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Abstract—The latest direction in cache-aware/cache-efficient
algorithms is to use cache-oblivious algorithms based on the
cache-oblivious model, which is an improvement of the external-
memory model. The cache-oblivious model utilizes memory
hierarchies without knowing memories’ parameters in advance
since algorithms of this model are automatically tuned according
to the actual memory parameters. As a result, cache-oblivious
algorithms are particularly applied to multi-level caches with
changing parameters and to environments in which the amount
of available memory for an algorithm can fluctuate. This paper
shows the state of the art in cache-oblivious algorithms and data
structures; each with its complexity concerning cache misses,
which is called cache complexity. Additionally, this paper intro-
duces an extension to minimize the cache complexity of neural
networks by applying an appropriate cache-oblivious approach
to neural networks.
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I. INTRODUCTION

The processor speed is much faster than the main memory
speed. The impact of this hole can be decreased by utilizing a
hierarchy of multi-level caches in an effective way between the
processor and the main memory [1]. Thus, modern computers
have a memory hierarchy to speed up accessing memory, such
that the speed of accessing a memory level becomes slower
as its size becomes larger. Table 1 shows an example of a
memory hierarchy. In most processors, the level 1 cache (L1)
is on the same chip as the CPU, whereas the level 2 cache
(L2) is on a separate chip [2], [3], [4].

TABLE I. MEMORY HIERARCHY

Memory level Size Response time
CPU registers around 100B around 0.5ns
L1 Cache around 64KB around 1ns
L2 Cache around 1MB around 10ns
Main memory around 2GB around 150ns
Hard disk around 1TB around 10ms

The response time increases as the memory size increases,
as shown in Table I, consequently, there is an inverse relation-
ship between memory size and its speed; as the memory level
becomes larger, its speed becomes slower. Generally, each
memory level communicates directly with the slower directly
connected memory level. Additionally, data is transferred in
blocks to reduce the effects of slow access [5]. For example,

to read one element of an array, the main memory will
additionally transmit a ”block” of consecutive words. Thus,
accessing the other words of the transferred block is free
in terms of memory transfers. The design of a multi-level
memory hierarchy is more complex compared with single-level
memory; such as extra design decisions are needed for each
level of the memory hierarchy [6].

One performance metric of an algorithm is called memory
performance, which measures the utilization of the memory
hierarchy in an algorithm. Thus, algorithms have to know the
memory hierarchy, memory size, and block size to achieve high
memory performance; these algorithms are called cache-aware
algorithms or cache-efficient algorithms. Nevertheless, cache-
aware algorithms reduce running time up to 50% compared
with other algorithms. On the other hand, algorithms, that
worry about memory performance, have to be tuned according
to the underlying cache size. The big question here is: “Can
we design algorithms to efficiently utilize memory hierarchy,
without knowing the underlying cache size?” The answer is
yes by using cache-oblivious algorithms [7].

Neural networks greedily consume the memory hierarchy,
hence there is a strong need to design neural network algo-
rithms efficiently in terms of memory performance [8], [9]. In
this paper, we show the recent direction of the memory model,
which is the cache-oblivious model, and the state of the art in
cache-oblivious algorithms and data structures. Furthermore,
we applied the appropriate cache-oblivious approach to neural
networks to improve their memory performances.

The rest of this paper is organized as follows: Sections
II and III explain the cache-oblivious model and cache com-
plexity, respectively. Section IV discusses a set of cache-
oblivious algorithms, while Section V introduces the extension,
which is cache-oblivious neural networks. Finally, we provide
a summary of the best lately known cache-oblivious algorithms
in Section VI.

II. CACHE-OBLIVIOUS MODEL

The literature discusses two memory-hierarchy models; the
external-memory model and the cache-oblivious model. The
memory hierarchy of the external-memory model consists of
two levels; cache and disk. Such that, cache refers to the near
memory to the CPU as disk refers to the far memory from the
CPU. The basic unit of transferring data between two memory
levels is a block, so the memory is divided into blocks of B
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words (a certain number of bytes). At most, the memory of
size M can store M

B blocks from data of size N words [10],
[11].

To reduce the number of transferring blocks, cache-aware
algorithms are designed based on the external-memory model;
such algorithms worry about the existence of two levels
of memory and their parameters. Cache-aware algorithms
perform efficiently with two levels of memory, in terms of
memory transfers. But in reality, memory hierarchy is more
than just two levels of memory. To cope with this fact, the
cache-oblivious model is introduced as an extension to the
external-memory model [12], [11].

The cache-oblivious model utilizes all cache levels effi-
ciently without tuning, which means algorithms can utilize
the memory without knowing its size M and block size B.
Cache-oblivious model is the best choice for the environment
that provides a fluctuation amount of available memory for an
algorithm. Better algorithms for this model can be better for
any possible values of M and B. Cache-oblivious algorithms
are particularly helpful for multi-level caches and for caches
with changing values of M and B. Recently, the direction of
designing cache-efficient algorithms is cache-oblivious algo-
rithms. The advantages of cache-oblivious algorithms are as
follows [13], [14]:

1) Inclusion: As the cache-oblivious algorithms opti-
mally progress between two adjacent levels of the
memory hierarchy, which are cache referring to the
near memory to the CPU and disk referring to the
far memory from the CPU. Then, these algorithms
are automatically adapted between any two adjacent
memory levels with different values of M and B,
because they are not fixed in cache-oblivious algo-
rithms.

2) Constant optimal factor: Optimality means the mini-
mum number of cache misses for an algorithm. There
is no way to reduce the cache misses for an algorithm
less than its optimal cache misses. When the number
of memory transmissions or cache misses is optimal
to a constant c between any two adjacent memory
levels, then this optimality is kept within a weighted
factor between the other two adjacent memory levels,
such that the weighted mixture will be corresponding
to the relative speeds of the memory levels. For ex-
ample, assuming the optimal number of cache misses
between two adjacent memory levels to traverse data
of size N is

⌈
N
B

⌉
. Then, this factor is kept between

the other two adjacent memory levels and is weighted
by their relative speeds. Thus, algorithms in a two-
level memory model can be designed and analyzed
to gain outcomes for some levels of the memory
hierarchy.

3) Self-tuning: Typical cache-aware algorithms need
tuning to various cache parameters which are no
longer on hand from the manufacturer and are often
hard to extract automatically. Parameter tuning makes
code portability difficult, while cache-oblivious algo-
rithms perform well on all machines without modifi-
cations based on the cache parameters.

III. CACHE COMPLEXITY

Cache complexity is the number of cache misses that are
incurred by an algorithm for a problem of input size N and
denoted by T (N). The transfer unit between two adjacent
memory levels is a block of size B words to amortize the
access time cost. Typically, the main goal of an algorithm is
to minimize the cache complexity T (N), which is bounded
by N as the upper bound and N

B as the lower bound. In other
words, the number of memory transfers at most equals the
input size when each operation incurs a cache miss, whereas
storing related elements in the same memory block B, which
is called locality, reduces the number of cache misses into N

B
as a lower bound. We are concerned about complexity for large
problem N when it is greater than B or even greater than M
[15].

Typical cache complexity is a function of N and B because
the minimum unit of transferred data is B with one cost
unit. Also, M is relevant in cache complexity especially for
algorithms with recursion when data fits in the cache and
has been loaded in it, then the accessing cost will be zero.
Generally, to compute the cache complexity of divide and
conquer algorithms, we have to enlarge the base case to fit
either B or M sizes [16], [17].

IV. CACHE-OBLIVIOUS ALGORITHMS

Cache-oblivious algorithms are mainly concerned with the
efficiency of fetching large data into memory, which needs
many memory transfers. This Section shows various cache-
oblivious algorithms and their lower bound of memory trans-
fers. Generally, cache-oblivious algorithms provide the lower
bound of memory transfers utilizing the ideal cache, which is
based on the following assumptions [18], [19], [20]:

• Optimal page replacement, such as evicting the least-
recently-used block (LRU) or evicting the oldest-used
block (FIFO) [21].

• Full associativity, such that the transferred memory
block B can be stored at any available block in the
cache.

• Tall cache, which means the number of blocks M
B is

greater than the block size B.

A. Scanning Approach

Scanning algorithms access all data items to perform some
tasks such as finding maximum element, getting the average
of elements, classifying elements, etc. Therefore, scanning
algorithms touch all data items once and in the same order
as they are stored, consequently, scanning algorithms are not
aware of the cache size M . The cache complexity of a scanning
algorithm is shown in Equation 1, such that N items lay out in
contiguous blocks of memory. The ceiling function indicates
one more memory transfer than N

B , because either N is not
divided by B, or N does not start to lay out items from the
beginning of a block. In other words, data items of size B
require one memory transfer, but sometimes they require two
memory transfers according to the alignment of the data items.
For example, if the size of N is 8 and the size of B is 4, then
scanning N incurs 2 memory transfers. However, if we did
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not start to lay out N items from the beginning of a block as
shown in Fig. 1, where N items are displayed in gray color.
Even though the N size is 2B, scanning N incurs 3 memory
transfers instead of 2 because of the alignment [10].

T (N) = O

(⌈N
B

⌉)
(1)

B B
Fig. 1. Two Consecutive Blocks in Memory (the Gray Blocks Represent a

Two-Block-Data item).

B. Divide and Conquer Approach

Divide and conquer algorithms recursively split problems
into non-overlapping smaller sub-problems, solve them, and
combine them. Divide and conquer algorithms recur down to
the base case of constant size. In terms of memory transfers,
we consider the base case that either fits one block B or fits
within cache size (≤M). Such a size is considered the critical
place for memory transfers, where all the cost is. Because once
data fits in the cache, the accessing cost will be zero. However,
the base case below B is kind of trivial [6].

Nevertheless, the divide and conquer approach is a basic
technique for designing cache-oblivious algorithms, which
often afford optimal cache complexity within a constant factor
among the levels of a memory hierarchy [6].

C. Search Tree Approach

Initially, we will discuss a binary search tree using a divide
and conquer approach, where the base case is a sub-tree of size
B [6]. Nevertheless, the cache-complexity of the binary search
tree on a sorted array is:

T (N) = O(lgN − lgB) = O
(
lg N

B

)
Where lgN is the height of the binary tree, and lgB is

the leaf height i.e. the base case height. However, B-tree can
achieve the optimal cache-complexity i.e. O

(
lgN
lgB

)
by making

the branching factor value between B and B
2 . The drawback

of B-trees is that the branching factor cannot be tuned easily
between any two memory levels. Nevertheless, if the branching
factor is known for all levels of the memory hierarchy, then the
optimal cache-complexity can be achieved by using a B-tree
algorithm [6].

The authors of [22] introduced an efficient search tree algo-
rithm that can be tuned easily between any two memory levels
and their algorithm achieves the optimal cache complexity.
This algorithm is the so-called cache-oblivious tree (or Van
Emde Boas layout), which is a binary search tree, but each
recursive sub tree is laid out in a single segment of memory.
Accordingly, the tree is recursively split from the middle, so
the height of the tree is lgN , see Fig. 2. We keep splitting

each half recursively into two almost equal halves. At some
point in this recursion, we reach halves of size less than or
equal to B [22], [6].

lg B

.   .   .

.   .   . .   .   .

.   .   .

.   .   .

Fig. 2. Layout of the Cache-Oblivious Tree.

For analysis, following a root-to-node path visits some
sequence of triangles, where each of them fits in, basically
one block. In other words, triangle size is, at most B and at
least

√
B, which is generated from splitting B+1 sub-tree into

two further sub-trees, each of size
√
B. Thus, the height of the

smallest triangle i.e. the leaf belongs to [lg
√
B, lgB]. Then, at

most the number of visited triangles for a root-to-node path of
at most lgN height is as follows [22]:

lgN

lg
√
B

= lgN
1
2 lgB

= 2 logB N

Each block requires one transfer, but sometimes a block
requires two transfers because of the alignment of each block,
as shown in Figure 1. Therefore, the cache-oblivious tree
incurs at most 2× (2 logB N) memory transfers. As a result,
the cache-oblivious tree performs INSERT, DELETE, and
SEARCH operations through an optimal cache complexity,
which is shown in Equation 2 [22].

T (N) = O(4 logB N) (2)

D. Sorting Algorithms

Sorting algorithms take N elements of some arbitrary order
and put them into a sorted order. Nevertheless, sorting is an
essential algorithm in computer science, since it can decrease
the complexity of a problem, especially in searching and
database problems. There are many ways to sort elements using
various algorithms, such as bubble, selection, insertion, merge,
quick, heap, radix, bitonic, and bucket sort [23], [24], [25],
[26].

The obvious and easiest way to sort elements is by doing
N inserts into a regular B-tree, which incurs O(N logB N).
B-trees are efficient for searches but are not efficient for very
frequent updates [27]. To get a better result, an efficient sorting
algorithm can be used such as merge sort, which uses a divide
and conquer approach.
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Merge sort divides the problem into two parts, recursively
sorts each part, and recursively merges the two parts. Thus,
merge sort requires three parallel scans; one for the first
portion, another for the second portion, and the third scan for
the merged array, i.e. the sorted array. Such that, we compare
the first elements of both unsorted portions, output one of them
into the merged array, and move the unsorted portion pointer
to the next element, then compare, output one of them, and
so on till reaching the end of both unsorted portions [28].
Accordingly, the whole block is scanned, kicked out, and then
the next one is read, so the three parallel scans can be afforded,
as long as, M

B ≥ 3.

Nevertheless, we always have to be careful with the base
case, whose best size is ≤ M , because when a sub-array of
size M is reached, the whole thing is read without incurring
any more cost as long as, the sub-array stays within a region
of size M . Figure 3 shows the recursion tree of merge sort,
which is better than B-trees and incurs O

(
N
B lg N

M

)
. In terms

of memory transfers, N
B is the number of sorted elements and

lg N
M is the longest path through the recursion tree to sort an

element [29].

lg M

lg N

N

N

M M

Fig. 3. The Recursion Tree of Binary Merge Sort.

Furthermore, to do a multi-way merge sort such as M
B -

way merge sort, then we can mimic the binary merge sort but
with M

B portions instead of two portions [30]. In other words,
M
B parallel scans are needed, so we have to lay out in cache
the first blocks of these M

B sub-arrays, whose size for each
of them is

(
N/M

B

)
. As a result, the same solution as binary

merge sort is achieved but with a shorter longest path through
the recursion tree as

(
logM

B

N
M + 1

)
, such that:

log M
B

N
M + 1 = log M

B

(
N
B

B
M

)
+ 1

= log M
B

N
B + logM

B

B
M + 1

= log M
B

N
B − logM

B

M
B + 1

= log M
B

N
B − 1 + 1

= log M
B

N
B

Accordingly, Equation 3 shows the cache complexity of
sorting N elements using an M

B -way merge sort, which is
optimal. Also, an M

B -way merge sort is the so-called cache-

oblivious sorting algorithm [29].

T (N) = O

(
N

B
log M

B

N

B

)
(3)

E. Priority Queue Data Structure

A priority queue is a queue, where every item is associated
with a priority. An item with the highest priority is dequeued
before any other item. The main operation associated with
the priority queue is getting the highest priority item at any
given time. Priority queue provides INSERT and DELETE-
MIN operations, to add an item to a queue and to dequeue
the highest priority item from it, respectively, as the highest
priority item corresponding to the minimum number. Literature
introduces priority queues supporting a different set of opera-
tions. In this section, we discuss the cache-oblivious priority
queue supporting INSERT and DELETE-MIN operations [31],
[32], [33].

The cache-oblivious priority queue uses a bunch of arrays
in a linear order instead of a bunch of B-trees. Because
priority queue using arrays is simpler and incurs fewer memory
transfers than priority queue using B-trees, which are the best
choice for searching operations. The cache-oblivious priority
queue using the divide and conquer approach is arranged in
levels, as each level is decomposed of two types of buffers; one
“up buffer” and a set of “down buffers” such that each buffer
is of a certain size. In other words, the cache-oblivious priority
queue levels are recursive smaller priority queues, where the
highest priority item exists in the smaller priority queue, i.e.
the smaller level, in the cache [34].

The cache-oblivious priority queue for N items has
lg lgN levels, whose sizes are arranged from top to bot-
tom as N,N2/3, N4/9, ..., X9/4, X3/2, X,X2/3, ..., C, respec-
tively, as shown in Fig. 4. C is a constant size level, and X is
a size between N and C. At the same level, the total size of its
“down buffers” at most equals the size of its “up buffer”. For
example, Level X3/2 in Figure 4 has one “up buffer” of size
Θ(X3/2) and at most X1/2 of “down buffers” each of size
Θ(X). At most, the total size of the “down buffers” at level
X3/2 is (X1/2×X = X3/2), which matches the size of the “up
buffer” at level X3/2. For any two consecutive levels, a “down
buffer” at the larger level matches the size of the “up buffer”
at the smaller level. For example, X3/2 and X are consecutive
levels as shown in Fig. 4, the size of a “down buffer” at level
X3/2 (i.e. the larger level) is X , which matches the size of
the “up buffer” at levelX (i.e. the smaller level) [34].

Generally, minimum and maximum items are correspond-
ing to the highest priority item and the least priority item,
respectively. At a level, items of its “up buffer” are disordered
and their priorities are less than all items in the “down buffers”
at that level. Items of a “down buffer” are disordered and their
priorities are greater than items of the next “down buffer” at
the same level. However, items of the “down buffers” at the
very small levels are ordered and have the minimum item, i.e.
the highest priority item. The priority queue algorithm knows
the maximum item, which is corresponding to the least priority
item, of each “down buffer” at all levels [31], [34], [29].

INSERT operation appends the new item i to the “up
buffer” of the smallest level in the cache. Then the algorithm
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Level N

Level X 9/4

Level X 3/2

Level X

Level X 2/3

"up buffer" of size X
at most X 1/3 "down buffers" each of size ≈ X 2/3

at most  X 1/2  "down buffers" each of size ≈ X

Level C

"up buffer" of size  X 3/2

Fig. 4. Cache-Oblivious Priority Queue Levels.

locates i in an appropriate “down buffer” of the smallest level
by comparing i to maximum items of the “down buffers”
sequentially. If the selected “down buffer” has space, i is
just added to it, otherwise, the “up buffer” swaps i with
the maximum item in the selected “down buffer”. When
the “up buffer” overflows, the algorithm performs the push
operation[29].

To describe push operation, assume the “up buffer” of
level X overflows, then the algorithm pushes X items of
the level X “up buffer” into level X3/2 “up buffer”. After
that, the algorithm sorts the pushed X items and distributes
them among the “down buffers” at level X3/2 and possibly
the “up buffer” at level X3/2. Such that to allocate every
item in its appropriate buffer, the algorithm scans the X items
sequentially and visits “down buffers” at level X3/2 in order.
When the selected “down buffer” overflows, it is split in half
to spawn a new “down buffer” at level X3/2. However, if the
number of allowed “down buffers” overflows, according to our
example, the number of “down buffers” at level X3/2 exceeds
X1/2, then the last “down buffer” at level X3/2 is moved into
the “up buffer” at level X3/2. When this “up buffer” overflows,
the algorithm pushes recursively X3/2 items of the level X3/2

“up buffer” into the level X9/4 “up buffer” [29].

DELETE-MIN operation reverses the INSERT operation,
therefore the algorithm deletes and pulls instead of inserts and
pushes. The pull operation is a sort of reverse distribution step.
Usually, “down buffers” of the smallest level are kept sorted
in the cache and have the minimum item all the time, so the
highest priority item is touched with zero memory transfers.
However, there is no need to sort items in “down buffers” of
the larger levels, we just need to keep track of the maximum
items for the “down buffers” of larger levels. The smallest
level in external memory is called the key level, where the
algorithm consumes memory transfers to touch any item there.

In the cache-oblivious priority queue, most memory transfers
are consumed to sort items. Consequently, the cache-oblivious
priority queue provides INSERT and DELETE-MIN operations
for one element with the cost of sorting, as shown in Equation
4 [29].

T (N) = O

(
1

B
log M

B

N

B

)
(4)

F. Matrix Multiplication Algorithm

Matrix multiplication is the most essential matrix operation
since it has significant applications in various fields. Examples
are cryptography, wireless communication, computer graphics,
computations in linear algebra, solution of linear systems
of equations, the transformation of coordinate systems, and
computational modeling [35], [36], [37], [38], [39].

Multiplying two matrices of size N×N using the standard
matrix-multiplication algorithm incurs O

(
N3

B

)
memory trans-

fers. However, the cache-oblivious algorithm uses the divide
and conquer approach to solve matrix-multiplication problems.
For simplicity, assume that A, B, and C are square matrices of
size N×N for each. The cache-oblivious algorithm recursively
partitions these matrices into quadrants, as shown in Fig. 5
[40], [41], [42].

N
2

N
2

N
2

N
2

N
2

N
2

N
2

A22A21

A11 A12

B22B21

B11 B12

A B C

C22C21

C11 C12

N
2

N
2

N
2

N
2

N
2

Fig. 5. Cache-Oblivious Algorithm Recursively Divides Matrices into
quadrants.

The algorithm performs eight recursive matrix multiplica-
tions to update the four quadrants of C. At some point in this
recursion, we get a base case, that the three sub-matrices fit in a
certain number of B’s, or for the best base case when the three
sub-matrices fit in the cache M . For cache complexity analysis,
the recursion stops at the best base case, when the three sub-
matrices of size c

√
M x c

√
M , such that, c is a constant due

to dividing cache into three sub-matrices. Then, the three sub-
matrices fit in the cache, and accessing any element of them
is free [43].

Nonetheless, this recursion is dominated by its leaves, so
its cache complexity is the total number of leaves times the
cache misses per leaf. Accordingly, each leaf of this recursion
incurs O

(
M
B

)
memory transfers, as the total number of leaves

is:

8lgN−lg c
√
M = 8

lg N

c
√

M =
(

N
c
√
M

)lg 8

= N3

cM
3
2

So, the total number of memory transfers is M
B ×

N3

cM
3
2

.
Consequently, Equation 5 shows the cache complexity of the

www.ijacsa.thesai.org 1006 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

cache-oblivious matrix-multiplication algorithm using recur-
sive block matrices, which is the optimal cache complexity
for matrix-multiplication problems [40], [41], [42].

T (N) = O

(
N3

B
√
M

)
(5)

V. EXTENSION: CACHE-OBLIVIOUS NEURAL NETWORKS

Generally, a neural network iteratively learns by datasets,
such that a neural network passes the whole dataset several
times to learn correctly, as the neural network gets better
performance in terms of mean squared error and accuracy
[44]. The number of passes through the entire dataset is called
epochs. To speed up the learning process, a dataset of size
N is divided into mini-batches as a minimum learning unit,
where a neural network updates its parameters after passing
each mini-batch. Consequently, every epoch consists of several
mini-batches, each of them having a size between 1 and N . For
brevity, mini-batches are commonly called batches [8], [45],
[46].

During the learning process, the neural network must be
kept in the cache, but mini-batches are loaded and kicked out
as needed. For the cache-oblivious neural network, the dataset
must lay out in contiguous segments of memory, in any order,
so the neural network scans the dataset in the same order it
is stored [6]. The mini-batch size interacts with other hyper-
parameters and must be optimized at the end to find the optimal
size. However, if the size of a neural network is P , then the
mini-batch size equals a multiple of B, as the selected multiple
of B is recommended to be ≤ (M − P ) to avoid incurring a
memory transfer within a learning unit. In other words, it is
recommended to select the mini-batch size as a power of two,
that does not exceed (M − P ).

Accordingly, if a neural network of size P , using a dataset
of size N , and a number of epochs E, then the cache complex-
ity of this problem is described in Equation 6. As the number
of epochs increases to get better results, the cache complexity
of a neural network for a large problem (i.e. P + N > M )
increases by at most the same factor. However, the number of
epochs does not incur any memory transfer for a small problem
(i.e. P + N ≤M ).

T (N) =

{
O(dPB e+ dNB e), if P + N ≤M

O(dPB e+ E × dNB e), if P + N > M
(6)

Neural networks greedily access memories, consequently,
if N does not lay out in contiguous segments of memory, the
cache complexity of a neural network will expand by a factor
of N . Another extreme case that expands the cache complexity
of a neural network, is when the N element is larger than B, so
accessing any of the N elements initiates a memory transfer,
too.

A. Experimental Results

To examine cache-oblivious neural networks, we imple-
mented a cache simulator based on Intel i7 CPU and a memory
hierarchy as described in Table II. Our cache simulator using

Python 3.6 is concerned with the L1 cache, whose block size is
8KB, consequently, M = 8MB and B = 8KB. Additionally,
the simulator uses a tall full associative cache and the LRU as
a page replacement policy.

TABLE II. EXPERIMENTAL MEMORY HIERARCHY

Memory level Size
L1 Cache 8MB
L2 Cache 1GB
Main memory (RAM) 8GB

Furthermore, a 6-layer-stacked auto-encoder (SAE) model
is used to classify the MNIST dataset as being cre-
ated according to the authors of [8]. The experimental 6-
layer SAE of 1139710 parameters occupied a 4.35MB
of M . We examined two factors, the dataset sizes
{0.63, 1.59, 3.18, 6.36, 9.69, 13.02, 16.36} in MB and the
number of epochs {0, 10, 20, ..., 100}. Table III shows the
experimental results, which are the total cache misses per
epoch using different dataset sizes.

The available cache space for a dataset is 3.65MB because
the experimental SAE occupied 4.35MB of M (i.e. 8−4.35).
Thus, three dataset sizes fit the free space of M as the rest
dataset sizes are larger than the free space of M . Accordingly,
we split the results into two figures; Fig. 6 shows the cache
misses of the experimental SAE using small dataset sizes (i.e.
P + N ≤ M ), and Fig. 7 shows the cache misses of the
experimental SAE using large dataset sizes (i.e. P +N > M ).
Epoch zero represents the initial step when the SAE model
is loaded to M without the dataset. Therefore, all experiments
using any dataset size have the same number of cache misses at
zero epoch, which equals 557 cache misses i.e. dmodelsize

B e =
d 4.35MB

8KB e, as illustrated in Table III.

Fig. 6 shows that increasing dataset size increases the cache
misses. However, increasing the number of epochs does not
perform any additional cache misses. Because the experimental
SAE and the dataset fit M . Fig. 7 shows that increasing dataset
size increases the cache misses too. Additionally, increasing
the number of epochs increases the cache misses by the same
factor. Because the experimental SAE and the dataset are larger
than M , consequently, every dataset access performs a cache
miss. For example, the dataset size of 6.36MB in addition to
the model size of 4.35MB needs 10.71MB, which is greater
than M . Therefore, the cache misses based on Equation 6 are
557 + E × d 6.36MB

8KB e, as shown in Table III. However, if the
dataset size is 3.18, then the total needed space is (3.18MB+
4.35MB = 7.53MB). Thus, the problem fits M , and the
cache misses based on Equation 6 are 557 + d 3.18MB

8KB e, which
is independent of E, as illustrated in Table III.

VI. SUMMARY

Cache-oblivious algorithms utilize all levels of memory
hierarchy efficiently, without knowing their parameters or
even the existence of memory hierarchy levels. Thus, cache-
oblivious algorithms support portability and better memory
performance. Cache complexities of cache-oblivious algo-
rithms are denoted by the cache parameters i.e., the cache size
M and the block size B, even though M and B are unknown
for cache-oblivious algorithms in reality.
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TABLE III. TOTAL CACHE MISSES PER EPOCH FOR THE EXPERIMENTAL SAE

aaaaaaa
dataset size

epochs
0 10 20 30 40 50 60 70 80 90 100

0.63 MB 557 638 638 638 638 638 638 638 638 638 638
1.59 MB 557 761 761 761 761 761 761 761 761 761 761
3.18 MB 557 965 965 965 965 965 965 965 965 965 965
6.36 MB 557 8707 16857 25007 33157 41307 49457 57607 65757 73907 82057
9.69 MB 557 12967 25377 37787 50197 62607 75017 87427 99837 112247 124657
13.02 MB 557 17237 33917 50597 67277 83957 100637 117317 133997 150677 167357
16.36 MB 557 21497 42437 63377 84317 105257 126197 147137 168077 189017 209957
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Fig. 6. Cache Misses of SAE using Small Datasets.
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Fig. 7. Cache Misses of SAE using Large Datasets.

This paper discusses the cache complexities of the optimal
recently known cache-oblivious algorithms for most essential
problems, as summarized in Table IV. Notice that, the same
input size N for all algorithms, but each of them incurs a

different number of cache misses according to the algorithm
target. Generally, cache-oblivious algorithms utilize a divide
and conquer approach with a base case based on the algorithm
behavior. However, their cache complexities are calculated on
different base cases that are proportional to either the block
size B or the cache size M .

TABLE IV. CACHE-COMPLEXITY BASED ON CACHE-OBLIVIOUS MODEL

Cache-oblivious algorithm
and data structure

Cache-complexity

Scanning
⌈

N
B

⌉
Binary search tree 4 logB N

M
B -way merge sort

N
B logM

B

N
B

Priority queue 1
B logM

B

N
B

Recursive block-matrix
multiplication

N3

B
√

M

Small neural network ⌈
P
B

⌉
+
⌈

N
B

⌉
(P + N) ≤M
Large neural network ⌈

P
B

⌉
+ E ×

⌈
N
B

⌉
(P + N) > M

Moreover, we introduce an extension that applies the cache-
oblivious scanning approach to neural networks. In other
words, to minimize the cache complexity of a neural network,
the dataset must lay out in contiguous blocks of memory. When
a neural network and its dataset are within cache size, the
cache complexity is ≤ M

B . Otherwise, cache complexity is
growing by a factor that at most equals the number of epochs,
as shown in Fig. 7. Nevertheless, if the dataset does not lay out
in contiguous blocks of memory, then the cache complexity of
a neural network expands, consequently, its learning process
consumes unreasonable time.
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