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Abstract—Transformer neural networks have increasingly be-
come the neural network design of choice, having recently been
shown to outperform state-of-the-art end-to-end (E2E) recurrent
neural networks (RNNs). Transformers utilize a self-attention
mechanism to relate input frames and extract more expressive
sequence representations. Transformers also provide parallelism
computation and the ability to capture long dependencies in
contexts over RNNs. This work introduces a transformer-based
model for the online handwriting recognition (OnHWR) task.
As the transformer follows encoder-decoder architecture, we
investigated the self-attention encoder (SAE) with two different
decoders: a self-attention decoder (SAD) and a connectionist
temporal classification (CTC) decoder. The proposed models
can recognize complete sentences without the need to integrate
with external language modules. We tested our proposed mod-
els against two Arabic online handwriting datasets: Online-
KHATT and CHAW. On evaluation, SAE-SAD architecture per-
formed better than SAE-CTC architecture. The SAE-SAD model
achieved a 5% character error rate (CER) and an 18%word error
rate (WER) against the CHAW dataset, and a 22% CER and a
56% WER against the Online-KHATT dataset. The SAE-SAD
model showed significant improvements over existing models of
the Arabic OnHWR.

Keywords—Selft attention; Transformer; deep Learning; con-
nectionist temporal classification; convolutional neural networks;
Arabic online handwriting recognition

I. INTRODUCTION

OnHWR is essentially a task of converting digital input
handwriting into digital text. Handwriting recognition can be
classified into two main categories based upon input data: on-
line and offline handwriting recognition. In online handwriting,
data is represented as a series of points with the precision of
other information, such as timestamps, dependent upon the
capabilities of the input device. In offline handwriting recog-
nition, data is represented as images scanned from documents.

In recent years, OnHWR has attained increased importance
concomitant with rapid developments in related hardware
and software. Most current communication software supports
notetaking and writing on boards using online handwriting as
both a communication media and a vehicle of computer-aided
education. In the rising markets, greater access to computing
devices has allowed ever-increasing populations to connect
across the internet, with many depending solely on mobile
devices with touchscreens. Handheld devices with styluses are
becoming more widely available and used in many domains.

∗Corresponding authors.

Concomitantly, there have been tremendous advances in prime
technologies of deep learning and natural language processing
(NLP) algorithms. Such advances have led, in turn, to consid-
erable progress in the field of OnHWR. The Arabic language
is spoken by around half a billion people around the world. A
number of other languages, including, Urdu, Persian, Kurdish,
and Pashto adopted and use Arabic script. Arabic is a ’right to
left’ language in its written form. It consists of 28 letters, 10
digits as well as a number of punctuation marks. Each Arabic
letter has four contextual forms, depending upon its position
in a word: isolated, beginning, middle, and end position forms,
as shown in Fig. 1. Arabic OnHWR is a challenging problem
for multiple reasons. One reason is the existence of a wide
range of variations in handwriting styles, in part due to the
existence of multiple calligraphies in Arabic. There are eight
basic calligraphies in Arabic script [1]. The tendency is to use
a combination of these calligraphies when writing in Arabic.
This further compounds the variations in styles of writing,
thus adding to the challenges that would face the developer
of an Arabic script recognition system. Compared to Latin
and Chinese and other scripts, published work in the Arabic
OnHWR field has to date been fairly limited.

OnHWR is a sequence-to-sequence (S2S) classification
task. Input frames are ingested into the S2S model which
in turn generates text. Recent advances in S2S models have
shown their reliability solve complex NLP tasks such as
translation [2] and automatic speech recognition (ASR) [3].
Additionally, the performance of OnHWR systems has im-
proved with the advent of deep learning models including
convolutional neural network (CNN) [4] and long short-term
memory (LSTM) [5], [6].

Recently, E2E OnHWR systems have achieved remarkable
performance, with input handwriting features being mapped
directly to an output sequence of letters or tokens. In E2E
systems, all components are trained and optimized jointly,
thus reducing the complexity of the system and minimizing
error propagation between components compared to conven-
tional hybrid systems. Using CTC, E2E modeling has been
utilized for handwriting recognition tasks as well as attention-
based encoder-decoder systems designed for mathematical
expression recognition tasks [7], [8]. Moreover, E2E has been
incorporated with external language models (LM), effectively
boosting performance [5]. In general, the competitive perfor-
mance obtained by E2E models and their simplicity facilitate
the building of state-of-the-art OnHWR systems. In this work,
we explore building an E2E OnHWR system based on self-
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Fig. 1. Arabic Letters and their Contextual Forms.

attention models.

RNNs have been adopted for sequence modeling and have
provided remarkable accuracy in multiple NLP tasks [9],
[2], [10]. RNNs have been extensively utilized in OnHWR,
including in the build-up of LSTM and gated recurrent units
(GRU). In RNN, each hidden state depends on the previous
one which makes parallelizing computations of RNNs difficult.
Additionally, the hidden states are condensed into a fixed-
length vector which introduces a ’bottleneck’ making capturing
long dependencies difficult as well [10].

As alternatives to RNNs, transformer-based models [11]
have recently yielded outstanding results, achieving state-of-
the-art performance in a variety of NLP tasks, including text
and image-related tasks, and ASR [12], [11], [13]. Trans-
formers rely on a self-attention mechanism, which extracts a
more representative sequence by relating all position pairs of
an input sequence. The self-attention mechanism offers two

attractive features compared with RNNs: (1) computations can
be parallelized and carried out efficiently through batched ten-
sor operations, and (2) self-attention allows direct connection
for long-range and short-range dependencies without prop-
agating contextual information between intermediate hidden
states (as in case of RNNs) [11]. In addition to self-attention,
the transformer model utilizes multi-head attention (MHA) in
order to learn different representations in one instant. As with
RNNs attention-based models, transformers are architecturally
designed as encoder-decoder models, with both the encoder
and decoder containing stacked self-attention networks (SANs)
on top of each other. The cross-attention mechanism is used
to bridge between the encoder and the decoder. The successes
of transformer models have inspired this work in which self-
attention was applied to an OnHWR task.

In this paper, we introduce transformer-based models On-
HWR for Arabic script. The proposed models can transform
a full-sentence handwriting input sequence into the corre-
sponding letter sequence. Basically, we applied CNN layers
to subsample input sequence features (via convolution strides)
and process local relationships between handwriting frames
of the input sequence. The output is added to positional
embedding output to maintain input orders and then fed
into the self-attention encoder (SAE). For the decoder, we
employed two decoders: the self-attention decoder (SAD) and
the CTC decoder. The proposed models were trained and
evaluated against two datasets: Online-KHATT dataset [14]
and CHWA dataset [15]. To the best of our knowledge, there
has been no prior work on OnHWR that has proposed or
applied self-attention models. As far as we are aware, this is
the first attempt to apply the transformer model to an OnHWR
task. Our results show that our proposed SAE-SED model can
outperform existing RNNs models.

The main contributions can be summarized as follow:

• We introduce a new self-attention-based non-recurrent
neural network models for OnHWR task.

• Two architectures have been developed in the decod-
ing stage for the transformer: a SAD decoder and a
CTC decoder.

• The proposed models have been evaluated against
a full sentence (OnKHATT) [14] and a word-based
(CHAW) Arabic dataset [15]. Results were compared
with existing models, with our model evidently out-
performing these models.

The rest of this paper is structured as follows: Section
II details related work previously conducted on OnHWR. In
Section III we layout the architecture of the transformer we
designed for the OnHWR task. Then, experimental results
are presented in Section IV. Lastly, Section V details our
conclusions and recommendations for possible future work.

II. RELATED WORK

OnHWR data have a temporal structure and can be rep-
resented as a sequence of geometrical features vectors over
time. OnHWR relies on sequence modeling, including statis-
tical modeling. Previously, hidden Markov models (HMMs)
have been reportedly utilized to model online handwriting in
multiple published works. In [16], the HMM was designed
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to model stroke segments as handwriting model units. In their
model, letter models are subsequently formed by concatenating
model units as defined in a pronunciation dictionary. Letter
models are integrated as word sequence probabilities to form a
stochastic language model. In [17], The researchers integrated
Gaussian mixture models (GMMs) with the HMMs as continu-
ous HMMs, using the GMMs to estimate observation probabil-
ity distributions emitted by HMM states. Hybrid HMMs with
feed-forward neural networks (NNs) were also part of their
design [18]. Authors in [19] integrated a time-delay neural
network (TDNN) with an HMMs into a single architecture,
combining the recognition and segmentation phases into a sin-
gle hybrid architecture. In their model, this hybrid architecture
was intended to utilize the power of TDNN in the recognition
and power of HMMs in the segmentation.

Traditional approaches involve multiple components that
are separately trained and optimized, introducing suboptimal-
ity. On the other hand, deep learning models work on feature
representation by learning discriminative representation from
the raw data, thus providing an E2E solution for concomitant
training of OnHWR system components jointly. One of the
first works used implicit segmentation that was to be trained
jointly with the recognition phase in [20]. In [20], the con-
nectionist temporal classification (CTC) loss was introduced
as an objective to map input frames into letters and optimize
recognition jointly with LSTM.

Deep CNN was also utilized by [21]. In this study, the
authors integrated CNN with domain-specific technologies to
form an integrated network to improve performance. The
efficacy of a combination of a CNN, RNN, and CTC was
also investigated by [22]. They placed CNN layers at the front
in order to support features representation. Next, they added
LSTM to model the sequence of OnHWR along with a CTC
to optimize the integrated network in an E2E manner. Authors
investigated handcraft features and raw data ingested to CNN
and reported that the proposed model had performed better
with handcraft features. Furthermore, in [1], CNN-BiLSTM-
CTC architecture was used to design an Arabic OnHWR
model.

Recent work by Google investigated a model consisting
of bidirectional LSTM (BiLSTM) with CTC [5]. In this work,
the authors utilized a BiLSTM encoder trained using CTC loss.
In decoding, they used different scorning LMs to incorporate
prior knowledge about the underlying language and decode the
output of the RNN encoder. GRU was employed in S2S with
attention architecture and used in recognition tasks of online
handwriting data of mathematical expression [8], [23], which
was originally used in neural machine translation (NMT) by
[24]. In [25], authors utilized attention encoder-decoder to rec-
ognize unconstrained Vietnamese Handwriting. The encoder
was fronted with a CNN to extract invariant features and a
BiLSTM to encode the output of CNN. The decoder was
composed of BiLSTM layers with attention incorporated with
encoders in order to generate text output. In [26], an edge
graph attention network (EGAT) was proposed as a model that
would perform stroke recognition. Stroke classification was
formulated as node classification in a graph neural network
(GNN).

In Arabic OnHWR, the line of work simply flows the Latin
OnHWR workflow [27], [28]. As with traditional OnHWR sys-

tems, HMMs was utilized in many works for Arabic OnHWR
[29], [30], [31], [32], [33]. Hybrid NN/HMMs were investi-
gated in [34] and a DNN/HMMs model was tested by [15].
CTC based models were employed in several works for Arabic
OnHWR [35], [36], [37], [1]. Most of the aforementioned
studies targeting Arabic OnHWR tested their models against
word-based datasets, with the exception of our previous work
[35], [1] in which we tested our models against both sentence-
based and word-based datasets. In our previous work [35], we
proposed an E2E BiLSTM-CTC model and incorporated LM
with outputs of RNNs to boost the performance of the system.
More recently, we developed a writer adaptation method that
utilized an E2E CNN-BiLSTM-CTC model [1]. In the current
work, we did not integrate with any external module, and we
evaluated our work against the CHWA and Online-KHATT
datasets.

Variations can be reduced by normalization preprocessing
steps. Normalization acts by reducing geometric variants in
order to facilitate extracting features that are relevant to
recognition. In the literature on OnHWR, multiple normaliza-
tion methods, including slant correction, smoothing using a
Gaussian filter, and resampling, have been proposed and tested
against OnHWR data. The most comprehensive preprocessing
steps were detailed by [38].

Features extraction refers to the process of extracting a
meaningful set of features from raw data to be ingested
and eased in the recognition phase. In OnHWR, traditional
features can be classified into local features per point and
global features per stroke or character [38]. Recently, as deep
learning helped perfect features representation, the need for
handcraft features with learnable features representation was
eliminated in such areas as NLP [39], ASR [3], and computer
vision [40]. Two recent works in which the authors used deep
learning for features representation are [5], [21]. Despite its
advantages, deep learning needs large-scale datasets to learn
features representation and OnHWR datasets are rare and
limited in size.

To summarize, state-of-the-art OnHWR models based on
deep recurrent networks have begun to achieve remarkable
recognition results, although training is computationally ex-
pensive and takes a long time to converge. Furthermore, the
problem with pure RNN methods is that information may be
forgotten during the encoding process, thus degrading overall
model performance. In this work, we propose the usage of
transformer-based models for the OnHWR task for the first
time with no-recurrent design. A single, unified E2E architec-
ture capable of recognizing full sentences from input online
handwriting without the need for predetermined lexicons or
language models.

III. TRANSFORMER FOR ONHWR

Typically, the OnHWR is an S2S task in which the
lengths of input and output can differ. In our framework,
the architecture of the transformer is based on an encoder-
decoder structure. Given the handwriting input sequence X =
(x1, x2, ..., xT in), xi ∈ Rdin where T in is the length of input
sequence and din is the number of features. Before feeding the
input into the encoder, we prepended the encoder with CNN
layers to extract better representative handwriting features and
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Fig. 2. The Architecture of OnHWR Transformer.

perform subsampling on the input handwriting frames. Then,
we applied positional embedding to the output of CNN layers
X = (x1, x2, ..., xT ), xi ∈ Rdmodel , where T = |X| after
subsampling. Positional embedding affords the input sequence
a perception of order. The encoder was designed to encode
the input sequence X = (x1, .., xT ), xi ∈ Rdmodel and gener-
ate intermediate updated representation using a self-attention
mechanism h = (h1, h2, ..., hT ), hi ∈ Rdmodel . The decoder
transduces the output sequence using autoregressive approach.
Given h representation and previously emitted characters of the
decoder outputs to that point yi−1 = (y1, ..., yi−1), the decoder
computes the next character yi. This procedure is repeated until
the end of the sentence token is emitted as shown in Figure 2.

We also examined using a CTC decoder instead of the
transformer decoder in which h representation would be
ingested directly into the linear output layer. The output
y = (y1, ..., yL) with length L is emitted by CTC decoder
at once as shown in Fig. 3.

A. Self-Attention

The transformer-based models are built on a new concept
of self-attention as an extension of attention introduced in
S2S [24], [2]. Self-attention is a mechanism to compute
updated representations for each sequence element in parallel.
The attention mechanism would allow each representation
to deferentially consider the representations in every other
position in a sense, and the communication paths would
have the same length for all pairs of elements. The attention
mechanism consists of a query matrix Q, a key matrix K,
and a value V matrix. The basic idea is that a query vector
would be compared to a set of key vectors to determine their

Fig. 3. Self Attention Encoder (SAE) with CTC.

rapport. Each key vector comes paired with a value vector. The
greater the rapport of a given key with the query the greater
influence the corresponding value would have on the output
of the attention mechanism. Transformer employs scaled dot
product attention to map a query with a series of key-value
pairs to output using the following equation:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where Q ∈ RM×dkand K,V ∈ RN×dk denote queries, keys
and values in the matrix form, M and N are the number
of queries and key-value pairs, and dk is the dimension of
representation. Scaling by factor

√
dk is done to prevent

extremely small gradients.

B. Multi Head Attention (MHA)

Using a single attention head, the linear combination of
value vectors leads to an averaging outcome that restricts the
resolution of the learned representations. Therefore, the authors
propose using multiple attention heads that can simultaneously
learn different representations to alleviate this. MHA is com-
puted as follows:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

WQ
i ∈ Rdmodel×dk ,

WK
i ∈ Rdmodel×dk ,

WV
i ∈ Rdmodel×dv ,

WO
i ∈ Rhdv×dmodel

(2)
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First, the inputs: query matrix Q, key matrix K and value
matrix V are linearly projected using WQ, WK and WV .
The projected query QWQ, key KWK and value VWV are
split into h heads. Scaled dot-product attention is computed
for each head i. The independent attention head computed are
then concatenated and linearly projected using WO.

C. Self-Attention Encoder (SAE)

Instead of positional encoding proposed in the original
paper, we adopted learnable positional embedding [41]. The
positional embedding has the same dimensionality as the input
embedding, and we summed them together before feeding
them to the encoder. MHA is the first of two sub-layers of an
encoder layer. After each sublayer, both residual connection
and layer normalization were applied. The residual connection
adds a copy of the input to the output, which means the
input representations before an MHA block are added to
the output representations. Then layer normalization takes the
input vectors and essentially normalizes each one individually
to have zero mean and variance. This is done to assure
training stability. The second sub-layer is a position-wise feed-
forward network, composed of a simple network of two fully
connected layers with value activation between them to each
input representation as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2 (3)

After the second sub-layer, we again applied a residual con-
nection and layer normalization, thus completing one encoder
layer. The aforementioned layers can then be stacked up N
times to form the full encoder.

D. Self Attention Decoder (SAD)

The design of the self-attention decoder mimicked that
of the aforementioned encoder architecture, except that it is
composed of two MHA layers. The first MHA layer applies
attention to outputs generated by the decoder up to a point.
The first layer is masked to avoid attending to future positions,
while the second MHA layer applies attention to the encoder
outputs.

E. The CTC Decoder

CTC objective loss was described by [7], [20]. CTC
directly estimates prediction labels in E2E models without
the need for explicit segmentation or alignment between input
frames and output labels. As with the RNN encoder [35],
the encoder (SAE) outputs sequences with the same length
of input sequence frame length of the input. CTC manages
this condition by introducing an additional blank label b
symbol to the target labels and allowing repetition of labels
or by adding banks across frames to match the lengths of
input frames. Given input handwriting frames x = (x1, .., xT )
,where T = |x| and xt ∈ Rdmodel and output sequence labels
y = (y1, .., yL) ,where L = |y| and yl ∈ Z and Z denote the
(finite) label alphabet, the encoder (SAE) generates posteriors
P (y|x) as follows:

P (y|x) =
∑

ŷ∈HCTC(x,y)

T∏
t=1

P (ŷt|x1, .., xT )

where ŷ = (ŷ1, .., ŷT ) ∈ HCTC(x, y) ⊂ {Z ∪ b}T harmo-
nizes to any possible paths under the condition that ŷ yields
y after dropping the blank symbols b and repeated successive
symbols of ŷ . The CTC loss assumes that each label in the
output sequence is conditionally independent given the input
handwriting sequence.

IV. EXPERIMENTS AND RESULTS

A. Datasets

We tested our models against two open vocabulary datasets,
the Online-KHATT and CHAW. The Online-KHATT dataset
is an open vocabulary dataset collected by KFUPM [14]. It is
comprised of 10,040 sentences of Arabic text written by 623
writers using Windows and Android run devices. Writers that
contributed to the Online-KHATT dataset represent different
ages, education levels, nationalities, genders, and handedness.
This dataset consists of natural and unrestricted handwriting
styles. The Online Arabic handwriting Cairo University dataset
(CHAW) [15] is a word-level collection of Arabic writing.
CHAW was collected using Android Samsung tablets. It con-
sists of 18k of distinct words within a total of 192k samples.
These samples are split into a training set, consisting of 17k
unique words within a total of 180k samples, and a testing set,
consisting of 500 unique words within 12k samples. A total
of 1250 writers had contributed to this dataset. These writers
are of varied ages, genders, and handedness.

B. Model Description

For input features, all preprocessing steps and features
described in [17], [20] are used except delayed strokes repre-
sentation features. The input sequence consists of a vector of
20 features per point. We normalized the input samples using z-
score normalization before samples are fed into the models. For
output, we adopted 160-character units, including 28 Arabic
characters and their variations at different positions within a
word, numbers, blank, punctuations, a start of sentence label
(SOS) and end of sentence label (EOS).

We placed 2 CNN layers for the purposes of handwriting
feature embedding. To stabilize training, we applied batch nor-
malization (BN) [10] after each CNN layer, followed by ReLU
activation. In our models, CNN layers perform subsampling by
time reduction of the input frame handwriting sequence and
retaining more representative features.

For the SAE-SAD model shown in Fig. 2, we stacked 6
SAE encoders and only one SAD decoder layer. In addition,
we used hheads = 4 for MHA. A total of 256 units comprised
the feed-forward sub-layers. For the SAE-CTC model shown
in Fig. 3, we mimicked the structure of the SAE-SAD model,
replacing the SAD layer with a CTC as described in Section
III-E.

In the training phase, we used an Adam optimizer with
a learning rate scheduling [11]. In cross-entropy loss, which
is used to optimize the SAE-SAD model, we applied label
smoothing with a plenty factor of 0.1 [42]. SAE-CTC model
optimized, the entire model using CTC loss. To avoid overfit-
ting during training, dropout, at a rate of 0.3, is used [43]. In
the end, we averaged the parameters of models of the last five
epochs [44].
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TABLE I. THE CERS COMPARISONS OF DIFFERENT HYPERPARAMETERS
COMBINATIONS FOR SAE-SAD MODEL.

# of encoders # of decoder hheads dff CER [%]

4 4 2 128 34.77 %
4 4 4 256 28.64 %
6 4 4 256 23.16 %
6 2 4 256 21.35 %
6 1 4 256 20.03 %
6 1 4 512 25.88 %
8 1 4 256 23.47 %

TABLE II. COMPARING OUR MODELS TO OTHER HYBRID AND E2E
SYSTEMS REPORTING ON ONLINE-KHATT AND CHAW.

Models CHAW dataset Online-KHATT dataset

CER [%] WER [%] CER [%] WER [%]
DNN/HMMs [15] - 25% - -

BiLSTM-CTC-LM [35] 4.08% 14.65% 12.24% 28. 35%

CNN-BiLSTM-CTC [1] 9.43% 34.48% 18.49% 59.94%
SAE-CTC 10.83% 40.68% 23.89% 78.17%
SAE-SAD 5.70% 18.45% 22.88% 56.48%

C. Results

We used the standard matrices word error rate (WER) and
character error rate (CER) to evaluate our experiment results.
WER is calculated by summing up insertions, substitutions,
and deletions present in recognized words divided by the
length of words in the target sentence. CER is calculated in
a similar fashion, this time focusing on characters instead of
words.

To select the best hyperparameters for our proposed mod-

els, we ran multiple experiments of different hyperparameter
combinations, varying the number of blocks in encoders, feed-
forward units in the sub-layers of each block, number of heads
hheads for the encoder and number of blocks of the decoder in
SAE-SAD. For the subsampling CNN module, we followed the
architecture and hyperparameters in [1]. Table I shows different
configurations we had tried for SAE and SAD with the CER
on the validation set.

We trained the SAE-SAD model for 228 epochs and SAE-
CTC model for 60 epochs. Training stopped when models
started overfitting. We then selected the best model with the
lowest CER on the validation set. Fig. 4, shows a comparison
of validation loss and training loss for both SAE-SAD and
SAE-CTC models, respectively. We also compared CER and
WER on the validation dataset for both the SAE-SAD and
SAE-CTC models. We trained all models using a GeForce
GTX 1080 Ti, and we conducted all experiments using a
Tensorflow [45]. At this scale, 228 epochs of SAE-SAD model
run over 112 hours, whilst SAD-CTC model took over 30
hours. In Fig. 4, we see that the SAE-CTC model converges
faster than the SAE-SAD model. However, the SAE-SAE
model took more epochs to converge, and its WER was
superior to that of the SAE-CTC model. We also found that
CER was closer to WER in the case of the SAE-SAD model
than in the case of the SAE-CTC model, indicating the SAE-
SAE model to be capable of capturing words more accurately
at a higher rate than the SAE-CTC model.

The online-KHATT dataset is challenging and contains
sentence-based samples and a subset of segmented characters.
All previous works, [46], [47], [48], [35], [1] conducted their
experiments against the character set in Online- KHATT except

Fig. 4. (a) Training and Validation Losses for (a) SEA-SAD Model (b) SEA-CTC Model and CERs and WERs on Validation Dataset (c) SEA-SAD Model (d)
SEA-CTC Model
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[1], [35]. In our work, we compared our proposed models to
existing systems that had tested their models against the full
sentence-based set in the Online-KHATT dataset.

Table II shows the evaluation results on Online-KHATT
and CHAW datasets. For the hybrid DNN/HMM-based ap-
proach in [15], the authors evaluated their work on the CHAW
dataset, which is a word-based dataset. Furthermore, they
integrated a dictionary with the model output to improve the
results of the proposed approach. For the E2E system in our
previous work [35], we incorporated n-gram LM to boost
the result of the proposed approach, and we evaluated the
proposed method on both Online-KHATT and CHAW datasets.
Naturally, LMs boost the result of DNN models, and in this
work, we have not incorporated any external LM or dictionary.
Thus, this approach is not comparable to this work. The
bottom row in Table II compares our previous CNN-BiLSTM-
CTC [1] model with the proposed models since it does not
integrate any external module. We compared our results with
[1] results of the writer independent model as this result was
achieved on the whole test dataset. The results show that
SAE-SAD model outperforms our prior CNN-BiLSTM-CTC
model [1]. Also, SAE-SAD outperforms SAE-CTC models.
In addition, our proposed SAE-SAD performs better than the
hybrid DNN/HMM model [15].

D. Discussion

Deep learning models learn to model discriminative fea-
tures representation. As shown in Table I, deeper encoders
perform better as we increase encoder layers. This is because
each layer learns at a different level of abstraction for a given
set of features. Multiple encoder layers are capable of gen-
eralization because each layer learns a different intermediate
representation of raw data which helps at the classification
level.

E2E CTC-based models are typically trained jointly using
the loss CTC function. However, CTC-based models assume
that relationships among produced labels from the CTC-based
model are conditionally independent. Thus, such models can-
not implicitly learn the LM from the training data. On the other
hand, transformer-based models with a SAD decoder generate
with each time step a label that is conditionally dependent on
the previously generated ones. Consequently, they are capable
of capturing the LM directly from training data. This would
explain why the SAE-SAD model outperformed the SAE-CTC
model, as shown in Table II. Also, we believe that SAE-SAD
models could outperform traditional models that are integrated
with external LMs in the presence of sufficient data. However,
one advantage of the SAE-CTC model compared with the
SAE-SAD model is its ability to generate the output labels
in parallel at inference time.

CNN networks are widely used in transformer-based ASR
models for down-sampling as well as providing positional
encoding [13]. However, in the case of our OnHWR models,
CNNs did not provide sufficient order information to the
models other than that contributed through subsampling. Thus,
we utilized positional embedding to add order sense to CNN
outputs before feeding them into the encoder. The inability of
CNN to provide sufficient order information may be due to the
nature of handwriting data which contains delayed strokes, and

the limited nature of Arabic handwriting datasets. We found
that adding learnable positional embedding made the model
converge faster.

V. CONCLUSION

In this work, we have introduced self-attention based
Arabic OnHWR models. We trained and evaluated the pro-
posed models against sentence-based and word-based datasets.
We utilized different strategies and structures to improve
the performance of models. Our transformer-based modes
are actual E2E models following the S2S architecture with
a self-attention encoder (SAE) and two decoders, a self-
attention decoder (SAD), and a CTC decoder. Despite we did
not incorporate any external modules such as an LM nor a
dictionary into our architecture design, the proposed models
are capable of recognizing complete sentences and words.
Compared to state-of-the-art models, our transformer models
have outperformed RNN models, which do not use LMs. Our
best SAE-SAD model achieved a 5% CER and 18% WER
against the CHAW dataset and 22% CER and 56% WER
against the Online-KHATT dataset. Planned future work will
involve investigating other features and expanding datasets by
synthesizing new samples. We also plan to incorporate LM
with transformer-based models to boost the performance.
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