(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

BMP: Toward a Broker-less and Microservice
Platform for Internet of Thing

Lam Nguyen Tran Thanh!, Khoi Le Quoc?, The Anh Nguyen?, Huong Hoang Luong?, Hong Khanh Vo®,
Tuan Dao Anh®, Hy Nguyen Vuong Khang”, Khoi Nguyen Huynh Tuan®, Hieu Le Van?,
Nghia Huynh Huu'®, Khoa Tran Dang'!, Khiem Huynh Gia'?
VNPT Information Technology Company, Ho Chi Minh city, Vietnam®
FPT University, Can Tho City, Viet Nam?:3:4:5,6,7,8,9,10,11,12,13

Abstract— The Internet of Things (IoT), currently, is one of
the most interesting technology trends. IoT is the foundation and
driving force for the development of other scientific fields based
on its ability to connect things and the huge amount of data it
collects. The IoT Platform is considered the backbone of every
IoT architecture that not only allows the transfer of data between
user and device but also the feed of high-level applications such
as big data or deep learning. As a result, the optimal design of the
IoT Platform is a very important issue, which should be carefully
considered in many aspects. Although the IoT is applied in
multiple domains, there are three indispensable features including
(a) data collections, (b) devices and users management, and (c)
remote device control. These functions usually come with some
requirements, for example, security, high-speed transmission,
low energy consumption, reliable data exchange, and scalable
systems. In this paper, we propose the IoT Platform,called BMP
(Broker-less and Microservice Platform) designed according to
microservice and broker-less architecture combined with gRPC
protocol to meet the requirements of the three features mentioned
above. Our IoT Platform addresses five issues: (1) address
the limited processing capacity of devices, (2) reduce energy
consumption, (3) speed up transmission rate and enhance the
accuracy of the data exchange, (4) improve security mechanisms,
and (5) improve the scalability of the system. Moreover, we
describe the evaluation to prove the effectiveness of the BMP
(i.e., proof-of-concept) in three scenarios. Finally, a source code
of the BMP is publicized on the GitHub repository to engage
further reproducibility and improvement.

Keywords—Internet of Things (IoT); gRPC; Single Sign-
On; Broker-Less; Kafka; Microservice; Role-based Access Control
(RBAC)

I. INTRODUCTION

The application fields of the Internet of Thing (IoT), cur-
rently, are increasingly diverse including smart cities, health-
care, supply chains, industry, agriculture. According to [1],
there will be approximately 75.44 billion IoT connected de-
vices in 2025. Iot Platform is an intermediary system that
acts as an “adhesive layer” to connect devices with users.
There are many architectures outlined to optimize the IoT
system, including 5-layer architecture in order from low to
high: Things, Connect, Collect, Learn and Do introduced
in book [2]. This architecture facilitates it easy to separate
each specific group of roles required of an IoT Platform.
The fields of application of the current IoT are varied, it is
challenging to use a specific architecture suitable for every
practical application. However, we generally draw features that
are indispensable for an IoT system, namely, i) data collection;
ii) device and user management; and iii) remote device control.

These three features are the Things, Connect and Collect
layers, respectively [2].

The Things layer are the group of physical devices that
directly collect data or perform an action based on a control
command from the user. The device is usually limited in power,
processing and bandwidth [3]. So, the most important require-
ment of the Things layer is balanced between processing
capabilities and power consumption of devices (1).

The Connect layer is responsible for transmitting data. So,
this layer is determined by transmission protocols which are
suitable for the hardware and network processing capabilities
of the devices in the Things layer. So, the most important
requirement of the Connect layer is to ensure fast transmission
speed and reliable transmission (2).

The Collect layer is responsible for gathering data from
devices and users. The information can be very sensitive since
it relates to user privacy, especially medical or financial IoT
applications. So, the most important requirement of the Collect
layer is a security mechanism (3).

In addition, the system scalability and resilience should be
concerned as important factors in IoT platform design (4).

There are five popular IoT protocols namely Hypertext
Transfer Protocol (HTTP), Constrained Application Proto-
col (CoAP), Extensible Messaging and Presence Protocol
(XMPP), Advanced Message Queuing Protocol (AMQP), and
Message Queuing Telemetry Protocol (MQTT) [4].

Regarding to limited processing ability and power
consumption (1): There are many studies comparing the ad-
vantages and disadvantages of the above-mentioned protocols
[1], [5], but for the communication in constrained networks
bandwidth, MQTT and CoAP are proposed to be used [6].
Furthermore, regarding energy consumption, MQTT is lower
than CoAP [7], so MQTT is the most favorite protocol used
by developers [8].

Regarding to transmission rate (2): MQTT is twice as
fast as CoAP [9]. MQTT has three levels of Quality-of-Service
(QoS) from 0 to 2. Selecting these QoS levels is a trade-
off between the reliability of packet transmission (rate of loss
on the link), transmission rate, and energy consumption. The
transmission rate of QoS-0 is the fastest, but this has the lowest
reliability [10]; whereas, the opposite is the QoS-2. On the one
hand, the energy consumption of the QoS-0 level is only about
50% of the QoS-2 level [11].

www.ijacsa.thesai.org

826 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Regarding to security mechanism (3): MQTT has many
limitations [10]. Scenarios that attack the Integrity, Availability,
and Authentication and Authorization mechanisms of MQTT
are outlined in [12].

Regarding to system scalability and resilience (4):
MQTT protocol is used in popular IoT frameworks including
well-known companies (e.g. IBM, Amazon and Microsoft)
[13]. The MQTT protocol uses a pub/sub architecture [14],
with the MQTT broker at the center. The MQTT subscriber
(client), connects to the broker and sends messages to topics.
Brokers rely on topic to route the packet, meaning that
subscribers who subscribe a topic will receive all messages
sent to that topic. This easily leads to a single point failure
[15] error at the central broker location. In addition, MQTT
is created for transmission purposes. Therefore, MQTT broker
does not provide message storage as well as guarantee the
order of messages when it reaches the receiver [16]. This is
also an important issue to be considered as the weakness of
the system using MQTT.

Addressing the MQTT issues, the aim of this paper is to
propose a new IoT platform, called BMP, built on broker-less
and microservice architecture. We used gRPC protocol to build
the broker-less architecture at the Collect layer and Connect
layer for gateway devices. This architecture provides a peer-
to-peer communication between sender and receiver in BMP
instead of using a central broker to coordinate topic-based mes-
sages. Collected messages will be sent to the message queue
(Kafka) which provides a caching message mechanism to
reduce lost messages when system error occurs. Furthermore,
the microservice architecture ensures fault tolerance, scaling
horizontally, availability, and carrying capacity of the BMP
[17]. Moreover, we define a management model to manage
the components in the BMP including users, devices, and
communication channels. The management model is built on
the RBAC (role-based access control) model combined with
the single sign-on and the user organization to achieve authen-
tication and authorization. To engage further reproducibility
or improvement in this topic, finally, we share the completely
code solution which is publicized on the our Github.

The rest of the paper is organized as follows. In Section
2 we provide knowledge about the technology used in the
paper. Section 3 discusses related work. We introduce our IoT
Platform and describe the proof-of-concept in Sections 4 and
5, respectively. Section 6, we discuss our test results. Finally,
we summarize the paper and provide the potential directions
for future work.

II. BACKGROUND
A. gRPC

The gRPC? is an open-source framework developed by
Google for implementing RPC (Remote Procedure Calls) API
via HTTP/2. The gRPC provides a new reality for RPC by
making it interoperable, modern, and efficient using technolo-
gies such as Protocol buffers and HTTP/2. HTTP/1.1 protocol
was born in 1997. With each request sent from the client to
the server, a TCP connection is created. Connection processing
must go through a three-way handshake. This takes a lot

Zhttps://grpc.io/

Vol. 13, No. 4, 2022

of time. In addition, the headers in each request are plain
text with lots of data fields and are not compressed and the
headers usually have the same data. Therefore, the header
occupies a significant size and is duplicated many times in the
requests, leading to consuming a lot of bandwidth. HTTP/2
protocol was born in 2015 created by Google to overcome
the above problems. HTTP/2 protocol supports multiplexing
so it is possible to send multiple requests in parallel on an
established TCP connection. This reduces bandwidth suitable
for devices with limited hardware. Protocol buffers are a
popular technology for data structures developed and used in
communication between google services. The developer will
define the data structure in the .proto file. The Protoc compiler
then compiles the .proto file into any language it supports. At
runtime, the data is compressed and normalized to binary. The
gRPC is fully compatible with embedded devices [18]. This
protocol provides four communication types including unary,
server-streaming, client-streaming, and bidirectional streaming
[19]. In Unary, the client sends a request, then the server sends
back a response. In server-streaming, the lient sends a request
to the server, then the server sends back multiple responses
on the same TCP connection. The order of messages for each
stream is guaranteed to be the same between client and server.
In client-streaming, the client sends multiple requests to the
server, then the server sends back only one response to the
client on the same TCP connection.In bidirectional-streaming,
the client sends multiple requests to the server, then the server
sends back multiple responses on the same TCP connection
without waiting for response time.

B. Kafka Message Queue

Kafka® is a distributed messaging system. It can transfer a
vast number of messages in real-time. When the receiver has
not received the message, this message is still stored on the
message queue and the disk. This feature allows reducing lost
messages when a system error occurs. The structure of Kafka
includes the following main components [20]: producer, topic,
partitions, consumer, broker, and zookeeper. A producer can
be any application that publishes messages to a topic.A topic
is a category or feed name where the record is published. The
topics are divided into different segments, which are called
partitions.A consumer can be any application that subscribes
to a topic and consumes messages. Kafka cluster is a set of
servers, each of which is called a broker. Zookeeper used
to manage and arrange brokers. Kafka-Pixy* is a dual API
(gRPC and REST) proxy for Kafka with automatic consumer
group control.In this paper, we use Kafka-pixy open source
to communicate between Kafka message queue and other
microservice in BMP by gRPC protocol. Detailed source code
can be found at the link>®.

C. Oauth and Single Sign-On

Oauth version 2.07 stands for Open with Authentication or
Authorization. OAuth was born to solve the above problem and
beyond, this is an authentication method that helps applications

3https://kafka.apache.org/
“https://github.com/mailgun/kafka-pixy
Shttps://github.com/thanhlam2110/Kafka-gRPC-Producer
Shttps://github.com/thanhlam2110/Kafka-gRPC-Consumer
7https://oauth.net/2/

www.ijacsa.thesai.org

827 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

to share resources without sharing username and password
information.

Single Sign-On (SSO) is a mechanism that allows users to
access many websites and applications without simply logging
in once. Once identified in an application A, it will also
be identified in application B without repeating the login
operation. This feature is suitable for IoT applications because
a user can be a customer of many different IoT service
providers [21]. In this paper, we use open source CAS Apereo
which is modified by us to implement SSO service and Oauth
protocol. Detailed source code can be found at the link®

D. Microservice Architecture

Microservices are an approach to developing an application
using a set of small services, a service that will run its own
process independently, usually an HTTP resource API. This
modern architecture allows for the creation of larger, more
complex, and scalable applications [22]. Applications using
the microservixe architecture are very easy to maintain because
the modules are completely separate from each other. It also
provides high reliability since a service failure does not affect
other services at all [23]. The microservice architecture is
also easily extensible. The only weakness of the microservice
architecture is the complex deployment process [24].

III. RELATED WORK
A. Broker-less Architecture in IoT

Lu et al. in [25] described a solution to collect the
data while meeting the confidentiality requirements via fog
computing-enhanced IoT devices. They used a one-way hash
string to authenticate IoT devices, then applied the Chinese
Remainder Theorem to aggregate data generated by different
IoT devices. They also took advantage of Uniform Paired
Encryption to provide data security. Some interests of the
proposed solution include i) fault tolerance, ii) solving hetero-
geneity problems in partial mode. Moreover, Lam et al. [26],
[27] applied the broker-less architecture in their IoT platforms.
However, their resolution applied a common privacy rule,
differential privacy, to all IoT devices causing unintentional
amounts of sensitive data to be accepted. Applying the access
control model can solve this drawback [28], [29], where only
authorized objects can accessed data [30], [31].

Furthermore, in the industrial environments, some research
directions have applied IoT based on decentralized architecture
to meet the requirements for specific system. For example, in
[32], the authors focused on the varying IoT protocols in a
distributed control platform by concentrating on the times and
limits of the transit for different parameter options. Standard-
ized system configuration exploits the embedded Raspberry
Pi development board with open source protocol implementa-
tion for efficacy measurement, including scalability effective-
ness with various data consumers in an automated network
chemical. Leveraging the on-board computing resources of
distributed embedded systems in the edge computing paradigm
for industrial automation was argued in [33].

8https://github.com/thanhlam2110/cas-overlay-template

Vol. 13, No. 4, 2022

B. IoT Platform based on Microservice

The microservices architecture is introduced to address
the traditional monolithic issues. For example, microservices
architecture was introduced to fill this gap [34]. This article
focuses on summarizing prior work that used the microservices
benefits in designing their architecture rather than detailing
how it works and the direction of development.

For the framework, Amazon offers AWS IoT Greengrass'
as a solution to migrate analytics capabilities directly to
edge devices (e.g., smartphones). Microsoft Azure provides
similar functionality to Azure Stream Analytics on IoT Edge?,
enabling users to use near-real-time analytic functionalities
by using Azure Stream Analytics on IoT-applied devices.
However, these frameworks neither provide any functionality
to move Lambda calculation to and fro between cloud edge
devices nor mix with exterior stream processing engines.

For the application, Lam et al. [35], [36], [37] applied
microservice architecture to define the healthcare and IoT-
Platform applications. In addition, Maia and associates [38]
presented IRRISENS, which is designed based on microser-
vices architectures used in agricultural environments to sense
soil, crop, and atmospheric parameters.

IV. BMP ARCHITECTURE

The BMP is designed according to microservice architec-
ture, and broker-less architecture including Thing layer, User
layer, Edge layer and Cloud layer, as shown in Fig. 1:

The Thing layer is the group of sensor or physical
devices.These devices are responsible for measuring environ-
mental parameters such as humidity, temperature or patient
health parameters, etc. depending on the IoT application.

In each of these devices, we implement two services i)
collection data service (client) and ii) control service (client).
The former is responsible for streaming data collected from
the environment according to a predetermined collection data
server (server) in the IoT Platform. This data streaming is
only performed when the client is authenticated and checked
the things’ role by the Single Sign-On service. The latter
receives control commands from the control service (server)
through the message queue system. The Edge layer including
gateway devices. The Edge layer includes gateway devices. In
each gateway, we implement two services: collect data service
client-side (CDC) and control service client-side (CSC).The
CDC receives data from devices in the Thing layer, then sends
it to the Cloud layer. The CSC receives control commands
from User layer throughout Cloud layer.

The User layer is the groups of users, with different roles,
registered to use IoT services. Users can control and monitor
the device state by using the control service and the collect
data service, in turn. This is performed after passing at the
authentication phase and verifying at the authorization phase
by the Single Sign-On service and RBAC model, respectively.
Besides, users can manage device information (for instance,
create, delete, disable, active, or manage) their child users

Thttps://docs.osgi.org/specification/osgi.cmpn/7.0.0/service.event.html
Zhttps://maven.apache.org/

www.ijacsa.thesai.org

828 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

NOTES: .
Collect data flow (a)

<— Control thing flow (b)
Object M t flow (c)

<—— Database Query

Organization — 01
(smart home)

T T T T T T T T r-————"~>"""""7"7"7"7"7™"7 r-———7"77

|
|
|
Collect data sve | :
n -m N Emmme (client side) -
. coc

Control sve
(client side) -

|
P

| P

| P

I o

| CSC Lo

| Gateway-1 : | Load
——————————— I P 0a

Thing layer | | | Balancing
T T T T T P (LB)
: h : | Collect data sve : |
| | : (client side) - | :
| L | P GDC b
I | ! -
| | ! | !
: | : [I :
| (client side) -
et |

: H =:kB b CEC |

| |
: . : : Gateway-1 : :
L S b

Organization — 02 Edge layer

(smart hospital)

Vol. 13, No. 4, 2022

User layer

Control svc (server side) -

(Ia) css

Single Sign On service
(SSO)

1 (3a)

Collect data
sve
(server side) -
CDS

Data
processing
sve - DPS

Message
Queue

MQ)

Cloud layer

Fig. 1. BMP Platform Architecture.

(register, disable, active) through the Object Management ser-
vice. Furthermore, users can create management information
about devices and communication channels. This information
is metadata and stored in a database helps users easily manage
their devices and be aware clearly of where they send your
messages. For example, user A can create/delete/update his
device and communication channel information. Moreover,
users are organized hierarchically according to a tree model so
high-level users (aka parent-user) can manage low-level users
(aka child-user). For example, user A (high-level) can enable
or disable user B’s status (low-level). If user B is disabled,
user B can not interact with BMP. This feature is similar to
the company model with user A as manager role and user B
as staff role. In addition to the user and things layer services,
the IoT platform has a Load balancing service to balance the
load for the whole system. Besides, the Message Queue service
is responsible for routing control packets from user to things
and data collected from the things layer. Message Queue also
stores messages going through the IoT Platform, ensuring that
it could receive messages after recovery even the service fails.
Data processing service analyzes data in-depth level.

The Cloud layer is the main processing part of BMP
including load balancing (LB), collect data service server-
side (CDS), control service server-side (CSS), single sign-
on service (SS0), message queue (MQ), object management
service (OMS), data processing service (DPS), and database
(DB). The LB is responsible for distributing incoming traffic to
ensure the Cloud layer is not overloaded. The CDS receives
messages from CDC. These messages include Oauth access
token and data collected from the Thing layer. The access
token is verified by the SSO. If the access token is valid

the data will be sent to the MQ, otherwise, the data will be
discarded. The CSS receives messages from users in the User
layer. These messages include an Oauth access token and
control command. Similarly, the access token is verified by
the SSO. If the access token is valid the control command will
be sent to the MQ, otherwise, the the control command will be
discarded. Thanks to gRPC’s multiplexing fearture and client-
stream method, we only need to establish an http/2 connection
between CSC and CSS or CDC and CDS to send the access
token and a bunch of data at the same time. This helps to
reduce system bandwidth as well as power consumption on
the gateway. The MQ is responsible for distributing data to
the DPS for deeper analysis or the DB for storage and control
commands to the CSC in the Edge layer.

V. IMPLEMENTATION

In this paper, we have implemented the services outlined in
the proposal section including: single-sign on service (SSO)°,
collect data service (CDC and CDS)'?, and object management
service (OMS)!!" . The model for the development and inter-
action between the symbolic services in Fig. 1 is as follows:
(la-5a) the collect data flow, (1b-5b) the control thing flow,
and (lc) the object management thread.

The collect data flow details are shown in Fig. 2. The
Things layer collects data from sensors and periodically sends
them back to the gateway at the Edge layer (sending data
periodically to help save energy). The CDC on gateway creates

“https://github.com/thanhlam2110/iccs-sso-service
10https://github.com/thanhlam?2 1 10/iccs-collect-data-sve
https://github.com/thanhlam2 1 10/iccs-object-management-svc

www.ijacsa.thesai.org

829 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

a single gRPC connection to both send access token, thing-
id and streaming data to CDS - process la in Fig. 1. This
is the multiplexing feature of the gRPC protocol, which was
introduced in section 2.1. So the data sent from CDC to CDS
is the combination of access token, thing-id, and collected
data from sensor. Next, the CDS sends the access token and
thing-id to the SSO service (process 2a) to verify access token
and check role, the test result is returned (process 3a). If the
token is authenticated and the role is verified, CDS will stream
the bulk of collected data to MQ (process 4a), whereas the
CDS will drop all data and return the error to CDC. MQ will
distribute data to DPS for in-depth analysis (process 5a).

The control thing flow details are shown in Fig. 3. The
user creates a single gRPC connection to both send the access
token, things-id and control command to the CSS (process
1b). The CSS sends the access token and thing-id to the
SSO service to verify access token and check role. Role-based
access control integrated on SSO service uses user-id (get from
check access token process) and thing-id to verify the device
which the user wants to control belongs to the user or not
(process 2b). Next, the check result is returned to the CSS
(process 3b), if it is valid, the control command will be sent
to the MQ (process 4b). The CSC on gateway subscribes to
the channel (aka Kafka topic) on the MQ which is created by
the user to be dedicated to receive control commands. When
the MQ receives the control command, the CSC also receives
it. (process 5b).

The object management flow provides APIs for users to
interact with the database. The Single Sign On service will also
use the data stored here to authenticate and verify the roles of
users and things. We implement RBAC combined with Single
Sign-On to provide role-based authentication and authorization
for Things and Users. However, the concepts of users’ roles
and things’ roles are somewhat different.

We define the users’ role including permissions that affect
their devices and child users.

About users’ role on their child user, a parent user can
create/delete/enable/ disable child user. For example, user A
can create management information for user B who is the
visitor to user A’s house. In this case, user A is the parent-
user and user B is the child-user of A. With management
information, user B is allowed to control some devices in user
A smart home. When user B leaves, user A deletes user B’s
information, which means user B can not interact with user
A’s smart home. We implement the user management by the
model tree with the child-user has an attribute user_parent_id
field equal to the parent-user’s username. This organization
user model allows BMP to be flexibly applied to the business
of implementing hierarchical user management.

About users’ role on their devices, the user can create/delete
management information, enable/disable, or assign/unassign
(to another user) their devices. For example, user A can choose
some devices that user B can not control when user B visits
user A’s house by unassigning these devices to user B. To do
this, we provide APIs that allow user-id and thing-id mapping.
Then, SSO will check this information when a user wants
to control devices. In addition, OMS also provides APIs for
users to create/delete communication channels management
information. This channel information allows users to assign

Vol. 13, No. 4, 2022

their devices to send and receive messages on it. This function
helps users be aware clearly where they share data.

VI. EVALUATION

The BMP design is based on microservice and broker-less
architecture. To evaluate BMP, we deploy the Cloud layer on
the Amazon EC2'? platform with each service equivalent to a
virtual machine with 1IGB RAM and 1 vCPU configuration.
For the gateway, we deploy CDC and CSC on the Raspberry
Pi 3 model B'' module with CPU quad-core, 1.2 GHz and
1GB RAM.

In this paper, we perform three test scenarios to evaluate
BMP with aspects transmission rate, power consumption, and
security mechanism.

Scenario 1: We measure the Round Trip Time (RTT) from
when CDC streams data until it is received by the message
queue. In addition, we also look at the error rate (number of
messages lost per total number of messages). We assume the
data in this test case is data = access token + string, with string
= "hello number” + for (i=1; ij=number_of_messages;i++).
Measured results are shown in Table 1.

The test results are quite good as we only deploy the
evaluation on low-configuration servers. All messages are
received in full and in order. By using gRPC which allows
sending multiple messages on one connection, we achieve very
fast transfer speed while still satisfy the whole process of
checking and validating before streaming data as described
in Section 5.

Scenario 2: We measure CPU and RAM usage to evaluate
power consumption when streaming data. We use the htop'?
tool, a tool that allows real-time monitoring of system pro-
cesses. Similarly test scenario 1, We assume the data in this
test case is data = access token + string, with string = "hello
number” + for (i=1; ij=number_of_messages;i++).

As a result in Table II, at the no-load and 10000 messages
levels, we recorded the value as 0, which means that the re-
source usage of the services is shallow (no-load) or takes place
in a concise time (10000 messages); therefore, the measuring
tool hardly records any change in resource usage. For the high
load case (50000-100000 messages), the result shows that the
resource consumption is very low. Furthermore, in practice, it
is not always the thing that streams a large amount of data
like in this scenario. This shows that our adoption of gRPC to
the IoT Platform gives outstanding results, suitable for devices
with low hardware.

Scenario 3: We capture the message that is transmitted
between sender and receiver to analyze security risk. We use
Wireshark® to capture the transmitted message. Wireshark is
network packet analyzer software. Its job is to capture all
network packets and then display the data of that packet in
the most detail. We set up the test scenario to compare the se-
curity mechanism between MQTT and gRPC protocol. We use
Wireshark to capture messages that are transmitted between the

10https://aws.amazon.com/

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

12https://vitux.com/how-to-use-htop-to-monitor-system-processes-in-
ubuntu/

3https://www.wireshark.org/

www.ijacsa.thesai.org

830 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

cbDcC ‘ s

3

Stream_datalaccess-token,thing-id,data)

—
F

Check_token(access-token)

Vol. 13, No. 4, 2022

Database ‘ ‘ MQ ‘

. Check_token_status

e
-

-

Allow_send_data_or_drop

Check_role(thing-id)

Check role_status

5

end_dataldata)

Receive data status

Y

A

Stream_data_status

A

cDhcC ‘

|CDS

T
|
i
i
i
|
|
i
i
|
|
!
>
|
|
i
i
i
|
i
i
i
|
I
i
i
|
|

‘ Database‘ ‘ MQ‘

Fig. 2. The Collection Data Flow.

] B

i Send_command(access-token,control_command.thing_id) \:
T >

| Check_token(access-token)

E‘ | Database |E

| token_info

| Check_status{user-id) | '

|
| User_status
i~

| Check_role(thing_id.user-id) _ | |

| check role_status

| |
' Allow_send_command_or_drop '
-« — — _or_)

' Send_command_status

e fess

|
' Send(control_command)

>

| Subscribe_MQ_topic |
= =
i control_command |
—_——
| S50 ‘ Database | | MQ | | ESHE |

Fig. 3. The Control Flow.

TABLE I. THE RESULT OF THE FIRST SCENARIO

Number of messages | 100 | 1000 | 5000 | 10000 | 50000
RTT (s) 1.5 | 407 | 1479 | 27.05 | 138.02
Error (%) 0 0 0 0 0

sender and receiver and then analyze these messages. The test
model is shown in Fig. 4.

The analyzed message result of MQTT and gRPC protocol
is shown in Fig. 5 and Fig. 6, respectively.

According to Fig. 5 and Fig. 6, while MQTT protocol
easily gets topic information as well as message content, in
this case MQTT topic is “thanh-lam” and message is ”Hello
Thanh Lam”, gRPC protocol provides packet encryption. This
result proves that the gRPC protocol has a better security
mechanism than the MQTT protocol.

VII. CONCLUSION

In this paper, we propose the IoT Platform, called BMP, us-
ing the broker-less and microservice architecture. The broker-
less architecture helps our IoT Platform reduce a single
point of failure in comparison with brokering architecture.
Furthermore, microservice architecture helps BMP easily scale
out, reducing downtime when errors occur. The combination
of broker-less and microservice architecture also helps 3rd
parties easily integrate with BMP. Third-party developers only
need to call the API and don’t make major changes to the

www.ijacsa.thesai.org

831 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 4, 2022

TABLE II. THE RESULT OF THE SECOND SCENARIO

Number of messages No load | 10000 | 50000 | 100000
Raspberry CPU 0 0 0.3% 0.7%
Pi RAM 0 0 2.5% 2.7%
Collection data CPU 0 0 8.2% 10.5%
service (server)- CDS | RAM 1.7% 1.7% 1.7% 1.7%

Controll Service Control Service
Client Server
(CSC) (CSS)
User
MQTT BROKER
User
Wireshark
Fig. 4. Capture Transmission Message using Wireshark.
M Wireshark - Packet 136 - Wi-Fi - O X

> Frame 136: 82 bytes on wire (656 bits), 82 bytes captured (656 bits) on interface \Device\NPF_{144CE379-9B48-4DF3-880F-E7567D48317F}, id @
> Ethernet II, Src: AzureWav ab:42:15 (54:27:1e:ab:42:15), Dst: TP-Link 73:al:b7 (6@:a4:b7:73:al:b7)
> Internet Protocol Version 4, Src: 192.168.0.103, Dst: 52.221.181.42
> Transmission Control Protocol, Src Port: 1858, Dst Port: 1883, Seq: 533, Ack: 1, Len: 28
v MQ Telemetry Transport Protocol, Publish Message
> [Expert Info (Note/Protocol): Unknown version (missing the CONNECT packet?)]
> Header Flags: 0x30, Message Type: Publish Message, QoS Level: At most once delivery (Fire and Forget)
Msg Len: 26
Topic Length: 9
Topic: thanh-lam
Message: 48656c6c61205468616e68204c616d

0000 60 ad b7 73 al b7 54 27 le ab 42 15 08 00 4500 ~--s5--T' --B---E
0010 00 44 90 c4 40 0@ 80 06 be d8 c@ a8 00 67 34 dd -D--@--- -----gh-
0020 b5 2a @4 22 @7 5b 97 a8 3e e5 a7 4d ¢4 eb 50 18 KL [ee >e-M- P

0020 02 05 21 cc 00 0@ 30 la 0@ 09 74 68 61 6e 68 2d --1...8- - -thanh-
0048 6c 61 6d 6c 6c 6F 54 68 61 6e 68 20 AclEENHello Thanh L
p—

0050

Fig. 5. MQTT Protocol Message without Encrypted Format.

www.ijacsa.thesai.org 832 |Page

M Wireshark

File Edit View Go Capture Analyze Statistics Telephony

anm ®

REQRen=FsEE

Wireless Tools Help
Q] QT

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 4, 2022

(W] Apply a display filter Ctrh

No. Time
- 454 13.672292
455 13.710180
456 13.710288
457 13.710542
458 13.710612
459 13.751043
460 13.751051
461 13.751154
462 13.751358
463 13.751456
464 13.751477
465 13.751594

Source
192.168.0.103
52.221.181.42
192.168.0.103
192.168.0.103
192.168.0.103
52.221.181.42
52.221.181.42
52.221.181.42
192.168.0.103
52.221.181.42
192.168.0.103
192.168.0.103

Destination
52.221.181.42
192.168.0.103
52.221.181.42
52.221.181.42
52.221.181.42
192.168.0.103
192.168.0.103
192.168.0.103
52.221.181.42
192.168.0.103
52.221.181.42
52.221.181.42

Protocol
TCP
TCP
TCP
HTTP2
HTTP2
Tcp
Tcp
HTTP2
HTTP2
HTTP2
HTTP2
GRPC

Length Info
66 1535 > 50069 [SYN] Seq=0 Win=64240 Len=0 MSS=146@ WS=256 SACK_PERM=1
66 50069 > 1535 [SYN, ACK] Seq=@ Ack=1 Win=62727 Len=0 MSS=1440 SACK_PERM=1 WS=128
54 1535 > 50069 [ACK] Seq=1 Ack=1 Win=132352 Len=0
78 Magic
63 SETTINGS[0]
54 50069 > 1535 [ACK] Seq=1 Ack=25 Win=62720 Len=-0
54 50069 > 1535 [ACK] Seq=1 Ack=34 Win=62720 Len=-0
69 SETTINGS[0]
63 SETTINGS[0]
63 SETTINGS[6]
148 HEADERS[1]: POST /calculator.CalculatorService/Square
70 DATA[1] (GRPC) (PROTOBUF)

+

466 13.788674
467 13.788912
468 13.788915
469 13.789302
470 13.789679
471 13.789682
472 13.789749
473 13.789803

52.221.181.42
52.221.181.42
52.221.181.42
52.221.181.42
52.221.181.42
52.221.181.42
192.168.0.103
192.168.0.103

192.168.0.103 TCP
192.168.0.103 TCP
192.168.0.103 TCcP
192.168.0.103 SSH
192.168.0.103 GRPC
192.168.0.103 SSH
52.221.181.42 TCP

52.221.181.42 HTTP2 71 PING[0]

54 50069 » 1535 [ACK] Seq=25 Ack=43 Win=62720 Len=0

54 50069 > 1535 [ACK] Seq=25 Ack=137 Win=62720 Len=0

54 56069 > 1535 [ACK] Seq=25 Ack=153 Win=62720 Len=0

150 Server: Encrypted packet (len=96)

163 WINDOW_UPDATE[@], PING[@], HEADERS[1]: 200 OK, DATA[1] (GRPC) (PROTOBUF), HEADERS[1]
118 Server: Encrypted packet (len=64)

54 1097 > 22 [ACK] Seq=1 Ack=321 Win=516 Len=0

Ethernet II, Src: Azurelav_ab:42:15 (54:27:1e:ab:42:15), Dst: TP-Link_73:al:b7 (60:a4:b7:73:a1:b7)
Internet Protocol Version 4, Src: 192.168.0.103, Dst: 52.221.181.42
Transmission Control Protocol, Src Port: 1535, Dst Port: 50069, Seq: 137, Ack: 25, Len: 16
HyperText Transfer Protocol 2
v GRPC Message: /calculator.CalculatorService/Square, Request
Compressed Flag: Not Compressed (@)
Message Length: 2
Message Data: 2 bytes
Protocol Buffers: /calculator.CalculatorService/Square,request

Frame 465: 70 bytes on wire (560 bits), 70 bytes captured (560 bits) on interface \Device\NPF_{144CE379-9B48-4DF3-880F-E7567D48317F}, id 0

60 a4 b7 73 al b7 54 27 le ab 42 15 @8 00 4500 -5 T' - B-.-E
00 38 8f 72 40 00 80 06 CO 36 cO a8 00 67 34 dd -8.r@ 6 g4
b5 2a 05 £f 3 95 6a be Ob 8f a6 1d df ed 58 18 *....j [
02 @5 9b 37 00 00 @0 00 07 GO 01 00 @0 60 01 00 7

0040 00 00 00 02 -]

Fig. 6. gRPC Protocol Message with Encrypted Format.

BMP’s architecture. Moreover, we chose gRPC as the main
protocol for BMP because of its advantage in privacy, power
consumption, speed, and reliable transmission in comparison
with MQTT. In addition, the gRPC protocol works peer-to-
peer which is suitable for broker-less implementation. BMP
also provides authentication and authorization mechanisms for
users, devices, and communication channels thanks to the
combination of single sign-on (SSO) and role-based access
control (RBAC). The BMP allows users to manage their
devices and channels to aim at users clearly aware when they
share data. The hierarchical organization of users as a tree
model helps enhance flexibility. In the future, we will focus on
the decentralized identity for IoT users and devices by applying
blockchain.

REFERENCES

[11 M. Bansal et al., “Application layer protocols for internet of healthcare
things (ioht),” in 2020 Fourth International Conference on Inventive
Systems and Control (ICISC). IEEE, 2020, pp. 369-376.

[2] T. Chou, Precision-Principles, Practices and Solutions for the Internet
of Things. McGraw-Hill Education, 2017.

[3] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-
Zarate, “A survey on application layer protocols for the internet of
things,” Transaction on IoT and Cloud computing, vol. 3, no. 1, pp.
11-17, 2015.

[4] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K. Meesublak,
P. Aiumsupucgul, and A. Panya, “Authorization mechanism for mqtt-
based internet of things,” in 2016 IEEE International Conference on
Communications Workshops (ICC). 1EEE, 2016, pp. 290-295.

[5] S. Verma and M. A. Rastogi, “Iot application layer protocols: A survey.”

[6] S.P. Jaikar and K. R. Iyer, “A survey of messaging protocols for iot sys-
tems,” International Journal of Advanced in Management, Technology
and Engineering Sciences, vol. 8, no. II, pp. 510-514, 2018.

[71 M. Marti, C. Garcia-Rubio, and C. Campo, “Performance evaluation of
coap and mqtt_sn in an iot environment,” in Multidisciplinary Digital
Publishing Institute Proceedings, vol. 31, no. 1, 2019, p. 49.

[8] G. C. Hillar, MQTT Essentials-A lightweight loT protocol.
Publishing Ltd, 2017.

Packt

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

B. H. Corak, F. Y. Okay, M. Giizel, $. Murt, and S. Ozdemir, “Compar-
ative analysis of iot communication protocols,” in 2018 International
symposium on networks, computers and communications (ISNCC).
IEEE, 2018, pp. 1-6.

S. Lee, H. Kim, D.-k. Hong, and H. Ju, “Correlation analysis of mqtt
loss and delay according to qos level,” in The International Conference
on Information Networking 2013 (ICOIN). 1EEE, 2013, pp. 714-717.

J. Toldinas, B. Lozinskis, E. Baranauskas, and A. Dobrovolskis, “Mqtt
quality of service versus energy consumption,” in 2019 23rd Interna-
tional Conference Electronics. 1EEE, 2019, pp. 1-4.

J. J. Anthraper and J. Kotak, “Security, privacy and forensic concern of
mqtt protocol,” in Proceedings of International Conference on Sustain-
able Computing in Science, Technology and Management (SUSCOM),
Amity University Rajasthan, Jaipur-India, 2019.

F. Carranza et al., “Brokering policies and execution monitors for iot
middleware,” in Proceedings of the 24th ACM Symposium on Access
Control Models and Technologies, 2019, pp. 49-60.

D. Soni and A. Makwana, “A survey on mqtt: a protocol of internet of
things (iot),” in International Conference On Telecommunication, Power
Analysis And Computing Techniques (ICTPACT-2017).

P. Lv, L. Wang, H. Zhu, W. Deng, and L. Gu, “An iot-oriented privacy-
preserving publish/subscribe model over blockchains,” IEEE Access,
vol. 7, pp. 4130941314, 2019.

H. C. Hwang et al., “Design and implementation of a reliable message
transmission system based on mqtt protocol in iot,” Wireless Personal
Communications, vol. 91, no. 4, pp. 1765-1777, 2016.

M. Ali, S. Ali, and A. Jilani, “Architecture for microservice based
system. a report,” 2020.

N. Karcher, R. Gebauer, R. Bauknecht, R. Illichmann, and O. Sander,
“Versatile configuration and control framework for real time data
acquisition systems,” arXiv preprint arXiv:2011.00112, 2020.

K. Indrasiri and D. Kuruppu, gRPC: up and running: building cloud
native applications with Go and Java for Docker and Kubernetes.
O’Reilly Media, Inc.”, 2020.

G. Shapira, T. Palino, R. Sivaram, and K. Petty, Kafka: the definitive
guide. 7 O’Reilly Media, Inc.”, 2021.

T. T. L. Nguyen, H. K. Vo, H. H. Luong, H. T. K. Nguyen, A. T.
Dao, X. S. Ha et al., “Toward a unique iot network via single sign-on
protocol and message queue,” in International Conference on Computer

www.ijacsa.thesai.org

833 |Page

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Information Systems and Industrial Management.
270-284.

F. Tapia, M. A. Mora, W. Fuertes, H. Aules, E. Flores, and T. Toulk-
eridis, “From monolithic systems to microservices: A comparative study
of performance,” Applied Sciences, vol. 10, no. 17, p. 5797, 2020.

L. N. T. Thanh et al., “loht-mba: An internet of healthcare things
(ioht) platform based on microservice and brokerless architecture,”
International Journal of Advanced Computer Science and Applications,
2021.

K. Gos and W. Zabierowski, “The comparison of microservice and
monolithic architecture,” in 2020 IEEE XVIth International Conference
on the Perspective Technologies and Methods in MEMS Design (MEM-
STECH). IEEE, 2020, pp. 150-153.

R. Lu, K. Heung, A. H. Lashkari, and A. A. Ghorbani, “A lightweight
privacy-preserving data aggregation scheme for fog computing-
enhanced iot,” IEEE Access, vol. 5, pp. 3302-3312, 2017.

L. N. T. Thanh et al., “Toward a unique iot network via single sign-on
protocol and message queue,” in International Conference on Computer
Information Systems and Industrial Management. Springer, 2021.

Springer, 2021, pp.

——, “Toward a security iot platform with high rate transmission and
low energy consumption,” in International Conference on Computa-
tional Science and its Applications. Springer, 2021.

H. X. Son, M. H. Nguyen, H. K. Vo et al., “Toward an privacy protection
based on access control model in hybrid cloud for healthcare systems,”
in International Joint Conference: 12th International Conference on
Computational Intelligence in Security for Information Systems (CISIS
2019) and 10th International Conference on EUropean Transnational
Education (ICEUTE 2019). Springer, 2019, pp. 77-86.

H. X. Son and E. Chen, “Towards a fine-grained access control mecha-
nism for privacy protection and policy conflict resolution,” International
Journal of Advanced Computer Science and Applications, vol. 10, no. 2,
2019.

S. H. Xuan et al., “Rew-xac: an approach to rewriting request for elastic
abac enforcement with dynamic policies,” in 2016 International Con-

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

Vol. 13, No. 4, 2022

ference on Advanced Computing and Applications (ACOMP). 1EEE,

2016, pp. 25-31.

H. X. Son, T. K. Dang, and F. Massacci, “Rew-smt: a new approach
for rewriting xacml request with dynamic big data security policies,”
in International Conference on Security, Privacy and Anonymity in
Computation, Communication and Storage. Springer, 2017, pp. 501—
515.

S. K. Panda, M. Majumder, L. Wisniewski, and J. Jasperneite, “Real-
time industrial communication by using opc ua field level commu-
nication,” in 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1. IEEE, 2020, pp.
1143-1146.

D. L. Tran, T. Yu, and M. Riedl, “Integration of iiot communication
protocols in distributed control applications,” in IECON 2020 The 46th
Annual Conference of the IEEE Industrial Electronics Society. IEEE,
2020, pp. 2201-2206.

L. Bixio, G. Delzanno, S. Rebora, and M. Rulli, “A flexible iot stream
processing architecture based on microservices,” Information, vol. 11,
no. 12, p. 565, 2020.

L. N. T. Thanh et al., “Uip2sop: A unique iot network applying single
sign-on and message queue protocol,” IJACSA, vol. 12, no. 6, 2021.

——, “Sip-mba: A secure iot platform with brokerless and micro-
service architecture,” International Journal of Advanced Computer
Science and Applications, 2021.

N. T. T. Lam, H. X. Son, T. H. Le, T. A. Nguyen, H. K. Vo, H. H.
Luong, T. D. Anh, K. N. H. Tuan, and H. V. K. Nguyen, “Bmdd: A
novel approach for iot platform (broker-less and microservice archi-
tecture, decentralized identity, and dynamic transmission messages),”
International Journal of Advanced Computer Science and Applications,
2022.

E. Simeoni, E. Gaeta, R. 1. Garcia-Betances, D. Raggett, A. M.
Medrano-Gil, D. F. Carvajal-Flores, G. Fico, M. F. Cabrera-Umpiérrez,
and M. T. Arredondo Waldmeyer, “A secure and scalable smart home
gateway to bridge technology fragmentation,” Sensors, vol. 21, no. 11,
p- 3587, 2021.

www.ijacsa.thesai.org

834 |Page

