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Abstract—This paper discusses the efficacy of the data 

augmentation method deployed in many Convolutional Neural 

Network (CNN) algorithms for determining timber defect in four 

timber species from Malaysia. A sequence of morphological 

transformation, involving x-reflection and rotation, was executed 

in the timber defect augmentation dataset for aiding CNN model 

training and generating the finest CNN models which offer the 

best classification performance in determining timber defect. For 

further assessing the CNN algorithms’ classification 

performance, several deep learning hyperparameters were tried 

on the Merbau timber species by utilising epoch as well as 

learning rate. A comparison of the classification performance 

was then done between other timber classes, namely KSK, 

Meranti, and Rubberwood. According to the results, the 

ResNet50 algorithm, which has its basis in the transfer learning 

methodology, outclasses other CNN algorithms (ShuffleNet, 

AlexNet, MobileNetV2, NASNetMobile, and GoogLeNet) with 

the best classification accuracy of 94.59% using the data 

augmentation method. Furthermore, the outcomes indicate that 

utilising an augmentation methodology not just addresses the 

issue of a limited dataset but also enhances CNN classification 

output by 5.78% with the support of T-test that demonstrates a 

significant difference across all CNN algorithms except for 

Alexnet. Our study on hyperparameter optimisation by utilising 

learning rate as well as epoch is sufficient to infer that a greater 

number of epoch and learning rate does not deliver superior 

precision in CNN classification. The experimental findings 

suggest that the proposed methods improved CNN algorithms 

classification performance in identification of timber defect while 

tackling the imbalanced and limited dataset challenges. 
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I. INTRODUCTION 

Of late, a multiple integration of the artificial intelligence 
algorithm and image processing approach has been studied for 
determining timber defects as the image segmentation 
methodology single-handedly cannot precisely categorise such 
defects. Even though many machine learning algorithms have 
shown considerable recognition rates for different kinds of 
timber defects [1][2][3], the present manual feature extraction 
procedure executed in machine learning is considered quite 
taxing due to its vulnerability to multiple feature attributes 
within the distinctive appearance of the timber. Therefore, the 

convolutional neural network (CNN) is deployed for 
addressing the complex procedure of feature extraction in 
machine learning as deep learning algorithms not just offer 
superior classification performance but also provide an 
automatic feature extraction process which is tailored to the 
imminent problem during the training procedure. CNN is a 
deep learning algorithm which blends hierarchical and 
multilayer network architectures. Its distinctive architecture 
allows the algorithm to mine diverse abstract representations 
on the basis of a designated level of features while aiding CNN 
to imbibe the complex matter with an improved feature set [4]. 
CNN has exhibited its competence by outclassing traditional 
computer algorithms when it comes to object identification and 
image-based classification. Even though such computer 
algorithms have been utilised for scrutinising actual images in 
various fields since the 1970s, these pre-fabricated texture 
algorithms have to be built based on image domain 
specificities, which is a major issue [5]. CNN demonstrated its 
ability when DenseNet was able to attain a classification 
precision of 98.75% while [6] assessing the performance of 
four novel CNN architectures with pre-determined texturing 
techniques in the timber domain. Jung et al. [7] made a 
comparison of the performance of three CNN architecture 
depths by categorising into four kinds of defect classes. The 
outcomes indicated that deep CNN attained the best 
classification precision of 99.8% in determining timber defect, 
albeit with greater computational time because of the deeper 
network architecture. Although the precision of the 
architectures varies a bit, this shows that they are both viable 
solutions to the issues of timber classification. 

Thus, the deep learning methodology presents a good 
ability for data mining and knowledge breakthrough in the 
domain of timber defect detection. However, one of the 
significant challenges in execution of deep learning is data 
disparity. On one hand, raw data is now more and more 
accessible; on the other hand, most datasets have unbalanced 
distributions with some object classes exhibiting plentiful 
representation and others possessing inadequate 
representations, like timber defects. Data disparity in deep 
learning could trigger inadvertent errors with possibly 
substantial consequences, particularly in classification tasks in 
which the lopsided distribution of class instances compels 
classification algorithms to trigger inductive bias with regards 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 5, 2022 

108 | P a g e  

www.ijacsa.thesai.org 

to the majority class. This causes a substandard classification 
performance because of lesser detection of the minority 
samples [8][9]. For dealing with the challenges associated with 
imbalanced datasets, data augmentation was generally 
deployed to produce supplementary samples as shown by [10] 
in their study on imbalanced toxic comments classification by 
utilising deep learning as well as data augmentation. Moreover, 
Hu et al. [11] noted that deep learning approaches are not much 
deployed in the timber industry because of the inadequate 
quantity of defect datasets necessary for CNN training. Other 
aspects contributing to the dearth of timber defect images are 
the outlay incurred for gathering such images and the rigorous 
manual labelling procedure. One of the effectual techniques for 
utilising CNNs on minor datasets is espousing transfer learning 
that encompasses dropping a pre-trained CNN’s classifier layer 
and adjusting it for the target dataset [12]. Thus, the transfer 
learning and data augmentation approaches might be the 
solution for addressing class disparity and limited-data 
problems in timber defect datasets. 

This study advocated the use of deep learning approaches, 
in this case a Convolutional Neural Network (CNN) algorithm 
to address the complex procedure of feature extraction in 
machine learning as deep learning algorithms itself not only 
offer superior classification performance but also provide an 
automatic feature extraction process which is tailored to the 
imminent problem during the training procedure. In order to 
utilize the advantage and capabilities of CNN, both transfer 
learning and data augmentation technique are used to cater for 
imbalanced and limited size timber defect dataset. The data 
augmentation technique employed in this study would involve 
implementation of various morphological transformation 
during the image pre-processing process to increase the 
diversity of timber defect dataset, while the proposed transfer 
learning method will be applied to several CNN algorithms 
(ShuffleNet, AlexNet, MobileNetV2, ResNet50, 
NASNetMobile, and GoogLeNet) in search of highest CNN 
classification performance across the timber species via 
multiple combinations of learning rate and epoch parameters. 
In addition, both transfer learning and data augmentation 
technique proposed in this research is necessary to avoid 
overfitting during the training of deep learning algorithm and 
achieve greater accuracy for timber defect identification. 
Besides studying the efficacy of these two methodologies, this 
research assesses the performance of several CNN algorithms 
across the four timber classes from Malaysia. 

II. METHODOLOGY 

A. Overview of Approach 

This portion elaborates the research approach devised to 
assess transfer learning and data augmentation efficacy based 

on numerous CNN algorithms to determine timber defects for 
four species in Malaysia. The initial timber pictures are 
labelled and classified using species and timber defect 
categories. The timber defect dataset provided by the Universiti 
Teknikal Melaka Malaysia (UTeM) is used for this research 
[13]. Meranti, Rubberwood, Kembang Semangkuk (KSK), and 
Merbau species were used for this study. Data augmentation 
approaches were applied to the images representing timber 
defects to assess process efficacy for CNN classification. 
Original and enhanced images were sized using the inputs 
corresponding to the CNN techniques. Subsequently, 
ShuffleNet, AlexNet, MobileNetV2, ResNet50, 
NASNetMobile, and GoogLeNet were used for testing the 
transfer learning approach. The techniques were further 
assessed to determine hyperparameter configurations for 
optimal CNN classification effectiveness of timber defects. 
Lastly, the enhanced dataset was tested for classification 
efficacy using several deep learning hyperparameter settings 
for different timber specimens; data were gathered and 
assessed. 

B. Data Augmentation 

Data augmentation is regarded as the standard approach in 
deep learning, specifically when there are fewer data samples. 
The study considered the Meranti, Merbau, KSK, and 
Rubberwood timber species; experimental specimens were 
created using 1600 images representing timber defects. The 
dataset comprises eight timber defect categories (brown stain, 
blue stain, knot, borer holes, rot, bark pocket, wane, and split), 
along with one set of clear timber specimens. The dataset was 
enhanced using the augmentation technique that allowed data 
maximisation by processing original images. Several 
morphological changes (x-reflection and rotation) and different 
orientations of the original images were used to augment the 
dataset and enhance CNN timber defect detection accuracy. 
Researchers [14] assert that several morphological changes 
also reduce overfitting challenges associated with deep 
learning by allowing additional variations of the original 
information. Defect images were represented using 10-degree 
rotation versions to comprehensively depict defects as they 
appear on timber surfaces based on the direction of feeding. 
Image enhancement and other pre-processing approaches 
helped enhance the original dataset to ten times its initial size, 
i.e., comprising 16000 timber defect images. CNN architecture 
training and testing were based on the original and enhanced 
datasets. Table I presents some information concerning the 
morphological changes implemented during the image addition 
pre-processing steps to enhance dataset diversity. 

 Rotation range 10–350°; rotates every image by 10° 

 X – Reflection with 0°, 90°, 180° and 270° rotation 
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TABLE I. AUGMENTED SAMPLES USING MULTIPLE MORPHOLOGICAL TRANSFORMATION 

Rotation Image Rotation Image Rotation Image Rotation Image 

Original 

 

10° 

 

20° 

 

30° 

 

70° 

 

90° 

 

130° 

 

180° 

 

210° 

 

270° 

 

310° 

 

330° 

 

X-Reflection 

 

X-Reflection 90° 

 

X-Reflection 
180° 

 

X-Reflection 
270° 

 

C. Transfer Learning using Convolutional Neural Network 

(CNN) Algorithms 

Using transfer learning for CNN is an effective and 
practical approach to train deep learning models during 
labelled specimen scarcity. Transfer learning offers the 
versatility to change initially-trained systems and tune them 
using domain-based information. A model trained using a 
broader dataset is used, and specific weights are preferred over 
initial model training. Transfer learning acts as a potent 
approach for enhancing learning speed for image 
categorization and identification jobs. Higher speeds are 
possible because previous training jobs are employed, and 
knowledge is reused to enhance learning speed for new or 
relatively difficult data models [15]. Further, [16] established 
that transfer learning was usable for VGG16, AlexNet, and 
ResNet152 to identify timber defects. ResNet provided 80.6% 
accuracy when contrasted against the speedier R-CNN 
framework and other previously-trained transfer learning 
systems. Moreover, transfer learning is a vital approach to 
reduce overfitting when training deep learning models [17]. 
For CNN systems, transfer learning is implemented by 
assigning convolutional layer weights equal to the starting 
values for fresh classification problems than the complete 
network comprising fully-connected layers. Moreover, this 
approach is specifically beneficial to address the difficulty 
concerning learning classifiers where strong performance is 
required, but training samples are limited [18]. 

 AlexNet is among the initial noteworthy CNN system 
used for the ImageNet dataset to classify objects [19]. 
The system consists of five and three convolutional and 
fully-connected layers, 500,000 neurons, and 58 million 
parameters. A SoftMax classifier is used after the fully-
connected layers; it outputs the likelihood values for a 
relevant class [16]. 

 ShuffleNet works under computational capability 
constraints, and this deep learning architecture is tuned 
for mobile devices. The system comprises 
convolutional and maximum pooling layers, 3 
ShuffleUnit elements, global pooling, and fully-
connected layers [20]. The model comprises point-by-

point pairing convolution and shuffles channels to 
maximise classification effectiveness while controlling 
the need for higher computational abilities [21]. 

 GoogLeNet is a differentiated neural network 
framework implementing a novel organisational system 
called “Inception Module”. This module implements 
several convolution operations along with filter 
concatenation for subsequent layers. Overall, the system 
comprises 27 layers (pooling layers included). There are 
9 inception elements having maxpooling and 
convolution processes [22]. 

 ResNet50 is short for residual network (ResNet) and it 
comprises 50 layers. Contrasting to other CNN 
algorithms that amass manifold convolutional layers 
within their architectures, the ResNet50 architecture 
comprises diverse sets of identical layers and ascertains 
blocks which are utilised for signifying the usage of 
prior layers in the network [23]. Even though the 
network architecture is quite deeper, the quantity of 
parameters is quite smaller as against other equivalents 
[24]. 

 NASNetMobile is a neural architecture search net 
(NASNet) variation which emphasises on the mobile 
and embedded platforms. The architecture’s central 
structure utilises data-led and intelligent methodologies 
to construct network frameworks which are optimised 
through reinforcement learning. It generates a feature 
map by deploying repeated operations on either 
convolutional cells (reduction cell and normal cell) 
throughout the architecture [25]. The architecture 
comprises 12 cells having 5.3 million parameters [26]. 

 The MobileNetV2 architecture is enhanced for mobile 
computing. It decreases consumption of memory and 
delivers speed at a lower cost while removing 
overfitting on minor datasets [27]. The inverted residual 
and depth wise separable convolution are two of the 
main aspects in the MobileNetV2 architecture that 
comprises 32 entirely convolutional filters and 19 
residual bottleneck layers [28]. MobileNetV2 has 3.47 
million parameters [26]. 
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In this research, transfer learning is implemented by 
altering the output class of both fully connected layer and 
classification layer of the CNN algorithms according to the 
number of classes in the timber defect dataset (9 classes). 
However, the other important CNN layer such as convolutional 
layer, activation function (ReLu), pooling layer are kept in 
their original algorithm architecture. Furthermore, all six CNN 
algorithms were fine-tuned to match the data in this article by 
retraining the weightage of each CNN layer. For model fine-
tuning, each of the CNN algorithm was trained 48 times using 
different combinations of learning rate and epoch parameters 
across multiple timber species. While other training options 
such as stochastic gradient descent with momentum (SGDM) 
optimizer and batch size (10) were used and maintained 
throughout the training. Even though a decent predictive 
performance entails a huge number of annotated datasets, 
transfer learning is frequently utilised to adjust for data paucity. 
As per the observations by [29], the limited dataset will be 
sufficient for the remaining layers for learning the features in 
the pertinent domains, since the architecture had attained vital 
features like corners in their initial few layers. Thus, transfer 
learning has been seen to be a mostly effective technique for 
training neural networks having a limited dataset, and offers a 
significant promise in the domain of classifying timber defects. 

D. Hyperparameter Optimization 

Hyperparameter optimisation is a primary constituent 
essential in deep learning training for enhancing the CNN 
algorithms’ performance. Even though the procedure is quite 
tough as well as time-consuming, the fine-tuning is necessary 
to warrant the high classification performance of these 
algorithms since these are the variables which the model is 
unable to learn independently. While there exist many 
proposals on automatic optimisation methods, each has its own 
merits and demerits when implemented for diverse kinds of 
problems [30]. Batch size, learning rate, and training epochs 
are few of the hyperparameters which are adjusted as per the 
intricacy of the problems or datasets because the model has to 
possess adequate capability for prediction tasks while evading 
over-fitting [31]. The learning rate is a vital hyperparameter in 
deep learning since it outlines the step size at every iteration 
for the objective function to congregate [32]. The learning rate 
is augmented by a superior learning rate; however, the gradient 
might fluctuate around a local minimum value or perhaps fail 
to congregate. A minor learning rate would congregate 
smoothly but with a substantial rise in model training time 
because of supplementary training epochs. Notably, in case the 
gradient is trapped at local minima, visible progress is achieved 
at the expense of computational outlay [33]. With a proper rate 
of learning, the objective function has to be able to congregate 
to a global minimum within a decent period of time. 
Conversely, the number of epochs can be ascertained by the 
size of the training set and has to be adjusted by progressively 
raising its value till validation precision starts to fall, signifying 
model overfitting. The deep learning model typically 
congregates in a few epochs and the following epochs might 
drive supplementary execution time as well as overfitting. This 
can be evaded through an early halting approach. This 
approach is a kind of regularisation wherein the model training 
is halted beforehand when the validation precision does not 

enhance following a specific number of successive epochs. To 
sum up, ascertaining the apt hyperparameters is vital for 
warranting the utmost performance of learning algorithms, thus 
creating a model timber defect identification setup in this 
study. We adjust the learning rate (0.001 and 0.0001) and the 
quantity of training epochs (50, 100 and 200) to ascertain the 
top CNN classification performance for determining timber 
defect. 

III. RESULT AND DISCUSSION 

In this paper, multiple CNN classification performance was 
examined via analysis of the concerning classification accuracy 
measures. With the accuracy signifying the measure pertaining 
to true defects versus the predicted defects, this study focuses 
on highlighting the classification performance pertaining to the 
put forward augmentation method via comparison versus those 
six CNN algorithms. Again, comparison was performed for the 
detailed classification performance with regards to the put 
forward feature versus four Malaysia timber species, namely 
Merbau, Meranti, Rubberwood and KSK. By employing both 
epochs and learning rate, multiple tuning pertaining to both 
hyperparameters were evaluated to identify the best CNN 
training optimisation and determine timber defect. Table II 
displays the classification accuracy with regards to various 
CNN algorithms across both non-augmented and augmented 
timber defect dataset along with hyperparameter tuning. While 
the classification accuracy pertaining to both MobileNetV2 and 
ResNet50 was seen to enhance considerably, ResNet50 was 
introduced to show a better performance at 0.01 learning rate 
and 100 epochs. Thus, this signifies that the highest accuracy 
rate is displayed by 94.59% classification rate from augmented 
Rubberwood dataset versus other timber species as well as 
CNN algorithms. The greatest effect was cast by the 
augmented dataset with synthetic data on the Rubberwood 
dataset, wherein accuracy enhanced by almost 10.37% from 
82.96% to 93.33%, while Merbau dataset displayed the lowest 
impact, displaying reduced accuracy to 86.74% from 89.63%. 
The highest classification accuracy of 94.07% was achieved 
via GoogLeNet employing 0.001 learning rate and 200 epochs 
in Meranti dataset. Based on the tables, it can be seen that 
augmented Rubberwood dataset distinctly had the highest 
accuracy enhancement at 11.11% from 81.48% to 92.59% with 
0.001 learning rate and 50 epochs. Even though Merbau is 
regarded to be the most ineffective augmented dataset, which 
reduced the classification accuracy to 75.85% from 84.44%, 
the overall classification accuracy pertaining to GoogLeNet 
algorithm encompassing four different types of timber species 
was seen to rise by 3.18%. With regards to AlexNet, the 
highest classification performance was achieved at 92.81% by 
employing the Rubberwood dataset that had hyperparameters 
of 0.0001 learning rate and 50 epochs. Using data 
augmentation was seen to enhance the classification accuracy 
of the algorithm by 22.87%, i.e., from 68.69% to 91.56%. 
However, the augmentation technique also comes along with 
adverse impact, wherein the augmented dataset pertaining to 
the KSK species made the algorithm to overfit in the training. 
Even though our experiment results in AlexNet algorithm 
becoming overfit, the overall classification performance 
displayed that the accuracy with the augmentation technique 
was seen to enhance by 1.08%. 
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TABLE II. CLASSIFICATION PERFORMANCE OF CNN ALGORITHMS ACROSS TIMBER SPECIES WITH MULTIPLE HYPERPARAMETERS SETTINGS. THE HIGHEST 

CLASSIFICATION ACCURACY ACROSS TIMBER SPECIES IS INDICATED IN RED 

CNN 
Hyperparameters Rubberwood Merbau Meranti KSK 

Learning rate Epoch Ori AUG Ori AUG Ori AUG Ori AUG 

ResNet50 

0.001 

50 91.85 94.00 89.63 86.74 82.22 92.52 86.67 92.30 

100 89.63 94.59 88.89 90.07 88.89 93.56 86.67 91.41 

200 92.59 94.22 86.67 88.89 91.11 94.07 88.89 92.22 

0.0001 

50 82.96 93.33 84.44 88.52 91.85 92.74 84.44 92.67 

100 86.67 92.89 85.19 87.48 92.59 91.85 87.41 93.26 

200 88.15 93.70 83.70 89.19 89.63 92.15 85.93 91.85 

GoogLeNet 

0.001 

50 81.48 92.59 85.19 87.48 91.85 91.19 86.67 92.96 

100 83.70 92.67 85.19 85.63 90.37 91.41 87.41 92.44 

200 85.19 93.04 89.63 89.41 94.07 92.15 85.93 89.70 

0.0001 

50 85.19 92.00 75.56 79.56 88.89 91.41 82.96 84.67 

100 88.15 91.56 84.44 81.26 83.70 91.33 87.41 85.48 

200 86.67 92.89 84.44 75.85 82.96 92.52 81.48 85.56 

AlexNet 

0.001 

50 66.67 88.44 81.48 72.07 83.70 84.67 77.78 83.33 

100 68.69 91.56 78.52 69.56 86.67 86.37 84.44 86.07 

200 70.37 89.85 79.26 69.04 85.19 85.63 81.48 11.11 

0.0001 

50 82.22 92.81 84.44 83.70 85.93 90.44 86.67 89.56 

100 80.00 91.48 81.48 80.30 88.89 89.11 86.67 90.89 

200 79.26 92.07 80.74 84.30 87.41 89.48 87.41 89.33 

ShuffleNet 

0.001 

50 88.89 93.19 83.70 91.56 87.41 92.52 90.37 86.37 

100 85.19 93.78 84.44 82.15 87.41 92.44 90.37 90.52 

200 88.15 93.56 89.63 87.11 88.89 92.52 88.15 89.33 

0.0001 

50 80.74 92.15 79.26 82.52 86.67 90.96 82.96 90.22 

100 79.26 92.74 80.00 81.48 88.15 89.78 83.70 89.85 

200 80.00 90.59 81.48 81.48 92.59 91.33 82.96 90.81 

NASNetMobile 

0.001 

50 84.44 93.56 77.78 88.00 90.37 91.48 83.70 90.89 

100 85.19 94.30 84.44 86.15 92.59 90.81 85.19 92.15 

200 85.19 92.67 80.00 89.33 90.37 92.44 87.41 94.15 

0.0001 

50 78.52 93.48 77.78 84.22 92.59 90.15 84.44 89.56 

100 82.22 92.15 79.26 87.85 92.59 89.63 82.96 89.33 

200 76.30 92.30 80.74 89.04 94.07 91.04 88.15 90.15 

MobileNetV2 

0.001 

50 85.19 92.67 85.19 84.37 89.63 88.67 85.93 91.26 

100 82.96 91.85 83.70 82.81 91.11 89.48 85.19 89.26 

200 79.26 92.22 82.22 81.85 88.15 90.37 85.19 89.93 

0.0001 

50 82.22 89.41 71.85 80.00 88.89 88.59 84.44 83.85 

100 83.70 92.37 73.33 78.89 89.63 88.74 82.96 84.67 

200 77.78 91.56 74.07 76.89 91.11 89.41 83.70 85.33 

In ShuffleNet, applying the augmentation technique in the 
Rubberwood dataset was seen to improve the accuracy by 
13.48% with 0.0001 learning rate and 100 epochs, as displayed 
in Table II. However, ShuffleNet showed the highest 
classification performance with regards to the Rubberwood 
dataset (93.79%), wherein the overall accuracy increased by 
4.11% across the timber species by employing data 
augmentation. Next, the best result of 94.3% was achieved via 
NASNetMobile by employing 0.001 learning rate and 100 
epochs. With regards to the different epoch as well as learning 
rate combinations, the average classification accuracy can be 
enhanced by 5.78% by employing the algorithm across the 
timber species. Most of the defect datasets can achieve 
accuracy of greater than 94% in NASNetMobile aside from 

Merbau dataset that can reach just 89.33%. In line with other 
data augmentation studies, few augmented datasets could cast 
an adverse impact on CNN classification performance, like 
Meranti augmented dataset, which can decrease the 
performance by 3.03%. With regards to the augmented 
Rubberwood dataset, MobileNetv2 displayed high 
classification accuracy enhancement of 12.96% employing 
0.001 learning rate and 200 epochs. With the Rubberwood 
dataset (92.67%), the highest accuracy was displayed, 
specifying that the algorithm classification performance is 
enhanced by the augmentation method. After training with 
0.0001 learning rate setting, the MobileNetV2 showed decrease 
in performance in Merbau augmented dataset, similar to the 
performance of AlexNet. In the Meranti dataset, a majority of 
performance accuracy degradation was observed from 91.11% 
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to 89.41% employing 0.0001 learning rate and 200 epochs. 
However, the overall algorithm performance employing the 
augmentation method demonstrated enhancement in 
classification accuracy by 3.63%. 

Fig. 1 lists out the overall performance pertaining to 
multiple CNN algorithms employing both non-augmented and 
augmented timber defect datasets. These experiments 
demonstrated that with the help of the augmentation technique, 
the small dataset issue [34] can be addressed as well as the 
CNN classification results can be enhanced. Even though all 
the analysed models demonstrated enhancement in 
classification performance, the NASNetMobile model gave the 
best improvement (5.8%). By employing data augmentation, 
performance enhancement in the range of 1.08–5.78% was 
demonstrated across the CNN algorithms along with certain 
fine-tuning with regards to epoch as well as learning rate 
hypermeters. Employing the augmentation technique with 
regards to timber defect identification also increased the 
average accuracy across the timber species i.e., from 87.78% to 
91.84%. The ResNet50 was seen to function well across the 

timber species giving an average accuracy of 91.84% along 
with high performance in terms of defect recognition, when 
compared with the results pertaining to other CNN algorithms 
in the timber defect dataset. Fig. 2 on the other hand, displays 
the validation loss curve of highest accuracy CNN models fine-
tuned by two different hyperparameters (learning rate and 
epoch). Besides, it can be seen from the loss curve that 
ResNet50 can converge quickly compared to other CNN 
models. Referring to the t-test in Table III, the CNN 
classification performance in augmented dataset are 
significantly better compared to the original dataset with the 
results demonstrating statistically significant differences 
between the two datasets except for AlexNet. This evidently 
displays that the augmentation technique cannot be regarded as 
a domain specific technique and can be applied for other 
unexplored timber defect identification domain. Besides, CNN 
algorithms allow achieving high defect identification 
performance, which can be leveraged to develop automatic 
visual inspection system in real-world secondary wood 
industry processing facilities for optimisation of grading as 
well as cutting for timber. 

 

Fig. 1. Overall Performance of CNN Algorithms in both Augmented and Non-Augmented Timber Defect Dataset. 

 

Fig. 2. Loss Curve of CNN Algorithms with Highest Classification Performance. 
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TABLE III. T-TEST RESULT ON AVERAGE CNN CLASSIFICATION 

PERFORMANCE IN BOTH AUGMENTED AND NON-AUGMENTED TIMBER DEFECT 

DATASET 

CNN 
Original 

Dataset (𝐱̅) 

Augmented 

Dataset (𝐱̅) 
Sig. Result 

ResNet50 87.78 91.84 .000 
Significantly 
Different 

GoogLeNet 85.77 88.95 .014 
Significantly 

Different 

AlexNet 81.47 82.55 .767 
Significantly 

Similar 

ShuffleNet 85.43 89.54 .001 
Significantly 
Different 

NASNetMobile 84.85 90.62 .000 
Significantly 

Different 

MobileNetV2 83.64 87.27 .015 
Significantly 

Different 

IV. CONCLUSION 

This study is aimed at evaluating the effectiveness 
pertaining to data augmentation technique by using multiple 
CNN algorithms to identify timber defects across four timber 
species. The research employs CNN algorithms by 
implementing transfer learning on ResNet50, GoogLeNet, 
MobileNetV2, ShuffleNet, NASNetMobile and AlexNet. 
Evaluation of both data augmentation as well as transfer 
learning methods was done with various learning rate and 
epochs to identify the best CNN classification performance for 
timber species. The result showed data augmentation and 
transfer learning techniques can be effectively used for 
searching defect across timber species. The best accuracy could 
be achieved by employing the ResNet50 model (94.59%) along 
with optimisation of hyperparameters at learning rate 0.001 and 
100 epochs. Our results demonstrate that the augmentation 
technique can deal with the limited dataset issue as well as 
enhance the average CNN classification performance by almost 
5.78% with regards to the NASNetMobile model. Also, our 
research study has employed different combination of learning 
rate as well as epoch, suggesting that a higher number of 
learning rate and epoch does not necessarily give higher 
accuracy for CNN model classification. Besides, the research 
outcomes show that data augmentation as well as CNN 
algorithms methods with regards to timber defect identification 
can be used for cutting optimisation as well as industrial timber 
grading. Also, to further enhance the results, exploring of more 
complex data augmentation as well as transfer learning 
framework can be done. The method includes limitations with 
regards to the requirement of manually adjusting the 
orientation pertaining to the timber defect images to carry out 
data augmentation as well as manually label the images 
pertaining to training CNN algorithms, which may not be 
regarded as error-free. Future work may include using deep 
learning for analysis of various kinds of timber defects across 
different timber species. 
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