 0.711 0.681 0.698 0.749 0.689 0.748
NTU RGB-D 0.667 0.68 0.676 0.688 0.671 0.678 0.682 0.618 0.616 0.587 0.607 0.653 0.706 0.689 0.677
SBU Kinect Interaction 0.709 0.716 0.75 0.739 0.785 0.739 0.728 0.682 0.688 0.716 0.706 0.776 0.788 0.688 0.709
KLYoga3D 0.706 0.691 0.688 0.716 0.696 0.677 0.703 0.663 0.65 0.652 0.646 0.713 0.736 0.688 0.707
KL3D MVaction 0.735 0.755 0.77 0.751 0.8 0.74 0.75 0.695 0.68 0.688 0.69 0.771 0.802 0.732 0.758

TABLE II. MANY – TO – ONE PERFORMANCE EVALUATION OF THE CLASSIFIERS TRAINED WITH MULTIPLE SETS OF TRAINING VIEWS AND TESTED
WITH ONLY ONE TARGET VIEW FEATURE GENERATED USING MVSTFE

Classifiers
Training Views

Datasets
1 1 3 4 5 6 7 8 9 10 11 12 13 14 15

Tiny VGG – 16

KLEF3DSL 2Dskeletal 0.597 0.602 0.612 0.613 0.662 0.67 0.674 0.698 0.71 0.731 0.757 0.767 0.817 0.838 0.871
NTU RGB-D 0.587 0.607 0.623 0.65 0.67 0.696 0.707 0.727 0.748 0.77 0.794 0.812 0.84 0.852 0.893
SBU Kinect Interaction 0.58 0.596 0.608 0.605 0.617 0.628 0.66 0.687 0.703 0.724 0.756 0.785 0.816 0.839 0.866
KLYoga3D 0.585 0.599 0.613 0.63 0.65 0.664 0.674 0.699 0.716 0.738 0.77 0.788 0.797 0.827 0.872
KL3D MVaction 0.586 0.608 0.612 0.617 0.65 0.657 0.667 0.7 0.727 0.737 0.76 0.77 0.8 0.832 0.861

Inception - V4

KLEF3DSL 2Dskeletal 0.652 0.657 0.667 0.668 0.717 0.725 0.729 0.732 0.744 0.765 0.791 0.801 0.851 0.872 0.905
NTU RGB-D 0.642 0.662 0.678 0.705 0.725 0.751 0.762 0.761 0.782 0.804 0.828 0.846 0.874 0.886 0.927
SBU Kinect Interaction 0.635 0.651 0.663 0.66 0.672 0.683 0.715 0.721 0.737 0.758 0.79 0.819 0.85 0.873 0.9
KLYoga3D 0.64 0.654 0.668 0.685 0.705 0.719 0.729 0.733 0.75 0.772 0.804 0.822 0.831 0.861 0.906
KL3D MVaction 0.641 0.663 0.667 0.672 0.705 0.712 0.722 0.734 0.761 0.771 0.794 0.804 0.834 0.866 0.895

GoogleNet

KLEF3DSL 2Dskeletal 0.62 0.625 0.635 0.636 0.685 0.701 0.705 0.708 0.72 0.741 0.767 0.786 0.836 0.857 0.89
NTU RGB-D 0.61 0.63 0.646 0.673 0.693 0.727 0.738 0.737 0.758 0.78 0.804 0.831 0.859 0.871 0.912
SBU Kinect Interaction 0.603 0.619 0.631 0.628 0.64 0.659 0.691 0.697 0.713 0.734 0.766 0.804 0.835 0.858 0.885
KLYoga3D 0.608 0.622 0.636 0.653 0.673 0.695 0.705 0.709 0.726 0.748 0.78 0.807 0.816 0.846 0.891
KL3D MVaction 0.609 0.631 0.635 0.64 0.673 0.688 0.698 0.71 0.737 0.747 0.77 0.789 0.819 0.851 0.88

ResNet - 50

KLEF3DSL 2Dskeletal 0.601 0.606 0.616 0.617 0.666 0.674 0.678 0.702 0.714 0.735 0.761 0.771 0.821 0.842 0.875
NTU RGB-D 0.591 0.611 0.627 0.654 0.674 0.7 0.711 0.731 0.752 0.774 0.798 0.816 0.844 0.856 0.897
SBU Kinect Interaction 0.584 0.6 0.612 0.609 0.621 0.632 0.664 0.691 0.707 0.728 0.76 0.789 0.82 0.843 0.87
KLYoga3D 0.589 0.603 0.617 0.634 0.654 0.668 0.678 0.703 0.72 0.742 0.774 0.792 0.801 0.831 0.876
KL3D MVaction 0.59 0.612 0.616 0.621 0.654 0.661 0.671 0.704 0.731 0.741 0.764 0.774 0.804 0.836 0.865

classes. Moreover, the proposed work also highlights the used
of any single view for testing as against the previous models,
where all views are required as input. Consequently, it will be
interesting to test the many – to – one cross view performance,
where the models are trained with view specific features and
tested with only one target view invariant feature.

C. Many – to – One Classifier Performance Evaluation

Here, we train the classifiers with all the views and test it
only one target view feature. Table II shows mRA values for
multiple sets of training views. The results in Table II show
that the performance of the MVSTFE model has increased
when trained with multiple view features. On the other hand,
Inception – V4 has shown to outperform all other classifiers
used for experimentation due to the fact that it contains
multiple attention layers for selecting maximally contributing
vectors.

D. Comparisons against other View Invariant Generation
Techniques

The previous models applied spectral clustering with matrix
factorization [28], auto – weighted spectral clustering [7] and
multi view temporal ensemble [6] are designed to gener-
ate complimentary views and correspondingly reconstructing
a global view. Additionally, the number of views used in
these models is comparatively lower than our proposed work.
Increasing the number of views in the above models will
increase the computational complexity, which was reduced in
MVSTFE. Table III presents the comparisons of the above
multi view recognition methods with MVSTFE.

E. Validation of MVSTFE with State – of – the – Art Multi
View Methods

Historical validation of the proposed MVSTFE is per-
formed by comparing it with state – of – the – art multi
view methods in Table IV. The methods selected for com-
parison have applied some kind of deep learning algorithms
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TABLE III. PRESENTS THE RESULTS OF [28], [7] AND [6] ALONG WITH OUR PROPOSED MVSTFE MODEL ON BENCHMARK DATASETS

Multi View
Algorithms

Classifiers Tiny VGG – 16 Inception - V4 GoogleNet ResNet – 50
Train Test Methods

Datasets
One – to – one Many – to – one One – to – one Many – to – one One – to – one Many – to – one One – to – one Many – to – one

Spectral clustering
via
structured low-rank
matrix factorization [28]

KLEF3DSL 2Dskeletal 0.526 0.621 0.598 0.716 0.524 0.675 0.568 0.666
NTU RGB-D 0.558 0.719 0.627 0.755 0.602 0.736 0.594 0.714
SBU Kinect Interaction 0.504 0.657 0.575 0.67 0.549 0.648 0.551 0.643
KLYoga3D 0.559 0.696 0.638 0.777 0.617 0.749 0.611 0.728
KL3D MVaction 0.539 0.652 0.611 0.711 0.586 0.7 0.587 0.696

Auto-weighted
multi-view clustering
via
spectral embedding [7]

KLEF3DSL 2Dskeletal 0.623 0.718 0.67 0.813 0.621 0.752 0.665 0.763
NTU RGB-D 0.655 0.816 0.724 0.852 0.699 0.833 0.691 0.811
SBU Kinect Interaction 0.601 0.754 0.672 0.767 0.646 0.745 0.648 0.74
KLYoga3D 0.656 0.793 0.735 0.874 0.714 0.846 0.708 0.825
KL3D MVaction 0.636 0.749 0.708 0.808 0.683 0.797 0.684 0.793

Multi-view
temporal ensemble [6]

KLEF3DSL 2Dskeletal 0.549 0.674 0.591 0.749 0.554 0.675 0.568 0.671
NTU RGB-D 0.581 0.702 0.62 0.768 0.599 0.738 0.595 0.715
SBU Kinect Interaction 0.527 0.652 0.575 0.679 0.552 0.657 0.544 0.648
KLYoga3D 0.592 0.693 0.637 0.778 0.612 0.751 0.607 0.728
KL3D MVaction 0.572 0.65 0.607 0.721 0.589 0.7 0.585 0.692

MVSTFE Proposed

KLEF3DSL 2Dskeletal 0.668 0.793 0.71 0.868 0.673 0.794 0.687 0.79
NTU RGB-D 0.7 0.821 0.739 0.887 0.718 0.857 0.714 0.834
SBU Kinect Interaction 0.646 0.771 0.694 0.798 0.671 0.776 0.663 0.767
KLYoga3D 0.711 0.812 0.756 0.897 0.731 0.87 0.726 0.847
KL3D MVaction 0.691 0.769 0.726 0.84 0.708 0.819 0.704 0.811

TABLE IV. COMPARISON AMONG DIFFERENT VIEW-BASED RECOGNITION TECHNIQUES

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

NTU RGB+D

[16] 0.608 0.59 0.574 0.61 0.645 0.659 0.574 0.55 0.601 0.572 0.579 0.568 0.581 0.61 0.568
[17] 0.617 0.599 0.583 0.619 0.654 0.668 0.583 0.559 0.61 0.581 0.588 0.577 0.567 0.604 0.638
[18] 0.587 0.569 0.553 0.589 0.624 0.638 0.553 0.529 0.58 0.551 0.558 0.547 0.541 0.578 0.612
[19] 0.616 0.598 0.581 0.618 0.652 0.667 0.581 0.557 0.608 0.579 0.586 0.575 0.576 0.612 0.647
[21] 0.59 0.572 0.555 0.592 0.626 0.641 0.555 0.532 0.582 0.553 0.56 0.549 0.581 0.618 0.652
[25] 0.625 0.607 0.59 0.626 0.661 0.675 0.59 0.566 0.617 0.588 0.595 0.584 0.57 0.606 0.641
MVSTFE 0.723 0.776 0.785 0.765 0.821 0.767 0.745 0.746 0.744 0.769 0.739 0.756 0.807 0.747 0.806

SBU Kinect Interaction

[16] 0.63 0.612 0.595 0.632 0.666 0.681 0.595 0.572 0.623 0.593 0.6 0.589 0.579 0.615 0.65
[17] 0.628 0.61 0.594 0.63 0.665 0.679 0.594 0.57 0.621 0.592 0.599 0.588 0.549 0.585 0.62
[18] 0.637 0.619 0.603 0.639 0.674 0.688 0.603 0.579 0.63 0.601 0.608 0.597 0.577 0.614 0.648
[19] 0.607 0.589 0.573 0.609 0.644 0.658 0.573 0.549 0.6 0.571 0.578 0.567 0.551 0.588 0.622
[21] 0.636 0.618 0.601 0.638 0.672 0.687 0.601 0.577 0.628 0.599 0.606 0.595 0.586 0.622 0.657
[25] 0.61 0.592 0.575 0.612 0.646 0.661 0.575 0.552 0.602 0.573 0.58 0.569 0.591 0.628 0.662
MVSTFE 0.725 0.738 0.734 0.746 0.729 0.736 0.74 0.676 0.674 0.645 0.665 0.711 0.764 0.747 0.735

KLYoga3D

[16] 0.645 0.627 0.61 0.646 0.681 0.695 0.61 0.586 0.637 0.608 0.615 0.604 0.53 0.566 0.601
[17] 0.65 0.632 0.615 0.652 0.686 0.701 0.615 0.592 0.643 0.613 0.62 0.609 0.539 0.575 0.61
[18] 0.638 0.62 0.604 0.64 0.675 0.689 0.604 0.58 0.631 0.602 0.609 0.598 0.509 0.545 0.58
[19] 0.647 0.629 0.613 0.649 0.684 0.698 0.613 0.589 0.64 0.611 0.618 0.607 0.537 0.574 0.608
[21] 0.617 0.599 0.583 0.619 0.654 0.668 0.583 0.559 0.61 0.581 0.588 0.577 0.511 0.548 0.582
[25] 0.646 0.628 0.611 0.648 0.682 0.697 0.611 0.587 0.638 0.609 0.616 0.605 0.546 0.582 0.617
MVSTFE 0.767 0.774 0.808 0.797 0.843 0.797 0.786 0.74 0.746 0.774 0.764 0.834 0.846 0.746 0.767

KL3D MVaction

[16] 0.62 0.602 0.585 0.622 0.656 0.671 0.585 0.562 0.612 0.583 0.59 0.579 0.551 0.588 0.622
[17] 0.655 0.637 0.62 0.656 0.691 0.705 0.62 0.596 0.647 0.618 0.625 0.614 0.586 0.622 0.657
[18] 0.66 0.642 0.625 0.662 0.696 0.711 0.625 0.602 0.653 0.623 0.63 0.619 0.591 0.628 0.662
[19] 0.598 0.58 0.564 0.6 0.635 0.649 0.564 0.54 0.591 0.562 0.569 0.558 0.53 0.566 0.601
[21] 0.607 0.589 0.573 0.609 0.644 0.658 0.573 0.549 0.6 0.571 0.578 0.567 0.539 0.575 0.61
[25] 0.577 0.559 0.543 0.579 0.614 0.628 0.543 0.519 0.57 0.541 0.548 0.537 0.509 0.545 0.58
MVSTFE 0.764 0.749 0.746 0.774 0.754 0.735 0.761 0.721 0.708 0.71 0.704 0.771 0.794 0.746 0.765

KLEF3DSL 2Dskeletal

[16] 0.606 0.588 0.571 0.608 0.642 0.657 0.571 0.547 0.598 0.569 0.576 0.565 0.537 0.574 0.608
[17] 0.58 0.562 0.545 0.582 0.616 0.631 0.545 0.522 0.572 0.543 0.55 0.539 0.511 0.548 0.582
[18] 0.615 0.597 0.58 0.616 0.651 0.665 0.58 0.556 0.607 0.578 0.585 0.574 0.546 0.582 0.617
[19] 0.62 0.602 0.585 0.622 0.656 0.671 0.585 0.562 0.613 0.583 0.59 0.579 0.551 0.588 0.622
[21] 0.583 0.565 0.548 0.585 0.619 0.634 0.548 0.524 0.575 0.546 0.553 0.542 0.514 0.551 0.585
[25] 0.557 0.539 0.522 0.559 0.593 0.608 0.522 0.499 0.549 0.52 0.527 0.516 0.488 0.525 0.559
MVSTFE 0.744 0.764 0.779 0.76 0.809 0.749 0.759 0.704 0.689 0.697 0.699 0.78 0.811 0.741 0.767

for generation and classification of view video data. Since the
data used in these methods were different, we recreated these
models from scratch as given in their respective manuscripts.
All the experiments were conducted on the benchmark skeletal
datasets used in this work with one – to – one train – test pat-
tern. We presented our best result obtained from inception V4
classifier in this comparison. However, the hyper parameters
for the comparison networks was adopted from our Inception
V4. The proposed MVSTFE has outperformed the existing
models as can be seen in Table IV.

V. CONCLUSION

This work proposed a deep learning based spectral em-
bedding method for generating a single global view from a
set of multi view features. We trained a 3D CNN on each
of the available views and inferencing on a target view video
data to extract features. Eventually, these target features are
combined linearly by calculating the mixing coefficients for
making a global feature representation for all possible views.
Consequently, the mixing coefficients are computed using
spectral embedding in Laplacian eigen space which preserves
proximity between views within the class label. Experimen-
tation has shown that the proposed MVSTEF on 2D video
based skeletal sign language dataset and the benchmark action

www.ijacsa.thesai.org 818 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

datasets has outperformed the previous multiview baseline
models.
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