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Abstract—Android apps have security risks due to rapid
development in android devices. In the Android ecosystem, there
are many challenges to detecting Android malware. Traditional
techniques such as static, dynamic, and hybrid approach, most of
the existing approaches require a high rate of human intervention
to detect Android malware. Most of the current techniques have
the most significant security challenges to detect Android mal-
ware, the inspection of Android Package Kit(APK) file structures,
increased complexity, high processing power, more storage space,
and much human intervention. This paper proposed Machine
Learning(ML)based algorithms to detect Android malware apps
through feature extraction and classification of grayscale images.
In our proposed approach, convert most of the files of APK such
multiDex, resources, certificate, and manifest files transform into
a grayscale image, using the image algorithm to extract the local
feature of the image. In the paper used different ML models
to classify the local features with the help of multiple images
of malware families. This approach deals with the obfuscation
attack.it can hide in any files of APK. The proposed approach
enhanced accuracy reached up to 96.86%, and computation time
did not increase more than the existing techniques. The quality
of that proposed worked; it has a high classification accuracy
and less complexity validation loss.

Keywords—Android malware; obfuscation attack machine
learning; android application package (APK); android malware
app; grayscale images

I. INTRODUCTION

Android operating system (OS) is the most popular OS
in the smart device ecosystem. Due to intelligence devices,
every android user is very close to and dependent on Android
Application Package (APK). In the present scenario, the an-
droid users sharing sensitive information, banking operation,
e-shopping, locations information, the identity of the users, and
privacy of data are also involved. In Android, device security
is the biggest challenge and severe issue. A survey report of
GDATA in 2019 [1] showed that 1,852,170 Android malware
samples were detected in the first half of 2019. Here, data
showed an android malware is detected every 8 seconds. The
statistical report represents eight mobile infected by malicious
out of ten Android devices [2]. One more research report,
Google detected 86% of the total Android devices market
in 2017. The most popular GlobalStats website showed that
73% of Android-based devices counted sales of total devices
of Android in 2019 [3]. Due to the popularity of Android

devices, Android app becomes more targeting apps compared
to other kinds of apps. As per one evolution report of mobile
malware, 5,321,142 apps were installed on devices, 151,359
mobile apps were detected as Trojans, 60,176 were detected
as mobile ransomware by Kaspersky 2018 [4].

Android users threaten by different types of malware
families; some are distributed by Google Play stores, some type
apps such as downloader, banker, and hidden ads [5]. Most of
the extensive attacks pointing the Android OS. The hackers
mainly focused on attacking games, banking, academics, e-
shopping domain. However, this domain published many ma-
licious apps, which have gaps between the app development
and the number of works. Third-party stores have untrusted
apps; most gaming apps have adware due to the repackaging
technique [6]; with the help of repackaging tools, reassemble
the original app and add the malicious code with the original
code and then assemble again, upload on third party store.
Here, the main challenging task to identify malicious apps is
the most severe issue. Most existing techniques are static and
dynamic; most techniques used behavior and signature base to
identify the android malware.

Static techniques do not require running apps; they dis-
assemble the code and extract the feature of apps to identify.
The dynamic approach always needs to run the application and
identify the android malware through behavior and signature
base. These techniques have significant drawbacks; it requires
more computing power, resources, and space [7]. The dynamic
analysis was evaded by some powerful and intelligent malware
[8]. Moreover, existing dynamic and static techniques used the
manual intervention of humans. It also needs domain expertise
to identify reverse engineering [9]. The existing approach used
single classes.dex file, but in the current scenario, we have
multiclass files, or multiDex files [10], which have not been
converted into a grayscale image to detect malware.

Our proposed work takes care of all essential files such
as multiDex (MD), resources.ARSC(RS), Manifest.xml(MX),
and certificate (CR) files of APK to detect Android malware.
The existing approaches need human intervention to separate
the dex, meianfest.xml resource.ARSC(RS) and certificate files
convert into the grayscale image [11-12].

META-INF: This file very essential in Android apps,
which the information about the signature and information
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Fig. 1. Proposed Methodology to Detect the Android Malware

about the resource list.

Lib: lib file is used to run the specific device architectures
of the native library, such as armeabiv7a and x86.

Res: to Keep the resources such as images. Which is not
compiled with resources.arsc
Assets: Raw information about resources

AndroidManifest.xml: Meta information about the apps
such as version, content, and name of APK files.

Multiple classes.dex: Main and necessary file of apps,
which run java class methods on the devices.

Resources.arsc: Compiled all resources on the devices
which is used by the apps.

Android apps development using java.class files. By the
DX tools convert multiple java.class into the DEX files. DEX
and manifest are essential files in APK, and DEX consists
of the data structure; the interpreter used the different data
types that belong to the data structure. All static reverse
engineering tools used the DEX files to reassemble the apps
for reengineering. Multiple methods are proposed to protect
the DEX files. Our Proposed approach does not require any
human intervention, does not require separate files, and does
not need reverse engineering to find different types of files.
Our proposed approach takes less computation power to detect
the android malware because it takes less time complexity
because it worked without any reverse engineering operation.
Our proposed approach used DEBIAN and AMD datasets
containing 10560 apps (5000 benign and 5560 malicious apps).
The grayscale image datasets, each containing 10560 samples
(5000, 5560 benign, malicious samples, respectively), were
constructed based on diverse files from the contents of the APK

collections. Firstly, all the benign and malicious APK convert
into Grayscale images, a block diagram depicted in Fig. 2.
Secondly, extract the local features from images using image-
based feature extraction techniques such as SIFT, SURF, and
ORB. Thirdly, apply the BOVW approach to convert multiple
local feature descriptor vectors into a single feature vector
to feed into ML classifiers. Finally, extract the global and
local features and apply the different ML classifier techniques
such as AdaBoost K-Nearest Neighbors(KNN), Support Vector
Machine(SVM), and Random Forest(RF). The Proposed ap-
proach worked on the raw bytes of grayscale images; the main
advantage of this approach does not require any reengineering
operation and making different types of datasets. The exist-
ing approaches have the main disadvantage, approaches that
require human intervention. Our approach proposed safe from
human intervention and reengineering operation. Many ML
algorithms are developed for the detection of malware apps.
The most common challenge in Android malware detection
is obfuscation attacks. Malicious code can be hidden in any
files of APK, which is very dangerous to android malware app
detection. Our proposed works have a novelty that now no
needs to do reverse engineering to obtain all files of APK. Di-
rectly conversion of Entire APK files structure converts into a
grayscale image. Most of the existing techniques used separate
files to transform into grayscale scale images to analyze the
image-based android malware detection. All existing methods
do not care about multiple DEX, Share Object (SO), Meta-
Inf, lib files, etc., just observation of manifest, single DEX
files, resource files only. In the meantime, the author should
explain the functions of multiDEX (MD). Resources, ARSC
(RS), Manifest.xml (MX), and certificate (CR) files of APK
separately because they are used to detect Android malware.
Then, the proposed methodology to detect the android malware
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is well represented in Fig. 1.

II. RELATED WORK

Many researchers worked in the domain of Android mal-
ware detection; some are listed below in this section. An
approach designed to analyze the suspicious behaviors and
detection of resources abuse [13]. The major drawback of this
approach is the need to decompile the app and embedded hook
code; this approach used runtime events to track and monitor
the logging. The SafeDroid static framework approached,
which statically analyzed the DEX (Dalvik Executable). By
this approach, extract the binary feature vectors to train various
ML classifiers [14]. Moreover, the multiple features are system
calls, app permission, system events [15]. Those features train
RF classifiers to analyze whether Apps are affected by mali-
cious or not. Some approaches differentiate whether the app is
a malicious or normal app based on patterns permission [16],
the required permissions extracted statically. Most popular
permissions are registered into class [17] to define whether
the permission is benign or malicious. The permissions of
a class determine the benign and malicious app. Moreover,
a data mining technique made the constructive pattern of
permission to determine whether the android app is malicious
or benign. Here, the authors applied the bi-clustering method
to used permissions. Also, the authors used the information
of the Android app package and permissions to train of
KNN, Linear Discrimination(LD) function, and Radial Basis
Function (RBF) network. Moreover, Application Programming
Interface(API) system calls integrated with permissions [18]
are used as features to train the RF classifier of android’s apps
classification. It is a very lightweight method for detecting
Android malware through ML and dataflow-related API sys-
tem calls used in this approach [19]. In [20], the proposed
approach used the n-gram series to extract the features from
the opcode of malicious and benign apps. This approach
used a limited number of features to train RF and Support
Vector Machines (SVM) classifiers. The proposed approach
[21] installed the Android application(APK) on Android de-
vices to extract dynamic features such as networks behavior,
memory consumption, computation power, time-space, battery,
and binder; these features are used to classify malware. This
dynamic approach [22] captured network traffic behaviors of
running Android applications(APK) from different android
devices. This traffic correlates with malware URLs and with
DNS service network traffic for the detection of malware.
An approach [23] used to fog computing reduces the load
and dynamically enhances the computation power to detect
Android malware. Another approach [24] used the API system
calls and network behaviors, collectively applied to detect
Android malware. In [25] this paper, the authors showed
the multiple network behavior and emulator-based dynamic
experiments to analyze android malware. Android operating
system embedded by an extension kit has been proposed [26]
to deals with confused delegate attacks [a genuine APK is
manipulated for communicating with the trusted application for
Inter-Process Communication(IPC)]. To enhance permissions-
based policy [27]at runtime tracking and communication link
analysis by pre-defined policy to prevent malicious behavior.
Moreover, the signature set is constructed by network log
and correlated with the permissions-based methods [28] for
android apps classification. The recent approach [29] uses

reverse engineering techniques to decompile the APK, extract
the source code, and convert it into a grayscale image. The
constructed dataset of images is used to train a convolutional
neural network (CNN) to detect the malicious app. API system
calls and semantic information is used to train the Short-
Term Long Memory (LSTM)[30] model to classify the android
malware. Moreover, a hybrid approach includes CNN and
deep autoencoder (DAE) [31] to detect Android malware.
In [32], this proposed approach used the hybrid scheme; it
extracts dynamic and static behavior features used to train
the deep learning model. Also, in [33] approach extracted
the four features, such as permissions, rate of permission,
system events, APIs system calls used to train the collective
RF classifier. DREBIN [34] is a static analysis approach;
this approach used similar malicious apps as per experiment
works (5,560 malicious apps). This method used as many
possible features of apps and was added with joint vector
space. Due maximum number of features and determination
increased the complexity level. This paper [35] proposed the
classification of the dependency graph. The features extracted
from the dependency graph make the semantic feature set from
the weighted contextual API of the graph. The metric of the
homogeneous app determines same the application behaviors
The sensitive and important API call allocated the weight
according to the Android malware family [36]. Every app
implemented the function call graph (FCG), and each FCG
construct the sensitive API call-related graph (SARG). The
SARG has the parent and sensitive API call nodes. Here, train
multiple machine learning approaches to classify the common
behavior of the malware family. Moreover, from source code is
extracted from hexadecimal representation and converted into
RGB images [37]. The color RGB dataset is used to train
a CNN classifier to classify Android malware. Furthermore,
the Android (APK) application converted to grayscale images,
then extract the feature of grayscale images for training the RF
classifier for classification in [38]. Also, in [39], extracted the
feature from 2D of Opcode Sequences and assigned the weight
based on their occurrence. The weight value is converted
into grayscale images. The image detection approach is very
limited to detecting Android malware domains. Local and
global feature extraction of the entire APK is more effective
than existing approaches. Our paper has mainly converted the
image into grayscale without any reverse engineering tools. It
does not require separating the files of APK such as resource,
Multidex, manifest, and certificate. Moreover, it does not
require human intervention; most existing techniques have a
common issue of human intervention and extracting the source
code from reverse engineering tools.

III. METHODOLOGY

This section discussed the full detail of the proposed model.
The first subsection briefly describes constructed dataset, the
other section described the brief details of extracted features,
and the last section briefly describes the training Machine
Learning (ML) classification.

1) Dataset: this dataset. Our experiment setup used the
5560 files of android malware and 5000 benign apps from
AMD, which have 179 different Android malware families. In
the investigation of research of android malware from 2012
to 2020, most of the researchers used the DREBIN dataset.
The DREBIN dataset has the most famous malware such as
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Fig. 2. APK to Image Conversion Process

DroidKungFu, GingerMaster, GoldDream, and Fake Installer.
The primary objective of our proposed approach is to detect
Android malware. The DREBIN dataset has the most famous
malware such as DroidKungFu, GingerMaster, GoldDream,
and Fake Installer. The primary objective of our proposed
approach is to detect Android malware. Many researchers
used the DREBIN dataset to analyze the android malware,
and various institutions utilized this dataset to investigate
Android malware. Our Proposed models used the DREBIN
dataset because it has 179 different android malware families,
appropriate for any investigation dataset.

A. Transformation APK into Grayscale Images

The Android APK files convert into grayscale images [40].
In this proposed article, the authors construct the malware
images using files of the Android app from malware APK.
The APK is transformed into 8-bit vectors, and then the 8-bit
vector transforms into a grayscale image. Every substring has
an 8-bit value as a pixel converted into a decimal value between
0-255, shown in Fig. 2. Any digital file on the memory device
is stored as a stream of a bit of ’0’ and’ 1’. In the model read
every APK file as a binary stream, group every eight bits, and
store them in a new file with the image file extension.

B. Local Features Extraction

The local feature is a defined image object (basically, in the
image, a cluster of pixels or small blobs) [41]. The local feature
of images is the most stimulating point in the image, which
defines the image descriptor vectors(DV) or feature vectors.
The set of feature vectors is described by different types of
algorithms. Our proposed approach used the four different
algorithm types to extract the local features as Scale invariant
feature transform(SIFT), Speeded up robust features (SURF),
Oriented FAST, and Rotated BRIEF(ORB). Those methods are
very famous in the malware domain for better accuracy.

1) SIFT: The Scale invariant feature transform (SIFT)
method is applied to extract the local feature key points. This
method computes the Laplacian of Gaussian on the multiple

scale level to provide a better result. This SIFT algorithm
obtains the local minima and local maxima of stimulating
points with the help of LoG at different scale levels. The
several Laplacian of Gaussian on different scale levels (ρ),
by the scale, obtain the local maxima, minima of every
single pixel in the image. The Laplacian of Gaussian (LoG)
calculation is costly for feature points to more or less extent.
The Laplacian of Gaussian(LoG) approximately is determined
by Eq.1.

ρ∇2L =
∂L

∂ρ
=
L ( x, y, kρ)−L (x, y, ρ)

kρ−ρ
(1)

where L(x,y,ρ) is the Laplacian Gaussian on the position
(x, y) at scale ρ. L(x,y,kσ) is the Laplacian of Gaussian(LoG)
on the position (x, y) at scale kρ, and the kρ is a scale a
little more than ρ. The SIFT methods identified the stimulating
points at the level of 128-bit descriptors in Eq.1. The extracted
feature from the input images through the SIFT matched each
feature of k nearest neighbors. The main objective of SIFT
is to object recognition techniques to panorama stitching. As
a result, the system is insensitive to the images’ ordering,
positioning, scale, and illumination. Two-Dimension isotropic
measure by the Laplacian to the second spatial derivative of
an image. The Laplacian Gaussian approach highlights areas
of speedy intensity change and is often used for zero-crossing
edge detectors. In our system, the Gaussian smoothing filter
reduces its sensitivity to noise for smoothing with something
approximating.

2) SURF: The algorithm that Speeds up robust fea-
tures(SURF) [42] is the faster algorithm, and it can be the
replacement for SIFT. This algorithm is faster and more
robust for similarity comparison and similarity invariant of
images. SURF algorithm plays a vital role in the real type
of tracking and recognition of the object. The main merit of
this algorithm is box filters approximation and calculation of
the integral images. Additionally, it has the location and scale-
based determinant of the Hessian matrix. The Hessian matrix
has good performance to obtain the image key points, and it
has good accuracy. In the SURF algorithm filtered by Gaussian
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kernel, with location X=(x,y), and scale ρ in Eq.2.

H(x, y) =

(
Sxx (x, ρ) Sxy (x, ρ)
Sxy (x,ρ) Syy (x,ρ)

)
(2)

where, Sxx (x,ρ) has a Gaussian kernel derivative on the
point of x in the image, and similarly for Sxy(x,ρ) and Syy
(x,ρ). Haar-wavelet responses determine horizontal and vertical
paths to the neighborhood of size six and used the 64 Bit
Descriptor. Within interest point neighborhood, distribution of
Haar-wavelet responses obtained from descriptor description.
We deed integral images to speed up the system. Additionally,
using the 64 Bit Descriptor dimensions to improve the system’s
performance for feature computation increases robustness and
matching. In the invariant to rotation, we recognized the
reproducible orientation for the interest points. For this reason,
we obtained the Haar-wavelet responses in the vertical and
horizontal directions. The circular neighborhood of radius 6s
around the interest points, with s the scale that the interesting
point detected. Therefore, our proposed approach uses integral
images for fast filtering again. Only six actions are needed to
SURF: Speeded Up Robust Features, the seventh determines
the feedback in the vertical and horizontal directions at any
scale.

3) ORB: The feature vector Oriented FAST and rotated
BRIEF (ORB) is a high-speed keypoint detector [43]; in
BRIEF, descriptors have much modification to improve the
algorithm performance. The ORB algorithm detects the key-
point in images by using the FAST algorithm. Also used the
Harris corner to detect the key point. Moreover, it used the
multiscale feature with 32 bits BRIEF-based descriptor

(S;x, y) =

{
1 : S(x) < S(y)
0 : S(x) ≥ S(y)

}
(3)

where S is the flattened spot in the image, and S(x) is the
intensity in Eq. 3. In the implementation of the FAST algo-
rithm, we extract the kernel windows from single line buffers.
In the approach, the center pixel is subtracted from each circle
pixels. The result is measured with the minContrast value
whenever the obligatory number of consecutive pixels exceeds
the threshold level; the center is marked as the corner. For the
circle region, evaluate the sum-of-absolute-difference (SAD)
metric. Only the differences that exceed the minimum contrast
threshold level are involved in the metric. This calculation
means that the algorithm detects a light center pixel surrounded
by dark pixels or a dark center pixel surrounded by light pixels
as corners with high metrics. The Harris algorithm used five
image filters, and three circular windows and evaluated the two
gradients. The design of the calculation of the eigenvalue of
the Harris matrix practices three multipliers and three adders
and is pipelined to optimize performance.

C. Machine Learning (ML) Classification

Our proposed models used four types of Machine Learn-
ing models such as Adaboost, K-Nearest Neighbors(KNN),
Support Vector Machine(SVM), and Random Forest(RF) to
classify the extracted local features from Grayscale images.

1) K-Nearest Neighbors (KNN): K-Nearest
Neighbors(KNN) is a supervised ML models, which is
used for the classification of input data. It recognizes data
points classified into multiple classes and calculates the class
label for the new input data point. This method is famous
for classifying the object into the train closest feature space.
The nearest neighbors are signified by K in KNN, and the
maximum unknown data points classify near to K neighbors.
The primary benefit of the KNN algorithm uses the minimum
distance to search the nearest neighbors. The selection of
the number of nearest neighbors is essential to obtain the
augmented KNN model. The selection of the number of
nearest neighbors is essential to get the augmented KNN
model.

2) Support Vector Machine (SVM): Support Vector Ma-
chine(SVM) also is a supervised ML algorithm. In this model,
take the past input data and predict the feature output. The
primary purpose of SVM is classification, but it is also used for
regression statements. The SVM algorithm chooses the support
vectors in the dataset at the extreme points. It selects the
maximum distance between the support vector and hyperplane
as much as possible. A class in support vectors has the
maximum distance from the hyperplane. The distance margin
defines as the distance between different support vector classes.
The sum of D+ and D- is calculated as distance margin, where
D-, hyperplane has the minimum distance from the closest
negative point and D+, hyperplane has the minimum distance
from the closest positive point. The main aim of SVM is to
find the maximum distance margin, which gives the optimal
hyperplane. The optimal hyperplane always gives excellent
classification. In the case of non-linear, which produces low
and no distance margin, SVM showed misclassification. In
that scenario, SVM used the kernel functions to convert the
non-linear data into 2D or 3 D dimension arrays. The minor
dimensional feature is converted into high dimensional feature
space by the kernel functions.

3) Random Forest (RF): Random Forest (RF) is one of
the most common and powerful supervised ML algorithms.
RF executes efficiently massive datasets and predicts accurate
results. This algorithm support both types of functionality, such
as classification and regression—the decision tree support RF
to enhance the accuracy and flexibility. In general, with more
trees in the forest, the output would be more predictable. The
more trees in the RF reduce the risk of when a statistical
model fits exactly against its training data. RF can obtain good
accuracy in case of missing a large proportion. According to
attributes, the new object classifies, and the decision tree gives
the classification output per the ruleset.

4) AdaBoost: The first boosting algorithm is AdaBoost,
which solved multiple problems. The AdaBoost constructs a
robust classifier from multiple week classifiers. This algorithm
keeps a single split of the decisions tree with the week stump,
known as the decision stump. AdaBoost always keeps more
load on tough to classify, easy to handle the problem, and
do less. This algorithm has solved both types of problems,
such as classification and regression. Multiple APK’s are
repackaged, which steal code by reverse engineering methods
and reassemble with another name by adding adware or small
scripts of malicious code into repacked APK. Here the APK
has very slightly changed, so the dataset has slight noise in
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data We found that in the case of less noisy data, only a few
hyperparameters need to be tuned to improve the Adaboost
performance. In the case of the small number of input vari-
ables, KNN models provide excellent performance. Whenever
we increase more number of input variables, the performance
of KNN degrades. In our dataset, we used multiple DEX files
based on APKs. All files structure of APK were converted
into grayscale images, which increased the number of input
variables and memory size and complexity of the KNN model.

IV. PROPOSED MODELS

In our work, we proposed an image-based detection of
android malware using machine learning classification. In
this process, Android APK converts into a grayscale image,
extracts the image feature using image processing techniques,
and trains the machine learning classification to detect ma-
licious or benign apps depicted in Fig. 1. The novelty of
this approach the entire files of APK transforms into images
to deal with the obfuscation attack. Most of the existing
techniques used only three files of APK to transform into
the image. The main disadvantage of the other techniques
requires decompiling the APK and separating the files such
as DEX (MD), ARSC(RS), Manifest.xml(MX), and certificate
files. Moreover, the disadvantage is that it does not take
care of the mutltiDEX files. If APK has more than 6500
methods in the app, it needs to create the multiDex files
[40]. If the malicious code is embedded with second or third
classes.dex files, no existing algorithm detects the Android
malware app from multiDex class files. The primary source
of the malicious code is embedded into classes.dex files.
Our models used three algorithms (SURF, ORB, and SIFT)
to extract local features (LF) descriptors from the grayscale
image dataset. One by one, local features (Extracted from
each image) train to multiple machine learning algorithms (RF,
KNN, DT, and AdaBoost). The multiple descriptors represent
an image. Above mentioned machine learning algorithm gave
the multiple vectors as outputs, which cannot be direct as
inputs for any machine learning algorithm. This model used
the Bag of Visual Words(BOVW) to create one feature vector
with multiple local feature descriptors [41]. The BOVW uses
any clustering techniques to fragment the extracted descriptors
vectors into multiple clusters. Then the cluster is predicted by
the clustering algorithm.

A. Accuracy Assessment

The accuracy metrics for multiple Machine Learning mod-
els were determined based on the precision, recall, f1-score,
and accuracy in Eq. 4, 5, 6 , 7 respectively , and precision in
fraction of data entries of malicious activity are categorized as
truly Android malware.

Precision =
True Possitive

True Possitive+False Possitive
(4)

The recall is the fraction of malicious apps data of correctly
classified malicious families.

Recall =
True Possitive

True Possitive+False Negative
(5)

TABLE I. OBTAINED ACCURACY, PRECISION, RECALL AND F1-SCORE
FROM MULTIPLE MACHINE LEARNING MODELS USING MULTIPLE LOCAL

FEATURES EXTRACTOR METHODS

Machine Learning Methods
Performance
Evaluator

Feature
Vectors
Methods

K-Nearest
Neigh-
bors

Support
Vector
Machine

Random
Forest

AdaBoost

Accuracy SIFT 92.42% 94.06% 94.65% 93.16%
SURF 94.69% 95.37% 96.33% 96.86%
ORB 89.41% 89.83% 91.42% 92.83%

Precision SIFT 94.48% 91.00% 95.11% 95.71%
SURF 95.79% 94.63% 97.44% 97.41%
ORB 90.46% 89.13% 92.48% 93.36%

Recall SIFT 91.31% 94.97% 93.42% 92.66%
SURF 93.47% 96.29% 95.09% 96.35%
ORB 88.33% 90.70% 90.24% 92.34%

F1-Score SIFT 92.40% 94.14% 94.57% 93.18%
SURF 94.71% 95.45% 96.25% 96.88%
ORB 89.39% 89.91% 91.34% 92.85%

f1- score is the harmonic mean between sensitivity and
precision.

f1− score = 2∗ Precision∗Recall
Precision+Recall

(6)

The accuracy or complete classification accuracy is the
portion of all suitably classified negative and positive records
with the losses.

Accuracy =
TN +TP

TN +FN +TP+FP
(7)

Cross-EntropyLoss = − 1

N

n∑
o=1

log p model(yoε Cyo) (8)

V. EXPERIMENT

The experiment has been designed on Intel coreTM i-7
10700 CPU @ 3.8 GHz with 16 GB RAM. The experiment
used the BOVW algorithm, which needs a size 120 codewords
vocabulary. The K-means technique collected all key points
from created datasets, and it has the codeword vocabulary
size 120. Moreover, the proposed model used Opencv, Sklearn
python libraries for the implementation of laboratory works.

The performance of different Machine Learning models has
been achieved in terms of the whole percentage of true positive,
true negative, false positive, and false-negative decisions. Our
local features extractor models, such as SIFT, SURF, and
ORB, extract key points from the image dataset. The extracted
local feature passed to train four renowned machine learning
models, i.e., K-Nearest Neighbors(KNN), Support Vector Ma-
chine (SVM), Random forest, and AdaBoost. The complete
result with multiple ML models and local feature extractor
models is presented in Table I and shown in Fig. 3. The
validation set of the accuracy and losses in our proposed works
proves that the results are correct, not overfitting problems
depicted in Fig. 4. The high accuracies, precision, recall, and
Fi-score from different machine learning models are displayed
in Table II and Fig. 3. if the losses decrement and accuracy
developments of both groups are like the same, then the
process aborted changed the modeling parameters to remove
the overfitting problem. Last, the AdaBoost model accuracy
touched 96.86%. The traditional machine-learning algorithm
shows the performance of each algorithm in Table III and is
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Fig. 3. Performance of Multiple Machine Learning Models

Fig. 4. (a): Train and Validation of AdaBoost Accuracy; (b): Train and Validation Loss of Model using SURF Local Feature

Fig. 5. Comparison of different Existing Approaches
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Fig. 6. Execution Time of the Proposed Model with Feature Extraction

TABLE II. PROPOSED MULTIPLE MACHINE LEARNING MODELS WITH
ACCURACY, PRECISION, RECALL AND F1-SCORE

ML Method Accuracy Precision Recall F1-Score
K-Nearest Neighbors 94.69% 95.79% 93.47% 94.71%
Support Vector Machine 95.37% 94.63% 96.29% 95.45%
Random Forest 96.33% 97.44% 95.09% 96.25%
AdaBoost 96.86% 97.41% 96.35% 96.86%

TABLE III. COMPARISON OF DIFFERENT EXISTING APPROACHES

Model Accuracy Types
Ünver [11] 98.75% Image-based
Jaiteg Singh [12]. 92.59% Image-based
AspectDroid[13] 94.68% Hybrid analysis
SAFEDroid[14] 98.40% Static analysis
DroidDet[15] 88.26% Static analysis
Wang[16] 94.00% Static analysis
Yen[23] 92.67% Image-based
FalDroid[33] 94.20% Static analysis
DREBIN[34] 94.00% Static analysis
DroidSIFT[35] 93.00% Static analysis
R2-D2[36] 93.00% Image-based
Yang[37] 95.42% Image-based
Karimi[38] 97.00% Image-based
Proposed 96.86% Image-based

depicted in Fig. 4. The accuracy value maximum 96.88% in
the AdaBoost model, with losses, using SURF local feature
extraction models in Fig. 4. In our work, computation time
is scanned in each step of all ML models, inclusive of the
feature extraction process, training, and testing of the model.
The computation time from different ML models, the feature
extraction process, training, and validation are presented in
Table IV and Fig. 6.

VI. CONCLUSION

Our proposed model uses an image-based framework to
classify the android app, whether malicious or benign app.
Most image-based detection techniques do not care about
the multiDex files of APK, using only a single class.DEX
file for image conversion. In existing techniques of image-
based malware detection found [11-12,23,36,37] the maximum
detection probability of malware in classes.DEX file, not in
another file such as Resources.ARSC, Manifest.xml, certificate
files, if the hackers hide malicious code into second or third
classes.DEX files, there is no chance to detect the malware
in previous approaches. In our experimental works, transform

TABLE IV. THE EXECUTION TIME OF THE PROPOSED MODEL

Feature
Vectors
Methods

Machine Learning Models

K-Nearest
Neighbors

Support Vector
Machine

Random
Forest

AdaBoost

SIFT 941.63 945.87 941.03 943.91
SURF 827.00 830.64 826.72 828.91
ORB 43.36 44.87 44.10 266.43

all classes.DEX APK file’s contents into grayscale images. We
used the image processing techniques to extract the local fea-
ture of images, including SIFT, SURF, and ORB models. The
Local features are classified using machine learning models
(KNN, SVM, RF, and AdaBoost) to detect Android malware.
The achieved results exhibited that the proposed approach
overtakes the existing techniques in classification accuracy
and computational time. Our work showed that the AdaBoost
detection rate reached up to 96.86 %, shown in Fig. 5, and run
time did not exceed 0.0195 s on average for each sample. In
the future, we will try to use the local and global features of
images on multiDEX files to classify the Android malware to
improve accuracy.
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