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Abstract—Software bug prediction is an important step in the
software development life cycle that aims to identify bug-prone
software modules. Identification of such modules can reduce
the overall cost and effort of the software testing phase. Many
approaches have been introduced in the literature that have
investigated the performance of machine learning techniques
when used in software bug prediction activities. However, in most
of these approaches, the empirical investigations were conducted
using bug datasets that are small or have erroneous data
leading to results with limited generality. Therefore, this study
empirically investigates the performance of 8 commonly used
machine learning techniques based on the Unified Bug Dataset
which is a large and clean bug dataset that was published recently.
A set of experiments are conducted to construct bug prediction
models using the considered machine learning techniques. Each
constructed model is evaluated using three performance metrics:
accuracy, area under the curve, and F-measure. The results of the
experiments show that logistic regression has better performance
for bug prediction compared to other considered techniques.
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I. INTRODUCTION

Software development is an error-prone process. Mistakes
and errors that occur during the development process result in
bugs that can ultimately cause software failure [1]. Software
testing is one of the most important phases in the software
development process which aims to identify bugs and to
ensure the overall quality of systems before they are released.
However, the testing cost and effort can grow dramatically
when the size and complexity of a system increase. It is
estimated that the cost of the testing activities constitutes
around 25% of the total cost of the software development
budget and it can reach to 50% when the size and complexity
of the system increase [2], [3]. Therefore, the testing resources
should be allocated efficiently in order to minimize the total
cost of the overall development process.

Software Bug Prediction (SBP) is one of the most useful
techniques that can be used to decrease the testing cost and
effort [4]. The main goal of SBP is to identify the modules that
are likely to have bugs. Software professionals use SBP models
at the beginning of the testing phase to classify the modules of
a system into bug-prone modules and non-bug-prone modules
based on a set features extracted from the modules. The most
commonly used features are software metrics that measures
different characteristics of the module such complexity, size,
coupling, and cohesion. Fig. 1 shows the basic architecture of
a SBP model. Most of the testing cost and effort should be

Fig. 1. Basic Architecture of a SBP Model.

allocated on bug-prone modules in order to use the limited
testing resources efficiently.

Many approaches have been introduced into the literature
that have shown the success of using machine learning algo-
rithms to construct SBP models (e.g., [5], [6], [7], [8]) based
on public available bug datasets such as NASA and Colombus
[9]. However, the size and quality of the bug datasets used to
train SBP models can have a great impact on the performance
of the models and can limit their generality. Ferenc, Rudolf et
al. [10] explained several issues in most commonly used bug
datasets including the missing of the source code elements
associated with data; dissimilarities in terms of granularity,
features, and format between the datasets; the missing values in
the datasets; and the existence of contrasting bug information.
To mitigate these issues, they produced a unified bug dataset at
class and file level by analyzing the source code of the reported
systems in 5 public bug datasets. The Unified Bug Dataset
[10] contains the values of 60 metrics and bug information for
47,618 classes and for 43,744 files and their corresponding
source code. Although the Unified Bug Dataset is considered
to be a large and clean dataset and has better quality compared
to most commonly used bug datasets, it has been used in only
a few studies in literature (e.g., [10], [11]) to build machine
learning based SBP models.

Therefore, this paper empirically investigates the perfor-
mance of 8 well-known machine learning techniques, namely,
Logistic Regression (LR), Support Vector Machine (SVM), K-
Nearest Neighbor (KNN), Naive Bayes(NB), Decision Tree
(DT), Bagging, Random Forest (RF), and AdaBoost based
on the Unified Bug Dataset. The contribution of the paper is
twofold:

• Constructing 8 SBP models based on the Unified Bug
Dataset.

• Evaluating and comparing the performance of the
constructed SBP models.

The rest of the paper is organized as follows. Related
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studies are summarized and discussed in Section II. Section III
describes the used methodology. The results and discussion are
given in Section IV. The threats to validity are presented in
Section V. Section VI concludes the study and provides future
work.

II. RELATED WORK

SBP refers to the process of predicting buggy modules in a
software system. In the last two decades, many approaches in
the literature have introduced SBP models that tried to identify
a causal relationship between a set of characteristics or features
of a given software module and the existence of bugs in that
module based on historical bug datasets. The most commonly
used features to predict bugs are software metrics such as
McCabe’s Cyclomatic Complexity [12], Halstead Metrics [13],
and Chidamber and Kemerer object-oriented metrics suite [14].

The majority of SBP models are constructed using machine
learning algorithms such as LR (e.g., [5], [6]), SVM (e.g.,
[7], [8]), and KNN (e.g., [8]). The study by Basili et al. [5]
was one of the early studies that used LR to construct a SBP
model for the purpose of empirically validating Chidamber and
Kemerer object-oriented metrics as quality indicators based
data collected from 8 small object-oriented systems. The
results of the study showed that the object-oriented metrics are
beneficial to some degree to predict bugs in software systems
in early phases of their development life cycle. Osman et
al. [8] studied the impact of adjusting the parameters of two
machine learning algorithms: SVM and KNN to build better
SBP models. They conducted a set of experiments on five
systems and the results showed that tuning the parameters of
the two algorithms can improve their accuracy when compared
to the default parameters setting. Researchers in [15] experi-
mentally compared the performance of NB to DT for defect
prediction based NASA Datasets [9]. Their results suggested
that NB is more accurate and useful in predicting software
defects when compared to DT. Singh et al. [16] analyzed
the performance of five machine learning algorithms namely
Artificial Neural Network, Particle Swarm Optimization, DT,
NB, and SVM. They carried out a set of experiments on
NASA datesets to compare the accuracy of the considered
algorithms when used for software defect prediction. The
output of the experiments showed that SVM outperformed the
other 4 algorithms. Matloob et al. [17] conducted a systematic
literature review on software defect prediction using ensemble
learning methods. They considered only studies that were
published in the period from 2012 to 2021. The results of
their systematic literature review showed that RF, boosting,
and bagging are the most frequently proposed methods in
the literature during the considered period. In addition, their
results showed that most of the proposed ensemble models
were built based on PROMISE datasets [9] (which consists of
a set of public datasets mostly NASA datasets). In a recently
published study [11], the performance of the two ensemble
learning methods: AdaBoost and Bagging was investigated. A
set of experiments were conducted on the Unified Bug Dataset
[10]. The results indicated that AdaBoost with a DT as a base
learner outperformed Bagging technique.

A considerable amount of previously published studies
have indicated the effectiveness of using machine learning
algorithms to build SBP models. However, most of these

studies used bug datasets that are small or have erroneous data
such as NASA datasets [18], [11]. Therefore, this study tries to
bridge this gap by using a set of well-known machine learning
algorithms to construct SBP models based on the Unified Bug
Dataset [10], which is a large and clean dataset and which has
been used in only a few studies in the literature [11].

III. METHODOLOGY

A. Motivation

Many machine learning algorithms have been used in
previous studies to construct SBP models. However, the results
of these studies are not always agreeing on the superiority
of a machine learning algorithm or technique over others. In
addition, most of the previous studies built SBP models based
on bug datasets (such as NASA datasets) that have been shown
to be noisy and containing erroneous data [19], [18], [11],
which can have a significant impact on the performance of
these models.

Motivated by the previously mentioned remarks, this study
aims to answer the following research question:

• RQ: What is the most effective machine learning tech-
nique (in terms of performance metrics) for bug pre-
diction in classes based on the Unified Bug Dataset?

B. Research Framework

The overall research framework of this study is depicted
in Fig. 2. The input dataset is first preprocessed. The prepro-
cessing step includes data normalization and feature selection.
After the preprocessing of the input dataset, the ten-fold cross-
validation is used to train and evaluate the considered ma-
chine learning models. The ten-fold cross-validation randomly
divides the dataset into 10 equal size subdatasets. For each
subdataset, the remaining 9 subdatasets are used train a model
and the subdataset is used to test the performance of the model.
Finally, the results of the ten-fold cross-validation for each
model are averaged and reported.

C. Dataset

The Unified Bug Dataset [10] is used to construct the SBP
models. The dataset contains information for 47,618 classes
and for 43,744 files and their corresponding source code.
The information includes the values of 60 software metrics
(including McCabe’s Cyclomatic Complexity [12], Halstead
Metrics [13], and Chidamber and Kemerer object-oriented
metrics suite [14]) and the number of bugs in each class and
file. The values of the software metrics for the classes and
files were calculated from their source code using the open-
source OpenStaticAnalyzer tool [20]. The bug information
of the classes and file were collected from 5 public bug
datasets namely: PROMISE [21], Eclipse Bug Dataset [22],
Bug Prediction Dataset [23], Bugcatchers Bug Dataset [24],
and GitHub Bug Dataset [25].

D. Dependent and Independent Variables

The dependent variable Y in this study is binary (i.e.,
Y ∈ {0, 1}) where 0 means that the class does not have a
bug (referred as non-buggy class) and 1 means the class has
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Fig. 2. The Research Framework of this Study.

Fig. 3. The Distribution of Classes in the used Dataset.

at least one bug (referred as buggy class). Figure 3 shows the
distribution of buggy and non-buggy classes in the Unified
Bug Dataset. It can be seen from Fig. 3 that the Unified
Bug Dataset has imbalanced distribution in terms of buggy
and non-buggy classes. The non-buggy classes make up to
82% of the total classes in dataset whereas the buggy classes
form only 18%. The ultimate goal of a SBP model is to
label a class in question with 0 or 1 based on the values
of a set of independent variables. The software metrics of
the classes reported in the Unified Bug Dataset are used as
independent variables in this study. Software metrics of a
class are quantitative measurements that indicate the degree
to which a class possesses a property or attributes such as
class complexity, size, coupling and cohesion.

E. Data Preprocessing

Two common techniques are applied sequentially to prepro-
cess the considered dataset namely: MinMaxScaler [26], and
correlation-based filter-subset feature selection with BestFirst
search [27].

One issue in the Unified Bug Dataset is that the dataset
includes software metrics that are not normalized (i,e., they
do not have an upper bound) and they differ in the order
of magnitude [4]. This issue can have a negative impact on
the accuracy of a prediction model [4]. Normalization is a
commonly used technique that is used to address this issue by
rescaling of the original values of variables to a specific range.
In this paper, the MinMaxScaler [26] technique to is applied

in the data preprocessing to transform the original values of
all the metrics in the Unified Bug Dataset between the closed
interval 0 and 1.

High dimensionality is another issue in the Unified Bug
Dataset. The dataset includes 60 software metrics. Fig. 4 shows
the Spearman correlation coefficients between each pair of
software metrics in the dataset. As it can be seen from Fig. 4,
some of these metrics have strong correlations with each other.
Building SBP models based on high dimensional redundant
dataset takes more time and computational resources and can
negatively affect the performance models [4], [28]. Therefore,
researchers often apply feature selection techniques to address
this problem before constructing prediction models [1], [29],
[30], [31]. In this study, the correlation-based filter-subset
feature selection with best first search is used. This technique
was found to be the best when used in the field of SBP among
30 feature selection techniques that were analyzed in a large-
scale study [27].

F. Learners

The learners that are used to build SBP models in this
study include: Logistic Regression (LR), Support Vector Ma-
chine (SVM), K-Nearest Neighbor (KNN), Naive Bayes (NB),
Decision Tree (DT), Bagging, Random Forest (RF), and Ad-
aBoost. The former 5 learners referred in the literature as
traditional learners whereas the latter 3 learners referred as
ensemble learners. In traditional learning techniques, a single
learner (e.g., LR) is used to build a prediction model. On
the other hand, a combination of learners are used to build
a prediction model in ensemble learning techniques [17]. A
brief description of each learner is given in the following.

Logistic Regression (LR): LR is a statistical model used
to predict a binary dependent variable based on a set of
independent variables using the following equation:

π(X1, X2, ..., Xn) =
1

1 + e−(C0+C1X1+C2X2+...+CnXn)
(1)

where X1, X2, ..., Xn are the independent variables and
C1, C2, ..., Cn are estimated regression coefficients. The larger
the absolute value of the coefficient, the stronger the impact
of the independent variable is on the dependent variable. π is
the probability that a the dependent variable is 0 or 1.
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Fig. 4. A Heat Map Showing the Spearman Correlation Coefficients between the Software Metrics Existing in the used Dataset.

Support Vector Machine (SVM): SVM is a discriminative
classifier algorithm that separates data samples into (generally)
two different classes. The data samples are represented on 2-
dimensional space and SVM tries to find an optimal hyperplane
that divides the 2-dimensional space into two parts such that
the data samples of each class reside on one part.

K-Nearest Neighbor (KNN): KNN is simple algorithm
that solves the machine leaning classification problems by
finding the k nearest neighbours (which has been previously
classified) to the data point to be classified. Then KNN
classifies the data point to the most frequent class in k nearest
neighbours.

Naive Bayes (NB): NB a simple technique that is used
to build a probabilistic classifier based on Bayes’ theorem.
NB classifiers assume that the input features are statistically
independent. Thus, each feature contributes independently to
the probability that an instance data belongs to a certain class
regardless the correlation between the considered feature and
other features.

Decision Tree (DT): DT is a learning technique that con-
structs a decision tree model for classification problems based
on the given dataset. Each internal node in the constructed tree

symbolizes a test condition on a feature, each branch denotes
an output of a test condition, and each leaf node denotes a
label (or a decision).

Random Forest (RF): RF is an ensemble learning method
that uses a set of unpruned decision trees for classification. The
decision trees are constructed based samples of the dataset.
During the classification of a data sample, the data sample is
given to each decision tree and the class label of the instance is
determined by taking the mode of the outputs of the decision
trees.

Bagging: Bagging (aka Bootstrap aggregating) is an en-
semble learning method that aims to improve the accuracy of
machine learning algorithms most commonly decision trees. It
reduces the variance of a model and helps to avoid the overfit-
ting of data. It creates n subdatasets each of which contains a
subset of features and data samples that are randomly selected
with replacement from the original training dataset. The n
subdatasets are used in parallel to construct n base (or weak)
prediction models. The label class predicted by the majority
of the base models is chosen to be the output of the bagging
classifier.

AdaBoost: AdaBoost (stands for Adaptive Boosting) is an
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ensemble learning method that is used to combine multiple
weak classifiers into a single strong classifier for the purpose
of improving the accuracy and performance of the weak clas-
sifiers. The weak classifiers in Adaboost are usually decision
stumps which are decision tree with just one node (the root)
and two leaves. The weak classifiers are trained sequentially.
Samples misclassified by a weak classifier are given more
weight in subsequent classifiers. Also each weak classifier is
given a weight according to its accuracy. The final output of
Adaboost classifier is the weighted sum of the outputs of the
weak classifiers.

G. Performance Evaluation

Three performance metrics are used to evaluate the perfor-
mance of the constructed models including accuracy (ACC),
F-measure (F1), and Area under the ROC Curve (AUC). These
metrics are widely used in the literature to evaluate SBP
models.

Accuracy measures the fraction of the predictions that are
classified correctly by a model. The value of accuracy ranges
from 0 to 1 where a higher value means better accuracy. It is
calculated for a binary classification according to the following
equation:

ACC =
TP + TN

TP + TN + FP + FN
(2)

where TP = True Positives, TN = True Negatives, FP =
False Positives, and FN = False Negatives.

The F-measure is a commonly used performance metric
(especially in case of the existence of an imbalanced classifi-
cation problem) that considers both the precision and recall of
a model. It is the harmonic mean of the precision and recall
and its value ranges from 0 to 1 where a large value means a
better performance. The following equation is used to compute
the F-measure:

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(3)

where the Precision and Recall are calculated as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

AUC is a performance metric for classification problems
across all the various classification thresholds. The value of
AUC lies between the closed interval [0, 1] where a larger
value of AUC means better performance for a classifier. AUC
is calculated based on the following equation:

AUC =

∑
rank(All Positive Samples)− X(X+1)

2

P ∗N
(6)

Where P and N represent the number of positive and
negative samples, respectively.

H. Tools

All the experiments in this study are implemented using
the open source scikit-learn tools [26]. They are simple and
efficient tools used to implement machine learning techniques
in Python.

IV. RESULTS AND DISCUSSION

Following the research framework shown in Fig. 2, eight
SBP models were constructed using the considered machine
learning techniques and the used bug dataset. Out of the
60 features (Software metrics), 25 features were selected to
construct the models after the application of the correlation-
based filter-subset feature selection with best first search.
The results of the considered performance metrics for each
constructed model are given in Fig. 5.

The highest accuracy value is 0.82 which is achieved by
LR, SVM, and RF classifiers. The accuracy values of NB,
Adaboost, and KNN are 0.81, 0.8, and 0.79, respectively. The
Bagging classifier has an accuracy of 0.76. DT has the lowest
accuracy value which is 0.7.

LR, SVM, and RF classifiers attained the highest AUC
value (0.77). NB achieved the second largest value of AUC
(0.76). Adaboost has a value of 0.73 for AUC. The values of
AUC for KNN, Bagging, and DT are 0.67, 0.62, and 0.53,
respectively, which are relatively low compared to the values
of AUC for other classifiers.

For the F1 values, LR and NB have the highest value (0.77).
SVM, RF, and Adaboost attained the second largest value of
F1 (0.76). KNN, Bagging, and DT have F1 values of 0.75,
0.73, and 0.7, respectively.

Answering RQ: From the results depicted in Fig. 5, it
can be said that LR is the most effective machine learning
technique (in terms of performance metrics) for bug prediction
in classes based on the Unified Bug Dataset as it achieved the
highest values of accuracy, AUC, and F1 measure. However,
the performance of LR is not significantly better than the
performance of the other considered techniques. In fact, some
of the other classifiers have exactly the same performance of
LR (for some of the used performance metrics) such as SVM
and RF for the accuracy and AUC metrics and NB for the F1
metric.

V. THREATS TO VALIDITY

There are several issues that may impact the results of this
study and limit their generality.

The quality of the bug dataset used to build the SBP
models was not evaluated in this paper. The values of the
software metrics and the bug information were used in all
the experiments conducted in this study without verification
or validation. However, the dataset was extensively evaluated
and validated in [10] and it has been used in other studies in
the literature (e.g. [11])

Software metrics included in the used dataset are not the
only factors that can have impact on software bug proneness.
Other factors such as the experience of software engineers
involved in the development process of a software unit (e.g.,
class) and development environment can also make a software

www.ijacsa.thesai.org 895 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

Fig. 5. The Average Results of the used Performance Metrics for the Constructed Models.

unit to be bug prone. However, these factors are out of the
scope of this study and the aim of the study is to compare
the performance of well-known machine learning techniques
based on the used bug dataset which only includes software
metrics and bug information.

The performance of the SBP models constructed in this
study were evaluated based on only accuracy, F-1, and AUC.
There are several other well-known performance metrics which
were not used in this study such as Precision, Recall, Balance,
and G-mean. However, there is no previous study on SBP
that has used all the existing performance metrics to evaluate
SBP models. In this study, the accuracy was used because
it is one of the most commonly used metric to evaluate the
performance of prediction models. In addition, the F-1 and
AUC metrics were used in this study because the considered
dataset is greatly imbalanced and these two metrics are good
performance metrics for evaluating models constructed based
on a biased dataset.

VI. CONCLUSION AND FUTURE WORK

In this study, the performance of 8 widely used machine
learning techniques were investigated. A set of experiments
were conducted using the Unified Bug Dataset which includes
bug information for 47,618 classes. LR was found to be
the most effective technique for predicting buggy classes. It
attained 0.82, 0.77, and 0.77 for the accuracy, AUC, and F1,
respectively.

The correlation-based filter-subset with best first search was
the only feature selection technique applied in this study. There
are many other feature selection and transformation techniques
that have been introduced in the literature. A future work can
extend this study by comparing the performance the considered
8 machine learning techniques when applying different feature
selection and transformation techniques.
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“Assessing ensemble learning techniques in bug prediction,” in Inter-
national Conference on Computational Science and Its Applications.
Springer, 2021, pp. 368–381.

www.ijacsa.thesai.org 896 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

[12] T. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, pp. 308–320, 1976.

[13] M. H. Halstead, Elements of Software Science (Operating and program-
ming systems series). Elsevier Science Inc., 1977.

[14] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6,
pp. 476–493, 1994.

[15] T. Wang and W.-h. Li, “Naive bayes software defect prediction model,”
in 2010 International Conference on Computational Intelligence and
Software Engineering. Ieee, 2010, pp. 1–4.

[16] P. D. Singh and A. Chug, “Software defect prediction analysis using
machine learning algorithms,” in 2017 7th International Conference on
Cloud Computing, Data Science & Engineering-Confluence. IEEE,
2017, pp. 775–781.

[17] F. Matloob, T. M. Ghazal, N. Taleb, S. Aftab, M. Ahmad, M. A. Khan,
S. Abbas, and T. R. Soomro, “Software defect prediction using ensemble
learning: A systematic literature review,” IEEE Access, 2021.
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