
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

A Hybrid Heuristic for a Two-Agent Multi-Skill
Resource-Constrained Scheduling Problem

Meya Haroune1
Université de Tours

Laboratoire d’Informatique
Fondamentale et Appliquée

de Tours (LIFAT) ROOT ERL-CNRS 7002
Université de Nouakchott Al-Aasriya

Cheikh Dhib2
Institut Supérieur du Numérique

Nouakchott, Mauritanie

Emmanuel Néron3
Université de Tours

Laboratoire d’Informatique
Fondamentale et Appliquée

de Tours (LIFAT) ROOT ERL-CNRS 7002
France, Tours

Ameur Soukhal4
Université de Tours

Laboratoire d’Informatique
Fondamentale et Appliquée

de Tours (LIFAT) ROOT ERL-CNRS 7002
France, Tours

Hafed Mohamed Babou5

École Supérieure de Polytechnique
Unité de Recherche Intelligence Artificielle

Nouakchott, Mauritanie

Farouk Mohamedade Nanne6
Université de Nouakchott Al-Aasriya

Unité de Recherche Calcul Scientifique,
Informatique et Science de Données

Nouakchott, Mauritanie

Abstract—This paper addresses an industrial case of the two-
agent scheduling problem with a global objective function. Each
agent manages one or several projects and competes with another
agent for the use of common multi-skilled employees. There is a
pool of employees, each of which can perform a set of skills
with heterogeneous performance levels. The objectives of the
two agents are both to minimize the total weighted tardiness
of its tasks. Furthermore, We assume that some constraints (soft
constraints) can be violated when there is no feasible schedule for
the problem. Thus, the global objective function minimizes the
constraint violations by reducing the undesirable deviations in the
soft constraints from their respective goals. The overall objective
is to find a schedule that minimizes both agents objective functions
(local objectives) and the global objective function. We provide
a mixed-integer goal programming (MIGP) formulation for the
problem. In addition, we present a hybrid algorithm combining
an exact procedure, a greedy heuristic, and a genetic algorithm
to find an approximate Pareto solution set. We compare the
performance of the hybrid algorithm against the corresponding
MIGP formulation with simulated instances derived from real-
world instances.

Keywords—Two agents; multi-skilled employees; multi-project
scheduling; hybrid genetic algorithm; MIGP

I. INTRODUCTION

In the last decade, multi-project scheduling studies have
introduced a new environment where different agents (local
decision makers) are involved in the scheduling process. This
is very common in some real-life situations, where tasks
to be processed belong to different subsets and are subject
to different performance measures. Such a situation can be
encountered in an organization that deals with multiple projects
for which the customers do not have the same requirements.
For instance, some customers may be more demanding on
delay, some on cost, and others on both at the same time,
etc. To deal with these different requirements, new extensions
of multi-project scheduling problems have been introduced, in
which at least one performance measure is applied on some

tasks and not on the whole set. In addition, subsets of tasks
compete for the use of common processing resources, which
can create conflicts. These kinds of problems are called multi-
agent scheduling problems [1].

The authors in [2] and [1] were pioneers who introduce the
multi-agent concept into scheduling problems. Particularly in
the two-agent scheduling model, two agents want to perform
their respective tasks on common processing resources. Each
agent has its own subset of tasks, which is entirely distinct
from the subset of the other agent, and wants to optimize some
scheduling criterion that depends on its tasks only. The goal
is to determine the best compromise solutions that satisfy the
agents’ criteria.

This paper studies, to our knowledge for the first time,
a model integrating the concept of the two-agent scheduling
and multi-skill project scheduling. The two agents compete
on the usage of common multi-skilled employees. Each agent
manages one or more software projects that must be carried
out simultaneously and completed within a fixed horizon (con-
secutive weeks). Each project consists of a set of independent,
preemptive tasks; and each task belongs to one of the agents.

Each task is associated with a release date, a due date, and
a penalty value must be paid for each week of delay. These
release and due dates are negotiated with the final client and
are contractually fixed. Thus, the non-respect of one of these
due dates may lead to the payment of penalties. Our aim is
to reduce these penalties. We consider that each task needs
exactly one skill and must be performed by one employee
who possesses the corresponding skill with an efficiency level.
Furthermore, each task has a nominal load which corresponds
to a theoretical time needed to perform this task. The nominal
load for each task may be compressed according to the
efficiency level of the employee in charge of that task.

There is a pool of multi-skilled employees with known
weekly availability. Each employee may be involved in more

www.ijacsa.thesai.org 915 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

than one project at the same time with a maximum quota
(percentage of time) allotted to each project. These quotas are
considered here as variables and need to be calculated by the
procedure of scheduling.

Furthermore, we consider that some constraints (soft con-
straints) can be violated when there is no feasible schedule
for the problem. The global objective function seeks to min-
imize these constraint violations by reducing the undesirable
deviations in the soft constraints from their respective goals.
The objectives of the two agents are both to minimize the total
weighted tardiness of its tasks.

The problem under study is a general instance of the uni-
form parallel machines scheduling problem with preemptions
and release dates Qm | rj , pmtn |

∑
wjTj , which is known to

be NP-hard ([3]). However, we focus here on the case with
more than one agent with different objective functions and
resources with heterogeneous skills, which obviously increases
the difficulty of solving an instance considerably. Our goal
in this paper is to design effective heuristics that are able to
generate a good approximation of the Pareto set.

The rest of the paper is organized as follows. The next sec-
tion reviews the relevant literature on the two-agent schedul-
ing problem. Section III describes the addressed problem in
more detail. Sections IV and V present a mixed-integer goal
programming (MIGP) formulation and heuristic approaches,
respectively. Afterward, section VI-B5 presents the results of
experiments conducted to analyze the performance of the pro-
posed methods, and then Section VII concludes and presents
future works.

II. LITERATURE REVIEW

This section presents the literature related to two schedul-
ing topics that have been addressed so far separately: the multi-
skill resource-constrained project scheduling problem (MS-
RCPSP) and the multi-agent scheduling problem. In Section
II-A, we discuss multi-skill project scheduling studies that
focused on the multi-project environment. In Section II-B,
we discuss multi-agent scheduling studies that specifically
interested in the case of two agents competing on parallel
machines. A synthesis of the reviewed literature is given in
Section II-C.

A. Multi-Project Multi-Skill Resources-Constrained Project
Scheduling Problems

The multi-skill Resources-Constrained Project Scheduling
problem (MS-RCPSP) is an extension of the well-known
Resource-Constrained Project Scheduling Problem (RCPSP),
whereby multi-skilled resources (human resources or multipur-
pose machines) are involved. This multi-skill RCPSP extension
focuses more on the particularities of human resources, such as
the skills they master and sometimes the level of effectiveness
in exercising those skills.

The author in [4] were the pioneers who introduced multi-
skill resources into the project-scheduling field. Since then,
many researchers have focused their studies on this problem
considering many properties and optimizing various objectives.
Particularly, most of the studies focused on MS-RCPSP merely
assume that all tasks to be scheduled belong to the same

project. In this review, we focus on a multi-project setting,
the reader interested in the mono-project case is referred to
the papers by [5], [6].

The MS-RCPSP has been considered in a multi-project
environment. The author in [7] consider a multi-project set-
ting with heterogeneous skill resources and learning effect.
The concept of learning effect means that the efficiency of
resources will increase by doing more. The objective function
in their study minimizes outsourcing costs. The authors in [8]
and [9] considered resources with heterogeneous skills that
influence the speed of work of resources. The author in [8]
subdivided projects into work packages, with earliest and latest
start periods associated with projects. However, [9] considered
earliest and latest start periods for tasks. Thus, each task
has exactly one predecessor task linked with it by maximum
and minimum start-to-start time lags. The objective functions
in both studies minimize the costs associated with internal
and external resource usage. The author in [10] extended the
same model by considering a stochastic setting. The author
in [11] considered heterogeneous skills and assumed that
the efficiency levels of skills may increase or decrease task
duration. The objective is to assign to each project a subset
of resources (team), with each team member can be assigned
to several projects at a time. The author in [12] focused on
a multi-objective version for project selection and scheduling
problem, that includes heterogeneous skills, variable capacities
over time, learning and forgetting effects. The joint problem
of project selection and scheduling consists in selecting then
scheduling an optimal portfolio of projects among several
available projects. The objectives of the authors are the maxi-
mization of the economic gains of the selected projects and the
maximization of the efficiency increase of the resources due to
learning effects. The author in [13] developed a similar model
for multi-project scheduling and multi-skilled staff assignment
for IT product development. The objective functions they
considered consist of maximizing the efficiency gain and
minimizing the product development cycle time and costs.
The author in [14] investigated a roughly similar model with
uncertainty and learning effect. They assumed that each task
requires several skills with a minimum level per skill and its
processing time is related to resource efficiency. The book of
[15] covers three versions for multi-project scheduling, namely
project selection and scheduling, workforce assignment, and
resource leveling. In the recent paper of [16], an integrated
model of multi-mode and multi-skill project scheduling prob-
lem is considered. The multi-skilled resources have different
skill levels, resulting in different processing times for the same
task. The author focused on the minimization of the total
makespan of projects.

B. Two-Agent Scheduling Problems

To better position our work more clearly in the multi-agent
scheduling literature, we decide to limit our review to the
related literature, which topics may be classified into (1) two-
agent single-machine scheduling problems and (2) two-agent
scheduling problems in a parallel machine environment.

1) Two-Agent Single-Machine Scheduling Problems: There
is an enormous amount of literature investigating two-agent
single-machine scheduling problems. Because of the large
amount of literature, we only discuss in this section those

www.ijacsa.thesai.org 916 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

including due date-based objective functions. Agnetis et al
([1]) studied several scenarios for different combinations of
objective functions of the two agents involving a single ma-
chine. The problems addressed consist in minimizing the value
of one agent, while maintaining the objective value of the other
agent below or at a fixed level. The objective functions they
considered include the maximum of regular functions (fmax),
number of late jobs (

∑
Uj), and total weighted completion

times (
∑
wjCj). The author in [17] deal with a similar

model with the goal to minimize the total completion time
(
∑
Cj) of one agent with the restriction that the number

of tardy jobs (
∑
Uj) of the other agent cannot exceed a

given number. The author in [18] addressed several two-agent
single-machine problems consisting in minimizing the total
weighted completion time of one agent, subject to an upper
bound on the value of the other agent, which may be: total
weighted completion time, maximum lateness, and maximum
completion time. More recently, [19] considered a similar
model with an objective to minimize the weighted number
of tardy tasks (

∑
wjUj) of the first agent, subject to an upper

bound on the weighted number of tardy jobs of the second
agent. The author in [20] proposed a model similar to the
models above with the objective to minimize the total weighted
late tasks of one agent, while keeping the value of the total
completion time of the other agent lower than or equal to a
given value. The authors of [21] addressed a two-agent single-
machine scheduling problem with learning effects where the
objective is to minimize the total tardiness (

∑
Tj) of the first

agent, subject to an upper bound on the maximum tardiness
(Tmax) of the second agent. The author in [22] extended the
model of [17] to the case with learning effect. The objective
was the minimization of the total weighted completion time of
the first agent with the restriction that no tardy job is allowed
for the second agent. The author in [23] considered a two-agent
single-machine scheduling problem with assignable due dates.
The goal is to assign a due date from a given set of due dates
and a position in the sequence to each task so that the weighted
sum of the objectives of both agents is minimized. The authors
considered several combinations of the objectives, which in-
clude the maximum lateness, total (weighted) tardiness, and
total (weighted) number of tardy tasks. In [24], the author
extended the same model by minimizing the objective of the
first agent with an upper bound on the value of the objective of
the second agent. The author in [25] considered unit processing
time tasks and a common due date (see Section II-B2). The
author in [26] tackled a two-agent single-machine scheduling
model that considers setup times between agent tasks. The
authors considered several combinations of the objectives: the
maximum lateness, the total (weighted) completion time, and
the (weighted) number of tardy tasks. The author in [27]
considered the same setting with the objective to minimize the
total weighted completion time of the first agent subject to an
upper bound on the makespan of the second agent. The author
in [28] assumed that tardy a task incurs a tardiness penalty cost
which can be avoided by compressing the processing time of
some tasks, which includes an additional cost. The objective
of each agent is to minimize the total tardiness penalty cost
plus the total compression cost. The authors considered two
single-machine scheduling problems. The first problem is to
minimize the weighted sum of the objectives of the two agents.
The second problem is to minimize the objective of one agent
with a constraint on the value of the objective of the other

agent.

2) Two-Agent Scheduling on Several Machines: Consider-
ing the above literature, it can be seen that studies including a
parallel-machine environment are relatively limited. More pre-
cisely, most of the studies on the two-agent parallel-machine
scheduling problem focused on identical parallel machine
environment. The author in [29] were the first to consider
this setting, where the objective of one agent is to minimize
the makespan and that of the other is to minimize the total
completion time. The author in [30] studied two models of
two-agent scheduling on identical machines where the goal
is to minimize the makespan and the total completion time
of one agent respectively, subject to an upper bound on the
makespan of the other agent. The author in [31] interested in
a similar model with the goal to minimize the total weighted
completion time of the first agent, subject to an upper bound
on the value of the makespan of the second agent. The author
in [32] tackled also a similar model with the goal to minimize
the makespan of the first agent, subject to an upper bound on
the makespan of the second agent. The author in [33] studied
several two-agent scheduling problems for identical parallel
machines with preemption and release dates for either one set
or both sets of tasks. The objective functions they considered
are the total (weighted) completion time, the number of tardy
tasks, the total tardiness, the maximum lateness, and a regular
function of type fmax. The author in [34] considered a two-
agent setting with a single machine or two identical machines
in parallel. The processing times of the tasks of one agent
are compressible at an additional cost. The authors considered
several different objective functions: the regular function fmax,
the total completion time plus compression cost, the maximum
tardiness plus compression cost, the maximum lateness plus
compression cost, and the total compression cost subject to
deadline constraints. The author in [35]) studied a two-agent
parallel-machine scheduling model with the assumption that a
task can be rejected, which incurs a penalty. The objective is
to minimize the sum of the scheduling cost of the accepted
tasks and the total rejection penalty of the rejected tasks.
The authors considered several combinations of objectives: the
makespan, the total completion time, the maximum lateness,
and the weighted number of tardy tasks. The author in [36]
studied a two agent scheduling problem with deteriorating
effect on bounded parallel batching machines. The objective
is to minimize the makespan of one agent with the constraint
that the makespan of the other agent is no more than a given
threshold. The author in [37] study a scheduling problem for
concurrent jobs on identical parallel machines. It deals with an
interfering multi-agent scheduling problem. New complexity
results have been developed when the jobs are of identical
durations. Some problems are shown to be polynomial where
exact solution algorithms are developed and others are shown
to be NP-hard.

To the best of our knowledge, very few studies focused on a
setting of two agents competing on uniform parallel machines.
The author in [38] considered identical processing time tasks
where the goal is to minimize at the same time a general cost
function associated with the first agent and the makespan of
the other agent. In [39], the author addressed the same model
with the goal to minimize two maximum functions associated
with the two agents. The author in [25] developed a single
machine, and parallel (both identical and uniform) machine

www.ijacsa.thesai.org 917 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

settings. They discussed the case where the tasks have identical
processing times and a common due date. They focused on
minimizing the total weighted earliness–tardiness of the first
agent, subject to an upper bound on the maximum weighted
deviation from the common due date of the tasks of the second
agent.

There exist at least two studies that tackled the case of two
competing agents on unrelated parallel machines. The author
in [40] considered a Just-in-Time setting where the objective
of the first agent is to maximize the weighted number of its
just-in-time tasks, while the objective of the second agent is
either to maximize its maximum gain from its just-in-time jobs
or to maximize the weighted number of its just-in-time jobs.
The author in [41] focused on the objective of minimizing the
total completion time of the tasks of one agent, while keeping
the weighted number of tardy tasks of the other agent within
a given limit.

C. Synthesis

In this paper, we study an integrated multi-agent schedul-
ing and multi-skill project scheduling problem with many
particularities. To the best of our knowledge, this problem
has never been studied in the literature. The novelty of our
model is related also to several particularities stem from
the preferences of the managers. For instance, we consider
minimum and maximum loads associated with each task. Also,
we consider that each employee, should not exceed a fixed
number of different tasks over a given week. We consider a
preemptive MS-RCPSP problem with a multi-project setting
and heterogeneous skill levels. In light of the existing literature
on multi-project multi-skill RCPSP, it is noticed that the studies
including those two features are very limited.

Table I presents a synthesis of the studies reviewed above.
The first column indicates the paper. The second column
provides the characteristics of mutli-skilling: “#SK” indicates
the number of skills required by the task, “HS” for heteroge-
neous skills and “ML” indicates if a minimum level of skill
is required to perform the task. The third column indicates
some multi-agent features presented according to several sub-
columns. Sub-column “M” indicates the number of machines.
Sub-column ‘E” describes the parallel machine environment
(“Pm” for identical machines (Qm” for uniform machines
“Rm” for unrelated machines). Sub-column “O” indicates that
the objective value of one agent is constrained under an upper
bound. Sub-column “C” means that the objective function is
a combination of the agent’s objectives functions. Sub-column
“P” means that the goal is to enumerate the entire Pareto
frontier. The fourth column “Objective” shows the objective
function. Followed by the last column, which indicates if the
paper considers other specific characteristics.

For each paper in Table I, we use the following abbrevi-
ations to indicate the objective considered. OC: outsourcing
costs; EC: External cost; ATS: average team size; SEG: skill
efficiency gain; PDCT: product development cycle time and
costs; wjE : weighted numbers of just-in-time tasks, G:
gain from just-in-time tasks; wjCj : weighted total completion
time; Cmax: project duration (makespan); fmax: maximum of
regular functions; Lmax: maximum lateness; wjUj : weighted
number of tardy tasks.

III. PROBLEM DEFINITION AND NOTATIONS

There is a set K = {k1, . . . , kL} of L projects that must
be completed before a common due date (horizon). There
are two competing project managers (agents), called A and
B, each has a disjoint subset of projects. Each project kl
is broken down into a set of independent, preemptive tasks;
and each task belongs to one agent. As explained earlier,
we do not consider precedence constraints either between
projects or between tasks. As the tasks are independent, we
suppose that all the tasks are numbered from 0 to J + 1,
where the 0th and the n + 1th tasks are dummy indicating
the start and end of projects, respectively. The subset of tasks
of agents A and B are denoted by NA = {n1, . . . , nJA} and
NB = {nJA+1, ..., nJ}, respectively. The time unit is the half-
day.

For each task nj , there is a nominal load cj (expressed in
man-days), a release date rj (given in weeks), and a minimum
load denoted cmin

j (expressed in half-days) to quantify the
minimum degree of realization of this task per week. The
minimum load of tasks per week allows modeling some tasks
that cannot be interrupted during more than one week. In the
case where the employee assigned to a task nj works on that
task during a given week, he or she should perform at least its
minimum load cmin

j . Furthermore, In each week, the employee
assigned to task nj must not exceed its maximum load cmax

j .
We want to avoid loss of time due to changing context of
employees, which is required when changing from one task to
another. Thus, during each week, the number of different tasks
on which an employee is working is less than a given value b
(fixed for all the projects and all the employees).

Let E = {e1, . . . , eI} be a set of I multi-skilled employees
working in the company. Every employee has an availability
per week (a working time known in advance) ranging from 0
to 10 half-days. We refer by Di,s the availability of employee
ei during week hs, where hs ∈ H . Employees are allocated to
different projects with maximum percentages of time (quotas).
As mentioned earlier, these quotas must be determined by
the scheduling procedure. Once determined, they must be
respected during each week of the horizon. In other words,
during each week hs, any employee ei assigned to project kl
cannot spend on this project more than Di,s×Qi,l, where Qi,l

is the quota of employee ei on project kl. Each employee can
work on only one task at a given time frame.

In our model, once a task is assigned to an employee with
the required skill, it remains so until its accomplishment. The
capabilities of performing tasks by resources are represented
by a binary skill matrix denoted by m, where mj,i = 1 if
employee ei masters task nj , and mj,i = 0 otherwise. It means
not every employee can be assigned to a task. Furthermore,
we assume that several employees may have different levels
of efficiency for the same skill. Since each task requires only
one skill, the skill level of the employee is directly associated
with the task. The manager estimates the employees’ efficiency
level according to the standard classification of expertise level:
junior, middle and senior. Based on these estimations, we
assign an efficiency coefficient equal to 0, 0.5, and 1 to a
junior, middle and senior, respectively. This coefficient is a
ratio of an employee’s actual processing time to perform the
task against the theoretical processing time (nominal load)
needed to complete the corresponding task. Thus, to consider

www.ijacsa.thesai.org 918 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

the employee’s efficiency level in the processing time of task
calculation, a simple linear formula is assumed between the
task nominal load and the employee assigned to it. We apply
this formula to convert the task nominal load (cj) to duration
(processing time, pj,i) according to the efficiency level (vj,i)
of the employee: pj,i = (2 − vj,i)cj . Since the nominal load
of the task is given in number of days, we multiply it by 2 to
convert it into half-days. For example, a task that requires a
java developer and 2 days to be performed, it can be done by
a senior developer in 2 half-days (i.e. half of the time), and
by a junior developer in 4 half-days (the actual time).

The constraints on the minimum load of tasks per week
and on the number of different tasks on which an employee
is working are soft constraints imposed by the manager to
increase the productivity of the employees.

For an effective schedule, these soft constraints should
be taken into account. However, the manager allows the soft
constraints to be violated when there is no feasible schedule
for the problem. The solution approach must minimize these
constraint violations by reducing the undesirable deviations in
the soft constraints from their respective goals. We introduce
a global objective function to penalize these constraint viola-
tions. All the other constraints (also called hard constraints)
must be respected by the proposed solution.

The objective functions considered here are as follows.
Let fA and fB be the objective functions of agents A
and B, respectively. Each of the agents wants to minimize
the total weighted tardiness of its tasks denoted by fX =∑

j∈NX wjTj , where X ∈ {A,B}, Tj is the number of weeks
of task nj tardiness and wj is the penalty cost for this task.
Note that if task nj takes at least one half-day of week (dj+1)
before its completion time, it is late by one week (Tj = 1).
Furthermore, the soft constraints are addressed as goals to be
reached, and the global objective is to get as close as possible
to these goals. We consider a global objective function that

consists to minimize the violations of these constraints. This
objective function is defined by fG =

∑J
j=1

∑H
s=rj

αu−j,s +∑I
i=1

∑H
s=1 βo

+
i,s, where u−j,s is the deviation below cmin

j ,
o+i,s is the deviation above b, and α and β are problem
parameters stem from the preferences of project managers
on soft constraints. Between the two soft constraints, the
minimum load constraint is slightly more important than the
other soft constraint. Hence, α is slightly higher than β. The
problem is to find a schedule that minimizes at the same time
the objective functions of both agents as well as the global
objective function.

Following the conventional three-field notation introduced
by [42] and extended by [43], this problem may be denoted
by: Qm | CO−GA, rj , pmtn | fG, fA, fB , where CO−GA
denotes a problem of disjoint subsets competing with a global
objective.

A solution consists of two parts: the first is to specify a
suitable allocation of employees to projects, and the second is
to determine a schedule of tasks for each employee to complete
within the planning horizon H . Note that a schedule is defining
by a suitable assignment of employees to task and the load (i.e,
the number of half-days) that each employee has to perform
of each of its tasks during each week. We are interested in
determining a good approximation of the Pareto frontier.

www.ijacsa.thesai.org 919 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

TA
B

L
E

I.
S

Y
N

T
H

E
S

IS
O

F
T

H
E

R
E

V
IE

W
E

D
L

IT
E

R
A

T
U

R
E

A
ut

eu
rs

M
ul

ti-
sk

ill
fe

at
ur

es
M

ul
ti-

ag
en

t
fe

at
ur

es
O

bj
ec

tiv
e

O
th

er

#
Sk

H
S

M
L

#
M

E
O

C
P

T
hi

s
pa

pe
r

1
•

•
>

1
Q
m

•
∑ w

j
T
j

,G
F

M
ul

ti-
pr

oj
ec

t,
pr

ee
m

pt
io

n,
m

in
im

um
an

d
m

ax
im

um
lo

ad
s,

so
ft

co
ns

tr
ai

nt
s

[1
6]

1
C
m
a
x

M
ul

ti-
pr

oj
ec

t,
re

le
as

e
da

te
s

fo
r

pr
oj

ec
ts

,m
ul

ti-
m

od
e

[1
9]

1
•

∑ w
j
U
j

[1
4]

≥
1

•
•

C
m
a
x

,c
os

t
M

ut
il-

pr
oj

ec
t,

m
ul

ti-
ob

je
ct

iv
e,

un
ce

rt
ai

nt
y,

le
ar

ni
ng

ef
fe

ct
[2

8]
1

•
•

C
C

on
tr

ol
la

bl
e

pr
oc

es
si

ng
tim

es
[3

6]
>

1
P
m

•
C
m
a
x

D
et

er
io

ra
tin

g
ef

fe
ct

[1
0]

≥
1

E
C

M
ul

ti-
pr

oj
ec

t,
sc

to
ch

as
tic

co
nc

ep
t,

in
te

rn
al

an
d

ex
te

rn
al

re
so

ur
ce

s
[2

7]
1

•
∑ w

j
C
j
,
C
m
a
x

Se
tu

p
tim

e
[1

3]
1

SE
G

,P
D

C
T

M
ul

ti-
pr

oj
ec

t,
M

ul
ti-

ob
je

ct
iv

e,
L

ea
rn

in
g

an
d

fo
rg

et
tin

g
ef

fe
ct

s
[3

5]
)

>
1

P
m

•
∑ C

j
,
C
m
a
x
,
∑ C

j
,
L
m
a
x
,
∑ w

j
U
j

Ta
sk

re
je

ct
io

n
[3

1]
>

1
P
m

•
∑ w

j
C
j
,
C
m
a
x

[2
6]

1
•

∑ L
m
a
x
,
∑ C

j
,
∑ w

j
C
j
,
∑ U

j
,
∑ w

j
U
j

Se
tu

p
tim

es
[1

1]
1

•
A

T
S

M
ul

ti-
pr

oj
ec

t
[3

2]
>

1
P
m

•
C
m
a
x

[2
1]

1
•

T
m
a
x
,
∑ T

j
L

ea
rn

in
g

ef
fe

ct
s

[3
4]

<
2

P
m

•
∑ C

j
,
f
m
a
x
,
L
m
a
x

C
on

tr
ol

la
bl

e
pr

oc
es

si
ng

tim
es

[2
4]

1
•

∑ T
j
,
∑ w

j
T
j
,
L
m
a
x
,
∑ U

j
,
∑ w

j
T
j
,
∑ w

j
(E
j
+

T
j
)

A
ss

ig
na

bl
e

du
e

da
te

s
[2

5]
1

an
d
>

1
Q
m

,
P
m

,
P
1

•
E
j
+

T
j
,
m

a
x
(E
j
+

T
j
)

U
ni

t
pr

oc
es

si
ng

tim
e

ta
sk

s,
co

m
m

on
du

e
da

te
[3

0]
>

1
P
m

•
C
j
,
C
m
a
x

[9
]

≥
1

•
C

In
te

rn
al

an
d

ex
te

rn
al

re
so

ur
ce

s,
ov

er
tim

e
[2

3]
1

•
∑ T

j
,
∑ w

j
T
j
,
L
m
a
x
,
∑ U

j
,
∑ w

j
T
j

A
ss

ig
na

bl
e

du
e

da
te

s
[2

2]
1

•
∑ w

j
C
j
,
∑ U

j
L

ea
rn

in
g

ef
fe

ct
[1

2]
≥

1
•

•
E

C
M

ul
ti-

pr
oj

ec
t,D

yn
am

ic
co

m
pe

te
nc

ie
s,

tim
e-

de
pe

nd
en

t
ca

pa
ci

tie
s

[8
]

≥
1

•
C

In
te

rn
al

an
d

ex
te

rn
al

re
so

ur
ce

s,
ov

er
tim

e
[3

3]
>

1
P
m

•
∑ C

j
,
∑ w

j
C
j
,
∑ U

j
,
∑ T

j
,
L
m
a
x
,
f
m
a
x

m
ac

hi
ne

s,
Pr

ee
m

pt
io

n
[1

8]
1

•
∑ w

j
C
j
,
C
m
a
x
,
L
m
a
x

[2
9]

>
1

P
m

•
C
m
a
x
,
∑ C

j

[7
]

≥
1

•
O

C
M

ul
ti-

pr
oj

ec
t,L

ea
rn

in
g

ef
fe

ct
s,

ex
te

rn
al

re
so

ur
ce

s
[1

7]
1

•
∑ C

A j
,
∑ U

B j

[1
]

1
•

∑ U
j
,
∑ w

j
C
j
,
f
m
a
x

[3
8]

>
1

Q
m

•
C
m
a
x
,
f
m
a
x

Id
en

tic
al

pr
oc

es
si

ng
tim

e
[3

9]
>

1
Q
m

•
f
m
a
x

Id
en

tic
al

pr
oc

es
si

ng
tim

e
[4

0]
>

1
R
m

•
w
j
E

,G
Ju

st
-i

n-
tim

e

www.ijacsa.thesai.org 920 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

Table II presents the notation of the problem parameters
used throughout this paper.

TABLE II. NOTATIONS AND PARAMETERS OF THE PROBLEM

General data
H project planning horizon
X index of agent X, X ∈ A,B
K set of projects, K = {k1, . . . , kL}, |K|=L
E set of employees, E = {e1, . . . , ei}, |E|=I
N set of tasks, N = {n1, . . . , nJ}, |N|=J
NX set of agent X’s tasks, |NX | = JX and J = JA + JB
Nl set of tasks of project kl
WLk

l
nominal load of project kl in skill

Zl
k

= {zk‖k ∈
{1, ..., K}}

required skills to complete kl project

Tasks data
cj nominal load of task nj (measured in man-day)
rj release date of task nj (given in number of weeks)
dj due date of task nj (given in number of weeks)
cmax
j

maximum load of task nj (given in half-day)

cmin
j

minimum load of task nj (given in half-day)

wj penalty cost of task nj per week
Fj completion date of task nj (given in number of weeks)
Tj tardiness of task nj (given in number of weeks)
Ek set of employees mastering skill zk

Employees data
Di,s availability of employee ei during week hs (given in half-days)
b number of different tasks on which every employee can work during each

week
Mi,k 1 if employee ei masters skill zk required by project kl , and 0 otherwise

Data on tasks and employees
vj,i employee ei ’s efficiency level for task nj
pj,i processing time of task nj according to the efficiency level of employee ei

(in half-days)
mj,i equal to 1 if employee ei masters task nj , and 0 otherwise
vj average efficiency of employees mastering task nj

IV. MIXED-INTEGER GOAL PROGRAMMING
FORMULATION

A. Variables

1) xj,i –a binary variable equals 1 if employee ei is assigned
to task nj and equals 0 otherwise.

2) yj,i,s –an integer variable (ranging from 0 to 10) equal
to the number of half-days performed of task nj by
employee ei during week hs.

3) zj,i,s –a binary variable equal to 1 if yj,i,s is greater than
0, and equal to 0 otherwise.

4) Fj –the completion time of task nj .
5) Tj –the tardiness of task nj .
6) u+j,s –deviation variable above cmin

j associated to task nj
and week hs.

7) u−j,s –deviation variable below cmin
i associated to task nj

and week hs.
8) o+i,s –deviation variable above b associated to employee

ei and week hs.
9) o−i,s –deviation variable below b associated to employee

ei and week hs.
10) Qi,l –maximum quota of employee ei on project kl

(percentage of time).

[]

B. Constraints

I∑
i=1

xj,i = 1, j = 1, . . . , J (1)

xj,i ≤ mj,i, j = 1, . . . , J ; i =, . . . , I (2)

H∑
s=rj

yj,i,s = pj,i · xj,i j = 1, . . . , J ; i = 1, . . . , I (3)

I∑
i=1

yj,i,s ≤
I∑

i=1

cmax
j · xj,i, j = 1, . . . , J ; s = rj , . . . ,H

(4)

I∑
i=1

zj,i,s ≤
I∑

i=1

xj,i j = 1, . . . , J ; s = rj , . . . ,H (5)

I∑
i=1

10 · zj,i,s ≥
I∑

i=1

yj,i,s, j = 1, . . . , J ; s = rj , . . . ,H

(6)

J∑
j=1

yj,i,s ≤ Di,s, i = 1, . . . , I; s = 1, . . . ,H (7)

J∑
j∈Nl

yj,i,s ≤ Qi,l ·Di,s, i = 1, . . . , I; s = 1, . . . ,H;

l = 1, . . . , L (8)

I∑
i=1

yj,i,s ≥
I∑

i=1

cmin
j ∗ zj,i,s, j = 1, . . . , J ; s = rj , . . . ,H

(9)

J∑
j=1

zj,i,s ≤ b, i = 1, . . . , I; s = 1, . . . ,H (10)

Fj ≥
I∑

i=1

s · zj,i,s, j = 1, . . . , J ; s = rj , . . . ,H; (11)

Fj − Tj ≤ dj , i Fj , Tj ≥ 0 (12)

C. Soft Constraints

According to the problem description, constraints (9) and
(10) are soft constraints that can be violated when it is not
possible to obtain a feasible schedule. Therefore, we incorpo-
rate the possibility of relaxing these soft constraints by adding
deviation variables in the formulation. Meanwhile, these de-
viation variables are calculated and added to the objective
function as penalties. After adding the deviation variables, the
soft constraints in equations (9) and (10)) became, respectively:

I∑
i=1

yj,i,s − u+j,s + u−j,s =

I∑
i=1

cmin
j ∗ zj,i,s, j = 1, . . . , J ;

s = rj , . . . ,H (13)

www.ijacsa.thesai.org 921 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

J∑
j=1

zj,i,s − o+i,s + o−i,s = b, i = 1, . . . , I; s = 1, . . . ,H

(14)

D. Objective Functions

The three different objective functions are listed as follows.

Global Objective: the goal associated to constraint (13)
is to avoid as much as possible that, on a given week, the
employee assigned to a task perform of this task less than its
minimum load. Because of that, only the negative deviation
from this goal is minimized in the following equation.

Min
J∑

j=1

H∑
s=rj

u−j,s (15)

The goal associated to constraint (14) is to limit the loss
of employee time due to switching between tasks. To this end,
no employee should work on more than the maximum number
of tasks per week. Therefore, only the positive deviation from
this goal is minimized in the following objective function.

Min
I∑

i=1

H∑
s=1

o+i,s (16)

After incorporating these goals, the achieving global ob-
jective function can be written as follows.

Min
J∑

j=1

H∑
s=rj

αu−j,s +

I∑
j=1

H∑
s=1

βo+i,s (17)

Local Objectives the agents’ objective functions in equa-
tions 18 and 19 seek to minimize the total weighted tardiness
of their tasks.

Minimize
JA∑
j=1

wjTj (18)

Minimize
J∑

j=JA+1

wjTj (19)

V. HEURISTIC ALGORITHMS

Due to its complexity, an exact resolution of the problem is
very difficult within a reasonable computation time. Therefore,
we propose a hybrid algorithm combining an exact proce-
dure, a greedy heuristic, and a genetic algorithm to find an
approximate Pareto solution set. The main steps of this hybrid
algorithm are as follows:

• Use a mixed integer-linear program (MILP)to set maxi-
mum quotas of employees’ time on projects.

• Use a greedy heuristic to determine initial solutions.
• Apply a genetic algorithm of type NSGA-II to determine

a good approximation of the Pareto frontier.

In the next sections, we detail each of the steps of the
hybrid algorithm.

A. Generating Maximum Quotas

This procedure, denoted by PGQexact, is used to allocate
to each project the set of employees with the necessary skills
for its realization. Furthermore, it specifies the working time
that each employee must not exceed per week on each of its
projects. We use a simplified MILP model, which considers
only the constraints on the weekly availability of employees
and the workload of projects to be carried out. This MILP
model uses time-indexed decision variables.

1) Variables: We define the integer variable Yi,l,s,k (rang-
ing from 0 to 10) equal to the effective working time of
employee ei on project kl during week hs on skill zk. The
integer variable Qi,l (ranging from 0 to 10) equal to the
maximum quota of employee ei assigned to the project kl.
The integer variable d−i,s (ranging from 0 to Di,s) equal to the
unused availability of employee ei during week hs.

2) General Formulation: The general formulation is given
in the following.

Minimize
I∑

i=1

H∑
s=1

d−i,s (20)

s.c.

Yi,l,s,k ≤ 10 ·Mi,k i = 1, . . . , I; s = 1, . . . ,H;

k = 1, . . . ,K; = l, . . . , L; (21)

K∑
k=1

Yi,l,s,k ≤ Di,s ·Qi,l, i = 1, . . . , I; s = 1, . . . ,H;

l = 1, . . . , L (22)

L∑
l=1

K∑
k=1

Yi,l,s,k + d−i,s = Di,s, i = 1, . . . , I; s = 1, . . . ,H

(23)

I∑
i=1

H∑
s=1

Yi,l,s,k =WLk
l , l = 1, . . . , L (24)

The objective function (20) minimizes the sum of the
unused working time (idle time), by avoiding that employees
work, during each week, less than their availability. Constraint
(21) guarantees that an employee must not work on a project
that he or she does not master any of the skills required by
that project. Constraint (22) ensures that, on any given week,
no employee must exceed his or her quota on each project.
Constraint (23) guarantees that an employee must not exceed
his availability each week. Constraint (24) imposes that the
nominal load of each project in each skill must be executed
until completeness.

www.ijacsa.thesai.org 922 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

B. Greedy Heuristic

This algorithm employs simple priority rules and a simple
heuristic to construct good initial solutions. This step is very
important because a suitable assignment may help the hybrid
algorithm to find an approximate Pareto solution set rapidly
and effectively. This greedy heuristic returns all solutions
obtained after a computation time-limited to AGmax.

Each initial solution is generated through two steps. The
first step defines the order in which the tasks will be selected,
the next step chooses, for each task, the employee who will
be in charge of it among the employees mastering that task.
We detail below the three steps of the greedy heuristic.

The procedure of the first step returns the list of tasks
ordered in non-decreasing order of the number of employees
mastering each task. For example, a task mastered by one
employee should be assigned before another task mastered by
two employees. This ensures that the most critical employees
are not overloaded by other tasks that have multiple assignment
options. In the case where two tasks are mastered by the same
number of employees, the first task to be assigned is chosen
according to the weighted earliest due date (WEDD) priority
rule.

The procedure of the second step assigns tasks to employ-
ees. To perform this step, we proceed as follows. First, for
each task nj in the order of the list of tasks, we get the list of
employees Ej mastering that task and allocated to project kl
(task nj is part of project kl). For each employee ei ∈ Ej , we
get τ totj,l which corresponds to the total availability of employee
ei on project kl. Then, the employee with the highest total
availability will be assigned to task nj . We note that before
selecting this employee we subtract from his total availability
the processing time (pj,i) of task nj , which ensure that he has
sufficient availability to perform this task. Otherwise, if the
employee does not have the required availability, the second
employee in the list will be selected and so on. Finally, we
update the availability of the selected employee. This means
that the choice of the employee for the next task is influenced
by the workload that has already been assigned.

The first and second steps of the GA generate a single
solution. The remaining solutions are generated iteratively by
performing simple mutation operations on the list of tasks,
then repeating the second step. Algorithm (1) describes the
procedure of the greedy heuristic.

C. Adaptation of the NSGA-II

NSGA-II (for Non-dominated Sorting Genetic Algorithm
II) is a genetic algorithm well known as one of the most
efficient and popular algorithms for solving multi-criteria opti-
mization problems. NSGA-II method is originally proposed by
[44] on the basis of NSGA proposed in [45]. We recall in the
following the main ideas of this method. For more details,
the reader can refer to [44]. First, individuals (solutions)
are classified into a number of dominance ranks at each
generation using a fast non-dominated sorting method with low
computational complexity. Second, a parameter-independent
partitioning method was defined by evaluating the crowding
distance of individuals in the same dominance rank. Third,
a selection operator was designed based on the values of

Algorithm 1 Overview of the Greedy Algorithm
1: Inputs: N the set of all tasks ordered in ascending order of the number of employees mastering each task; τtot the

total availability of employees on projects
2: Output: σ the assignment of employees to tasks
3: for each Task nj ∈ N do
4: kl : the project to which nj belongs

5: Ej : the list of employees mastering nj
6: BinomiaList = φ

7: for each Employee ei ∈ Ej do
8: Add (ei, τ

tot
i,l

) to BinomiaList

9: end for
10: Short BinomiaList in decreasing order of τtot

11: NotAffected = true , count = 0

12: while NotAffected do
13: if BinomiaList[cout][1] − pj,i ≥ 0 then
14: Assign employee BinomiaList[count][0] to task nj
15: NotAffected = false

16: end if
17: cout + +

18: end while
19: update the availability of the employee
20: Update list σ
21: end for
22: return σ

dominance rank and crowding distance of individuals. Finally,
an elitism strategy was used to improve the convergence
performance of the algorithm.

Our implementation of NSGA-II is based on the following
elements. (i) the coding scheme to represent an individual, (ii)
the genetic operators to generate and modify new individuals,
(iii) the parameters of the algorithm (i.e. population size
Pmax, number of crossover points Pc and mutation points Pm,
termination criterion Gmax).

1) Coding Scheme: A chromosome (or an individual or
a solution) contains a given number of genes and is divided
into one or more segments. In our NSGA-II, an individual is
represented by an assignment of employees to tasks, a gene
corresponds to a task, a segment corresponds to the set of
tasks assigned to an employee, and the length of the segment
corresponds to the number of tasks in this segment. Thus, a
separator (0) is used in the coding scheme of an individual to
indicate the beginning and the end of each segment.

In order to understand the coding scheme, let’s consider
the case of two agents A and B, each of which is in charge of
a single project. The projects consist of 8 tasks (n1,...,n8) to
be scheduled over a two-week horizon. Three employees (e1,
e2, e3) can be assigned to different tasks. Each agent wants to
minimize the sum of the weighted delays of its tasks. Table
III shows for each task, the employee with the skill required
to perform it. The gray columns represent the tasks of agent
B, while the white columns represent the tasks of agent A.

TABLE III. SUITABLE EMPLOYEE ASSIGNMENTS TO TASKS

n1 n2 n3 n4 n5 n6 n7 n8

cj 3 5 2 6 4 4 5 3
mj,1 1 0 0 1 1 0 0 1
mj,2 1 1 1 1 0 0 1 1
mj,3 0 0 1 0 1 1 1 1

Fig. 1 shows a solution coding for the previous example. In
this solution, tasks n4, n5 are assigned to employee e1; tasks
n1, n2, n7 are assigned to employee e2; and tasks n3, n6, n8
are assigned to employee e3. The 0 is used to separate two
assignments.

2) Initial Solutions: Initial solutions are generated using
the greedy heuristic described in Section V-B. Note that the

www.ijacsa.thesai.org 923 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

0 0

Fig. 1. Representation of a Solution.

number of generated solutions can be smaller than the initial
population size Pmax (Pmax is a parameter of the NSGA-II
method). In this case, we apply simple mutation operations on
the elitist individuals to complete the initial population.

3) Genetic Operators: These operators comprise several
key elements: selection, crossover, mutation, and population
sorting.

Selection: it chooses among the solutions of the parent
population, those that will reproduce and generate the new
population (offspring) for the following iteration. To this end,
we use the binary tournament method, which is one of the most
common selection operators. This method randomly selects a
pair of parents from the population and compares their fitness
functions. If both parents are on the same front, then we
compare their crowding distances, and the one with the largest
crowding distance is kept. Otherwise, if the two parents are on
different fronts, the solution with the best Pareto front (i.e. the
one with the best value of the objective function) is kept. Both
solutions of a couple are unique, but a solution can be part of
several couples.

Crossover: once the section process is done, the entire
selected parents move on to the breeding stage. This is where
all the parents recombine in some way to create a new
population that will be used in the next genetic step (mutation).
The process of combining two parents is what is often called
crossover.

We adopt the two crossover operators PBX (position-
based crossover) and OBX (order-based crossover) proposed
by [46]. The choice of these crossover operators is made
based on the study published in [47]. The authors compared
the performances of 11 crossover operators with the goal to
minimize the total weighted tardiness on a single machine.
Their experimental results has shown the efficiency of OBX
and PBX crossover operators, compared to other operators, to
solve this type of scheduling problem. We detail below the
different steps of these two crossover operators. Also, two
corresponding examples are shown in Fig. 2 and 3.

• OBX Operator
◦ Select randomly several genes (tasks) from a parent

(P1 for example).
◦ Place the selected tasks in the new solution, respecting

the exact positions that they occupy in the other parent
(P2).
◦ Delete the tasks that are already selected in the other

parent (P2) to avoid repeating these tasks in the
offspring (O1).
◦ Insert the remaining tasks into in the offspring, from

left to right, in the order that they appear in the parent
(P2).
◦ Place the remaining tasks in the offspring, from left to

right, in the order that they appear in the parent (P2).

◦ By changing the roles of the parents, the same proce-
dure can be applied to generate the offspring O2.

• PBX operator
◦ Select randomly a set of tasks from a parent (P1 for

example).
◦ Place the selected tasks in the offspring (O1, respecting

their exact positions in the parent (P1).
◦ Delete the tasks that are already selected in the second

parent P2. The sequence of remaining tasks in P2
contains only those tasks that the offspring (O1) needs.

◦ Place the remaining tasks in O1, from left to right, in
the order they appear in the parent P2.

◦ By changing the parent roles, the same procedure can
be applied to generate the second offspring (O2).

0 0

0 0

0 0

* * *

Parent 1

Parent 2

Enfant 1

Fig. 2. OBX Crossover Example

0 0

0 0

0 0

* * *

Parent 1

Parent 2

Enfant 1

Fig. 3. PBX Crossover Example

The similarity between parent and offspring populations de-
pends on the number of crossover points. This number (de-
noted by Pc) represents the number of tasks selected to put
into the offspring. Preliminary tests show that a large value of
Pc gives a higher probability of building solutions similar to
their parents. However, a small value of Pc allows the selection
of more distant solutions.

Mutation: We apply this operator at the last stage of
the population generation procedure. It maintains the diver-
sity between individuals, and therefore, avoids a premature
convergence to a local optimum. The mutation operator is
applied to each new solution after the crossover stage. It
consists in randomly selecting two employees (e1 and e2, for
example) who have at least one common skill. Then, each task
initially assigned to e1 and demanding a skill mastered by e2
will be assigned to the latter. The opposite is also applied
to tasks initially assigned to e2. These two operations are
performed Pm times, where Pm (ranging between 2 and 10.)
is a parameter of the NSGA-II method.

www.ijacsa.thesai.org 924 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

Population Sorting: This procedure follows the same
dominance sorting procedure proposed by [44]. The crowding
distance is also applied.

VI. COMPUTATIONAL EXPERIMENTS

This section outlines the characteristics of the instances
and the computational results of the proposed methods. Our
experiments consist of three parts. In the first part, we seek
to determine the size of problem instances that can be solved
by the MIGP within a reasonable computation time. In the
second part, we want to determine the best parameterization
for the NSGA-II method. Finally, in the last part, we evaluate
the performance of the heuristic methods.

Our experiments were performed on an Intel R© coreTM

i7-1.9 GHz with 16 GB of RAM under Windows 10. All
algorithms were written in Python. The CPLEX 12.8.0 solver
associated with Python API was used for solving the MIGP
model, using the default parameters except for the time pa-
rameter.

A. Instance Characteristics

The methods proposed in this section are experimentally
validated on instances derived from real instances. AS men-
tioned in the introductory section, our study comes from a
real scheduling case raised in an IT company. However, to
perform our experiments, we could not get enough real data
for confidentiality reasons. So, based on the description of the
problem and the few real data given by our partner company,
we generated 8 sets of instances (T1, ..., T8) with 40 instances
per set.

Table IV describes the characteristics of some general
parameters per instance set. From left to right, the columns
indicate the instance set, the project planning horizon, the
number of projects, the number of employees, and the last
column is the number of tasks. For each group of instances,
the number of tasks per agent is chosen between 0.4xJ ; 0.5xJ ;
0.6xJ , with J being the number of tasks. The total number
of skills required to perform the tasks is ranging between 3
and 10; and each employee masters 2 to 5 skills. Each task
requires one skill with a nominal load of up to 15. The release
dates of 30% of tasks (randomly chosen) range between 0.5xH
and 0.75xH , equal to 0 for the other tasks. The due dates
of 50% of tasks (also randomly chosen) are between 0.5xH
and 0.75xH , equal to H for the other tasks. For 30% of tasks
(randomly chosen), the values of the maximum loads (resp. the
minimum loads) are between 2 and the nominal loads (resp. 2
and the maximum loads). For 80% of employees, we set the
availability at 10 during each week of the planning horizon.
The availability of the remaining employees is between 2 and
7.

B. NSGA-II Algorithm Evaluation

We present in this section the computational results of
the NSGA-II method. First, we conduct some experiments
to adjust the NSGA-II parameters. Then, we perform a sec-
ond test campaign to compare the performances of the two
crossover operators (OBX and PBX). Finally, we conduct our
last experiments to measure how much the genetic algorithm
improved the results of the greedy heuristic.

TABLE IV. GENERAL PARAMETER VALUES PER INSTANCE SET

Instance set H L I J
T1 4 2 3 15
T2 4 2 3 20
T3 6 2 5 25
T4 8 2 10 50
T5 10 4 15 100
T6 14 4 20 150
T7 18 4 25 200
T8 24 4 30 250

To evaluate the quality of the returned solutions, we ap-
ply three performance metrics widely used for multi-criteria
optimization problems. These metrics are the hypervolume
(HV)(originally proposed by [48]), the generational distance
(GD) (originally proposed by [49]), and the Pareto front size
(PFS). Note that in this part of the experiments, we used 10
instances on each set of the dataset. The maximum quotas
of employees on projects are initially computed by the MILP
presented in Section V-A.

1) Parameters Setting: The NSGA-II has the following
parameters to define: the population size Pmax, number of
iterations Gmax, number of crossover points Pc, and number
of mutation points Pm. The NSGA-II algorithm was run 5
times with each combination of parameters and the best values
obtained are presented in Table V. To maintain test consistency,
for each run, we start the genetic algorithm from the same
initial solutions generated by the GH . In order to fix the
number of crossover points, we performed the tests with both
crossover operators. We noticed reassuringly that the best
values obtained are often the same with the two operators.

TABLE V. THE VALUES OF PARAMETERS USED BY THE NSGA-II

Parameter Range Value
Pmax [100,300] 200
Gmax [200,3000] 1000
Pc [1,10] 8
Pm [1,10] 7

TABLE VI. MILP RESULTS FOR A COMPUTATION TIME LIMITED TO 5
MIN

Instance
set

Number of
feasible instances

Number of
instances solved

to optimality

Avg. time to
the optimality

Avg. GAP
from the
optimal

T1 40 40 72.8 0%
T2 40 40 122.2 0%
T3 40 40 150.7 0
T4 40 40 194.6 0%
T5 40 38 256.8 2.5%
T6 40 35 299.2 4.5%
T7 40 32 316.5 76.7%
T8 40 29 396.9 7.6%

2) Comparison of Crossover Operators: Using the param-
eter values presented in Table V, and from the same initial
solutions, we ran the NSGA-II algorithm 5 times using the
OBX and PBX crossover operators. The average values of the
results were calculated.

Fig. 4 shows the computed generational distances between
the exact Pareto and the approximated Pareto fronts obtained
with each operator. Note that, we obtain the exact Pareto fronts

www.ijacsa.thesai.org 925 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

TABLE VII. COMPARISON OF METHODS NSGA-II AND GH

Instance
set

GPNE NSGA-II AG

PFS∗ CPU∗(s) PFS HV GD CPU (s) PFS HV GD
T1 3.42 746.22 2.82 0.82 3.51 177.12 1.81 0.47 8.91
T2 2.91 961.86 2.13 0.76 4.43 182.72 1.54 0.43 9.32
T3 2.52 1021.98 1.89 0.73 3.87 202.98 1.95 0.38 8.12
T4 2.23 1746.78 1.63 0.68 4.43 256.10 1.42 0.35 7.25
T5 1.85 3189.21 1.51 0.64 5.14 301.45 0.26 0.28 7.89
T6 0.78 6976.81 1.51 0.62 5.14 389.95 0.42 0.18 6.91
T7 0.12 8819.11 1.41 0.68 5.14 412.34 0 0.11 6.89
T8 0 - 1.12 0.59 5.14 671.73 0 0.18 7.12

by running the MIGP model without a time limit until the exact
Pareto front was returned.

Fig. 4. Results of Crossover Operators

3) Results of Quotas Calculation Procedure: In this sec-
tion, we present the experimental results of the MILP presented
in Section V-A. Recall that, this mathematical model is used
by the hybrid method to calculate an allocation (maximum
quotas) of employees on projects. This allocation becomes the
starting point for generating an approximate Pareto front using
the NSGA-II method.

The MILP model was tested on the different sets of
instances. Table VI shows the computational results obtained
after a time limit of 5 minutes per instance. In this table, from
left to right, the columns refer to the type of instance, the
number of feasible instances, the number of solutions that are
proven to be the optimal solutions, the average time required
to prove optimality, and the average deviations from optimal
for instances that are not optimally solved.

4) NSGA-II and Greedy Heuristic Comparison: The objec-
tive of the experiments presented in this section is to evaluate
the improvement provided by the NSGA-II over the initial
solutions obtained by the GH. To this end, we compare the
results of both methods with those obtained by the MIGP.
Note that, we use the best combination of NSGA-II parameters
presented in Table V. The solutions returned by the GH are
collected after a computation time (AGmax) limited to 5
minutes. We run both methods 10 times and the average values
are calculated. For each run of the genetic algorithm, we used
the same initial solutions generated by the GH, in order to
ensure the consistency of the tests.

Table VII compares the experimental results of the NSGA-
II and greedy heuristic with those obtained with the GPNE
model. We used four different performance indicators: the
average Pareto front size (PFS), the average hypervolume
(HV), the average generational distance (GD), and the average
computation time in seconds (in the CPU column).

5) Experimental Analysis: The comparison results in Fig.
4 show that the OBX operator has a better performance
compared to the other PBX operator. In fact, the genetic
algorithm has a better and faster convergence with the OBX
genetic operator. Moreover, reassuringly it was found that
computation time for both crossover operations is almost the
same for each problem size.

The experiments in Table VI prove the performance of the
MILP model in terms of feasibility and optimality. The model
finds a feasible solution for each instance on a set. Moreover,
all the solutions obtained for the instances on sets T1, ..., T4
are optimal solutions. The model finds only 2, 5, 8 non-optimal
solutions (among 40) for the sets of instances T5, T6, T7,
respectively. For T8 instances, a large number of instances
(11) are not solved to the optimum. However, the deviation
from the optimum is very acceptable (8).

Finally, the results presented in Table VII allow us to
clearly conclude that the NSGA-II algorithm significantly
improves the solutions obtained by the greedy algorithm. All
the metrics used show that the quality of the solutions is always
better for all types of instances. Thus, we can also see that the
computation time is very acceptable for a heuristic.

VII. CONCLUSION

We studied herein a two-agent multi-skill resource-
constrained scheduling problem with a global objective. Mo-
tivated by a real scheduling case, we considered that each
agent manages one or more projects and wants to minimize
the total weighted tardiness of its tasks. We consider a pool of
employees in which each one can perform a set of skills with
heterogeneous performance levels. We assumed that there are
some constraints that can be violated when there is no feasible
schedule for the problem. Thus, the global objective function
seeks to minimize the constraint violations by reducing the
undesirable deviations in the soft constraints from their re-
spective goals. The overall objective is to find a schedule that
minimizes at the same time both agents objective functions
and the global objective function. We provided a mixed-integer
goal programming (MIGP) formulation for the problem. Fur-
thermore, we provided a hybrid algorithm combining an exact
procedure, a greedy heuristic, and a genetic algorithm to find

www.ijacsa.thesai.org 926 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

an approximate Pareto solution set. The performance of the
heuristics is evaluated on a set of simulated instances. The
results show that the NSGA-II algorithm is the best performing
method.

Finally, in future research, we will also focus on other
types of two-agent multi-skilled resources scheduling prob-
lems. Such as the constrained optimization problem, where
the goal is to minimize the global function, subject to the
constraints that the objective values of the other do not exceed
a given threshold.

REFERENCES

[1] A. Agnetis, P. B. Mirchandani, D. Pacciarelli, and A. Pacifici,
“Scheduling problems with two competing agents,” Operations
Research, vol. 52, no. 2, pp. 229–242, 2004. [Online]. Available:
https://doi.org/10.1287/opre.1030.0092

[2] K. Baker and J.-C. Smith, “A multiple-criterion model for machine
scheduling,” Journal of Scheduling, vol. 6, pp. 7–16, 2003. [Online].
Available: https://doi.org/10.1023/A:1022231419049

[3] P. Brucker, B. J. Bernd, and A. Krämer, “Complexity of scheduling
problems with multi-purpose machines,” Annals of Operations Re-
search, vol. 70, no. 0, pp. 57–73, 1997.

[4] E. Néron and D. Baptista, “Lower bounds for the multi-skill project
scheduling problem,” in the Eighth International Workshop on Project
Management and Scheduling, 2002, pp. 274–277.

[5] B. Afshar-Nadjafi, “Multi-skilling in scheduling problems: A review
on models, methods and applications,” Computers and Industrial Engi-
neering, vol. 151, no. November 2020, p. 107004, 2021.

[6] S. Hartmann and D. Briskorn, “An updated survey of variants and
extensions of the resource-constrained project scheduling problem,”
European Journal of Operational Research, 2021.

[7] M. C. Wu and S. H. Sun, “A project scheduling and staff assignment
model considering learning effect,” The International Journal of Ad-
vanced Manufacturing Technology, vol. 28, pp. 1190–1195, 2006.

[8] C. Heimerl and R. Kolisch, “Scheduling and staffing multiple projects
with a multi-skilled workforce,” OR Spectrum, vol. 32, no. 2, pp. 19–25,
2010.

[9] R. Kolisch and C. Heimerl, “An efficient metaheuristic for integrated
scheduling and staffing it projects based on a generalized minimum
cost flow network,” Naval Research Logistics (NRL), vol. 59, no. 2, pp.
111–127, 2012.

[10] T. Felberbauer, W. J. Gutjahr, and K. F. Doerner, “Stochastic project
management: multiple projects with multi-skilled human resources,”
Journal of Scheduling, vol. 22, pp. 271–288, 2019.

[11] M. Walter and J. Zimmermann, “Minimizing average project team size
given multi-skilled workers with heterogeneous skill levels,” Computers
& Operations Research, vol. 70, pp. 163–179, 2016.

[12] W. J. Gutjahr, S. Katzensteiner, P. Reiter, C. Stummer, and M. Denk,
“Multi-objective decision analysis for competence-oriented project port-
folio selection,” European Journal of Operational Research, vol. 205,
no. 3, pp. 670–679, 2010.

[13] R. Chen, C. Liang, D. Gu, and J. Leung, “A multi-objective model
for multi-project scheduling and multi-skilled staff assignment for it
product development considering competency evolution,” International
Journal of Production Research, vol. 55, no. 21, pp. 6207–6234, 2017.

[14] M. Hematian, M. Esfahani, I. Mahdavi, N. Mahdavi-Amiri, and J. Reza-
eian, “A multiobjective integrated multiproject scheduling and multi-
skilled workforce assignment model considering learning effect under
uncertainty,” Computational Intelligence, vol. 36, no. 1, pp. 276–296,
2020.

[15] M. Walter, Multi-Project Management with a Multi-Skilled Workforce.
Springer Gabler, Wiesbaden, 2015.

[16] L. Cui, X. Liu, S. Lu, and Z. Jia, “A variable neighborhood search ap-
proach for the resource-constrained multi-project collaborative schedul-
ing problem,” Applied Soft Computing, vol. 107, p. 107480, 2021.

[17] C. T. Ng, T. C. Cheng, and J. J. Yuan, “A note on the complexity of
the problem of two-agent scheduling on a single machine,” Journal of
Combinatorial Optimization, vol. 12, no. 4, pp. 386–393, 2006.

[18] A. Agnetis, G. De Pascale, and D. Pacciarelli, “A lagrangian approach
to single-machine scheduling problems with two competing agents,”
Journal of Scheduling, vol. 12, no. 4, pp. 401–415, 2009.

[19] J. Li, Y. Gajpal, and S. S. Appadoo, “Algorithms for a two-agent single
machine scheduling problem to minimize weighted number of tardy
jobs,” Journal of Information and Optimization Sciences, vol. 42, no. 4,
pp. 785–811, 2021.

[20] X. Zhang, “Two competitive agents to minimize the weighted total
late work and the total completion time,” Applied Mathematics and
Computation, vol. 406, p. 126286, 2021.

[21] W. C. Lee, J. Y. Wang, and H. W. Su, “Algorithms for single-machine
scheduling to minimize the total tardiness with learning effects and two
competing agents,” Concurrent Engineering Research and Applications,
vol. 23, no. 1, pp. 13–26, 2015.

[22] T. C.E.Cheng, S.-R. Cheng, W.-H. Wu, P.-H. Hsu, and C.-C. Wu,
“A two-agent single-machine scheduling problem with truncated sum-
of-processing-times-based learning considerations,” Computers and
Industrial Engineering, vol. 60, no. 4, pp. 534–541, 2011. [Online].
Available: http://dx.doi.org/10.1016/j.cie.2010.12.008

[23] Y. Yin, S.-R. Cheng, T. Cheng, C.-C. Wu, and W.-H. Wu, “Two-
agent single-machine scheduling with assignable due dates,” Applied
Mathematics and Computation, vol. 219, no. 4, pp. 1674–1685, 2012.

[24] D.-J. Wang, Y. Yin, J. Xu, W.-H. Wu, S.-R. Cheng, and C.-C. Wu,
“Some due date determination scheduling problems with two agents on
a single machine,” International Journal of Production Economics, vol.
168, pp. 81–90, 2015.

[25] E. Gerstl and G. Mosheiov, “Scheduling problems with two competing
agents to minimized weighted earliness–tardiness,” Computers & Oper-
ations Research, vol. 40, no. 1, pp. 109–116, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305054812001359

[26] S. S. Li, R. X. Chen, and Q. Feng, “Scheduling two job families on a
single machine with two competitive agents,” Journal of Combinatorial
Optimization, vol. 32, no. 3, pp. 784–799, 2016.

[27] S. N. Sahu, Y. Gajpal, and S. Debbarma, “Two-agent-based single-
machine scheduling with switchover time to minimize total weighted
completion time and makespan objectives,” Annals of Operations Re-
search, vol. 269, no. 1-2, pp. 623–640, 2018.

[28] B.-C. Choi, M.-J. Park, and J. Du, “Scheduling two projects with
controllable processing times in a single-machine environment,” Journal
of Scheduling, vol. 23, no. 1, pp. 619–628, 2020.

[29] H. Balasubramanian, J. Fowler, A. Keha, and M. Pfund, “Scheduling
interfering job sets on parallel machines,” European Journal of Opera-
tional Research, vol. 199, no. 1, pp. 55–67, 2009.

[30] K. Zhao and X. Lu, “Approximation schemes for two-agent scheduling
on parallel machines,” Theoretical Computer Science, vol. 468, pp. 114–
121, 2013.

[31] W.-C. Lee, J.-Y. Wang, and M.-C. Lin, “A branch-and-bound algorithm
for minimizing the total weighted completion time on parallel identical
machines with two competing agents,” Knowledge-Based Systems, vol.
105, pp. 68–82, 2016.

[32] K. Zhao and X. Lu, “Two approximation algorithms for two-agent
scheduling on parallel machines to minimize makespan,” Journal
of Combinatorial Optimization, vol. 31, no. 1, pp. 260–278, 2016.
[Online]. Available: http://dx.doi.org/10.1007/s10878-014-9744-y

[33] J. Y.-T. Leung, M. Pinedo, and G. Wan, “Competitive two-agent
scheduling and its applications,” Operations Research, vol. 58, no. 2,
pp. 458–469, 2010.

[34] G. Wan, S. R. Vakati, J. Y.-T. Leung, and M. Pinedo, “Scheduling
two agents with controllable processing times,” European Journal of
Operational Research, vol. 205, no. 3, pp. 528–539, 2010.

[35] D. Li and X. Lu, “Two-agent parallel-machine
scheduling with rejection,” Theoretical Computer Sci-
ence, vol. 703, pp. 66–75, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0304397517306527

[36] J. Pei, J. Wei, B. Liao, X. Liu, and P. M. Pardalos, “Two-agent
scheduling on bounded parallel-batching machines with an aging effect
of job-position-dependent,” Annals of Operations Research, vol. 294,
no. 1-2, pp. 191–223, 2020.

www.ijacsa.thesai.org 927 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

[37] F. Sadi and A. Soukhal, “Complexity analyses for multi-agent schedul-
ing problems with a global agent and equal length jobs,” Discrete
Optimization, vol. 23, pp. 93–104, 2017.

[38] D. Elvikis, H. W. Hamacher, and V. T’kindt, “Scheduling two agents on
uniform parallel machines with makespan and cost functions,” Journal
of Scheduling, vol. 14, no. 5, pp. 471–481, 2011.

[39] D. Elvikis and V. T’kindt, “Two-agent scheduling on uniform parallel
machines with min-max criteria,” Annals of Operations Research, vol.
213, no. 1, pp. 79–94, 2014.

[40] Y. Yin, S.-R. Cheng, T. Cheng, D.-J. Wang, and C.-C. Wu, “Just-
in-time scheduling with two competing agents on unrelated parallel
machines,” Omega, vol. 63, pp. 41–47, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305048315002042

[41] Y. Yin, Y. Chen, K. Qin, and D. Wang, “Two-agent scheduling on
unrelated parallel machines with total completion time and weighted
number of tardy jobs criteria,” Journal of Scheduling, vol. 22, no. 3,
pp. 315–333, 2019.

[42] R. Graham, E. Lawler, J. Lenstra, and A. Kan, “Optimization and
approximation in deterministic sequencing and scheduling: a survey,”
in Discrete Optimization II, ser. Annals of Discrete Mathematics,
P. Hammer, E. Johnson, and B. Korte, Eds. Elsevier, 1979, vol. 5,
pp. 287–326.

[43] A. Agnetis, J.-C. Billaut, S. Gawiejnowicz, D. Pacciarelli, and

A. Soukhal, Multiagent Scheduling: Models and Algorithms. Springer,
Berlin, Heidelberg, 2014.

[44] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[45] N. Srinivas and K. Deb, “Muiltiobjective Optimization Using Non-
dominated Sorting in Genetic Algorithms,” Evolutionary Computation,
vol. 2, no. 3, pp. 221–248, 1994.

[46] G. Syswerda, Scheduling optimization using genetic algorithms, New
York, NY, 1991.

[47] T. Kellegöz, B. Toklu, and J. Wilson, “Comparing efficiencies of genetic
crossover operators for one machine total weighted tardiness problem,”
Applied Mathematics and Computation, vol. 199, no. 2, pp. 590–598,
2008.

[48] E. Zitzler and L. Thiele, “Multiobjective optimization using evolution-
ary algorithms — a comparative case study,” in Parallel Problem Solv-
ing from Nature — PPSN V, A. E. Eiben, T. Bäck, M. Schoenauer, and
H.-P. Schwefel, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1998, pp. 292–301.

[49] D. A. V. Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithms: Analyzing the state-of-the-art,” Evolutionary Computation,
vol. 8, no. 2, pp. 125–147, 2000.

www.ijacsa.thesai.org 928 | P a g e

