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Abstract—This paper proposed an indoor evacuation 

assessment algorithm. Indoor evacuation wayfinding to the 

nearest exit becomes more difficult due to the intricacy of the 

inside layout and the involvement of numerous people. Thus, 

evacuation models were developed by researchers to assist 

evacuees in safely exiting a building. Unfortunately, building 

owners are unsure which evacuation model is best for their high-

rise buildings. Therefore, we proposed an assessment algorithm 

to help the owners assess the best evacuation model. This 

research uses floor plan levels 13 and 14 of Yayasan Melaka’s, an 

office building, to simulate the evacuation. Ten simulation studies 

for each level are created. The proposed assessment algorithm 

focuses on three Microscopic evacuation models; agent-based, 

cellular automata, and social force. Hence, three simulation 

software were used to represent the mentioned evacuation model: 

Pathfinder, PedGo, and AnyLogic. K-Mean is then used to 

cluster the simulation time results. Elbow, Silhouette and V-

measure techniques were applied to produce accurate results of 

the K-Mean. We compiled and analyzed the results from ten 

simulation studies for each level. The validation was done by 

comparing the final results. It shows that 70% of the lowest time 

taken is from Pathfinder, 30% from PedGo, and 0% from 

AnyLogic. Based on the result, it is proven that the proposed 

assessment algorithm can provide the best indoor evacuation 

model followed the attributes set for the building. 

Keywords—Assessment algorithm; evacuation model; indoor 

evacuation; k-mean; validation 

I. INTRODUCTION 

Evacuation is the organized, regulated, and supervised 
retreat, dispersal, or withdrawal of individuals from places of 
risk or hazard and their reception and treatment in secure 
environments [1]. Despite the limited space available in urban 
regions, the population of large and medium-sized cities 
worldwide continues to grow. As a result of the requirement to 
deal with this development, high-rise buildings have popped up 
fastly [2]. Thus, fires in high-rise buildings have become more 
prevalent in recent decades as high-rise structures significantly 
affect the skylines of major cities [3]. Therefore, proper 
emergency evacuation in any high-rise structure is critical. 

According to the Fire & Rescue Service Department and 
the Occupational, Health and Safety Environment, the 
evacuation method by occupants in one building should be able 
to escape the building 3 minutes after the emergency alarm 
goes off. Building evacuation must be evaluated for time 
optimization to avoid human casualties [4]. Evacuees with a 
misperception of the building environment may display 
significant rounding or even be trapped, resulting in a 

significantly longer evacuation time. According to Ventura [1], 
people usually take a path of self-estimated speedy escape 
depending on their current condition. In addition, panic and 
stomping can lead to several people departing in an emergency. 
The architecture of escape routes from structures, human 
psychology and behaviour, and various social and behavioural 
patterns can significantly influence evacuation performance, 
resulting in a trapped situation [5]. For instance, a case in 
Gujarat, India, sacrificed 20 students in a fire because no safety 
equipment was installed in the building, and there were no 
escape routes [6]. Another example of disaster is the World 
Trade Centre (WTC) Twin Towers terrorist attack on 
September 11, 2001, where 3000 innocent people died [7]. 
Thus, a high-rise building must have an evacuation strategy to 
allow evacuees to evacuate the building safely. 

Jiang et al. [8] stated there are three types of evacuation 
models which is microscopic, macroscopic, and mesoscopic. 
Individuals‟ geographical and chronological activities are 
frequently defined by microscopic models [9]. The continuum 
model, often known as the macroscopic model, integrates 
variables and monitors characteristics [10]. Finally, 
mesoscopic models, which focus on groups but offer more 
specific information about each pedestrian, considered the 
individuals but not individuals‟ interactions. The goal is to 
keep some control over the individual while moving the group 
as a whole and avoiding local interactions [11]. As a result, 
mesoscopic is not taken into account in this study. Shi et al. 
[12] claimed that microscopic and macroscopic models are 
often used in evacuation evaluations to illustrate pedestrian 
traffic. Macroscopic models, which reflect overall population 
movement, do not typically characterize individuals. 

On the other hand, microscopic models focus on the 
smallest of individuals‟ details. Microscopic models have been 
employed extensively in recent years [13] in various crowd 
simulation studies to understand better crowd behaviour in 
emergency scenarios [14]. For microscopic models, researchers 
have mostly employed these three models: Agent-based model 
(ABM), cellular automata (CA), and social force model (SFM) 
[15]. Thus, the microscopic model is the best among the three 
types of evacuation models for the indoor evacuation model. 

Therefore, this research proposes an intelligent indoor 
evacuation assessment algorithm for critical incidents. The 
assessment algorithm can help select the best evacuation model 
for the chosen building. The best model selection is crucial 
since it depends on the environment and the building‟s needs. 
It also includes the evacuees‟ ability to evacuate safely and 
quickly. This paper‟s organization begins with a brief 
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introduction in Section 1. Section 2 explains the related work 
and is followed by the research methodology in Section 3. 
Section 4 elaborates on the results and discussion on optimal k 
number, v-measure score, intracluster distance, and chosen 
lowest time taken results. Finally, Section 5 concludes the 
study and briefly mentions future enhancement. 

II. RELATED WORK AND TECHNIQUES 

This section describes the related works in clustering 
algorithms and techniques related to the study. 

A. Related Work 

The related works involved in this research include the K-
Mean algorithm and finding the optimal k number. In general, 
the K-mean approach is dependent on the value of k, which 
must always be provided before any clustering analysis can be 
performed. Clustering with various k values will provide 
diverse outcomes [16]. The algorithm in clustering can be a 
feature, as an example in Fig. 1. Training examples are shown 
as dots and cluster centroids as crosses, (a) original dataset, 
(b) random initial cluster centroids, and (c-f) illustration of 
running two iterations of K-Means. 

The closest cluster centroid is allocated to each training 
sample in each loop. It is demonstrated by “painting” the 
training samples with the same colour as the cluster centroid to 
which they have been allocated. Then, for each cluster, the 
mean of the points assigned to it is shifted from the centroid to 
the mean of the points assigned to it. 

 

Fig. 1. Clustering example of K-Mean. 

The process typically finishes when the centroids stabilize, 
or the points cease migrating to other groups. However, this 
depends on the type of grouped data, and the objective function 
used to quantify proximity. Because K-Mean might have 
difficulties with local optimum solutions, a proper initialization 
has proved to be an effective strategy to avoid being caught in 
the incorrect local optimal solutions [17]. Fig. 2 shows the K-
Mean pseudocode [18]. The clustering aims to improve the 
objective feature (f) by measuring the range between entities 
and clusters (the most used measurement is the standard 
Euclidean Distance) as in (1) [19]: 

   ∑ ∑ ‖     ‖
  

   
 
                    (1) 

where K is the number of clusters, N is the number of 
objects,    is the coordinate of object j,    is the coordinate of 

the cluster i and    is the group of objects that belong to cluster 
i. The algorithm shifts the cluster in space to reduce the square 
distances within the cluster. The positions of all objects 
belonging to each cluster are recalculated by averaging. 
Calculation of the center uses as in (2): 

   
 

|  |
∑   
 
                      (2) 

where |  | is the number of objects in the cluster i. The 
algorithm begins with a random set of the Ci cluster‟s initial K 
center points (i = 1, . . ., K), which are the present centroids. 

 

Fig. 2. Pseudocode of K-Mean. 

Finding the best k number for the cluster is crucial because 
K-Mean requires a suitable initialization of the k number for 
clusters to avoid getting trapped at an incorrect local optimal 
solution. Running the algorithm numerous times and selecting 
the appropriate number of clusters based on a few validity 
criteria or automatically identifying them using practical ways 
or standards is a fundamental way to decide the number of 
clusters. The process may also change and tweak the cluster 
centers several times [20]. Several frameworks and techniques 
have been thoroughly investigated and developed in the past to 
provide cluster quality measures that indicate if a particular 
clustering is suitable. There are three ways to verify the 
clusters, which are called cluster validity index (CVI). These 
include external, internal, and relative validity indices [21]. 

More than one index should be used to obtain outstanding 
and accurate findings [22]. A few methods for determining the 
best k number have been considered for this study. Two 
commonly used approaches, the Elbow method and the 
Silhouette method, are investigated in this study to aid in the 
manual selection of the number of displayed clusters [23]. 
Internal validity indexes are used in both methods to assess the 
correctness of a clustering algorithm [24]. Another technique 
examined for this study is the V-measure, based on an external 
validity index. External validity indices such as V-measure are 
commonly used to determine the best clustering result for a 
dataset since they know the „real‟ number of clusters in 
advance [25], particularly the number of clusters recommended 
by Elbow and Silhouette techniques for this study. Table I 
briefly describes the methods used to find the optimal k 
number for K-Mean. 
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TABLE I. METHODS TO FIND OPTIMAL K NUMBER 

Methods Description CVI Type 

Elbow 

The consistency of the optimal number of 

clusters was visually checked by comparing the 
difference in each cluster‟s square error sum 

(SSE). The best figure is the most significant 

variation in elbow angle [25]. 

Internal 

Silhouette 
Uses a silhouette coefficient that combines 
separation and coherence. The larger the 

Silhouette coefficient, the better the cluster [24]. 

Internal 

V-
Measure 

Score 

If items in clusters have independent labels, the 

V-measure is a handy tool for evaluating them. 
The degree of homogeneity of labels in clusters 

may be used to measure the quality of clustering 
objectively [20]. 

External 

B. Related Techniques 

The related technique used in this research is the indoor 
evacuation assessment algorithm based on our previous 
research [26][27]. Fig. 3 shows the detailed flow of the 
developed indoor evacuation assessment algorithm. The design 
and development are separated into six sections in general: 
1) determine attributes, 2) run the simulation, 3) identify the 
best k number, 4) evaluate cluster performance, 5) compute 
intracluster distance, and 6) select the best evacuation model. 

Start
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Fig. 3. Overview of Indoor Evacuation Assessment Algorithm. 

The attributes involved consist of seven: 1) number of 
agents, 2) agents‟ behaviour, 3) room size, 4) number of doors, 

5) number of staircases, 6) blockage status, and 7) number of 
exits. Once entering attribute values, they are used in the 
selected evacuation simulation software. Three simulation 
software programs calculate how long the agents will take to 
evacuate the building. The simulation software involved is 
Pathfinder, PedGo, and AnyLogic. The K-Mean clustering 
technique is used once the findings are generated. Several 
actions are conducted at this point in order to obtain correct 
findings. The processes involve determining the optimal k 
number, confirming it with the V-measure score, and 
determining the lowest intracluster distance between clusters to 
find the lowest time taken. Finally, the assessment algorithm 
presents the most effective evacuation model. 

III. METHODS 

This section divides the research methodology into two 
phases: 1) drawing and mapping floor plans; and 2) simulation 
studies. 

A. Drawing and Mapping Floor Plans 

The floor plan of the chosen building is drawn and mapped 
in the simulation software. The high-rise building used for this 
research is Yayasan Melaka‟s building. The chosen floors are 
levels 13 and 14, which level 14 being the highest level. 
Yayasan Melaka is a large office with several rooms and 
barriers that might make evacuation difficult. This construction 
is a high-rise skyscraper with two access paths on each floor. 
Staircases are said to be an escape route. Elevators and 
windows are not permitted to be utilized as exits since 
elevators are outlawed, and the building‟s height renders 
window escape difficult. 

The simulation software used to produce time taken results 
is Pathfinder, PedGo, and AnyLogic. The simulation software 
represents the evacuation model chosen, ABM, CA, and SFM, 
respectively. The drawing and mapping of the floor plan are 
based on the simulation studies created. A few ground rules 
were observed during the mapping process because each 
simulation software‟s functional capabilities vary; such criteria 
are observed. Two rules are: 1) for each simulation, the paths 
are set in stone and 2) the agents are positioned in the same 
room for each simulation software. 

As a result, particular simulations require manually 
mapping the agents‟ path from the beginning point to the 
endpoint so that they can travel during the experiment. Fair 
simulations are ensured by placing agents in the same rooms 
for each simulation software. The procedures required to map 
the layouts in each simulation program differ from one another 
when it comes to mapping. 

B. Simulation Studies 

The assessment algorithm aims to find the most suitable 
evacuation model for the given structure. The evacuation 
simulations were used to apply simulation findings for the 
research purposes for the assessment process. These simulation 
studies are implemented in Pathfinder, PedGo, and AnyLogic 
simulation software. For each level 13 and level 14, ten 
simulation studies highlight the seven simulation attributes. 
Level 13 simulation studies are shown in Table II, while level 
14 simulation studies are shown in Table III. 
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TABLE II. SIMULATIONS STUDIES FOR LEVEL 13 

Simulation Study 
Number of 

agents 

Agents’ 

behaviour 

Room size, 

    

Number of 

doors 

Number of 

staircases 

Blockage 

condition 

Number of 

exits 

SS13-1 50 Group 1.5  13 26 Yes 2 

SS13-2 50 Scattered 1.5  13 26 Yes 2 

SS13-3 100 Group 1.5  16 26 Yes 1 

SS13-4 100 Scattered 1.5  16 26 Yes 1 

SS13-5 150 Group 1.5  21 26 No 2 

SS13-6 150 Scattered 1.5  21 26 No 2 

SS13-7 200 Group 1.5  20 26 No 1 

SS13-8 200 Scattered 1.5  20 26 No 1 

SS13-9 250 Group 1.5  22 26 Yes 2 

SS13-10 250 Scattered 1.5  22 26 Yes 2 

TABLE III. SIMULATIONS STUDIES FOR LEVEL 14 

Simulation Study 
Number of 

agents 

Agents’ 

behaviour 

Room size, 

    

Number of 

doors 

Number of 

staircases 

Blockage 

condition 

Number of 

exits 

SS14-1 50 Group 1.5  13 28 Yes 2 

SS14-2 50 Scattered 1.5  13 28 Yes 2 

SS14-3 100 Group 1.5  14 28 Yes 1 

SS14-4 100 Scattered 1.5  14 28 Yes 1 

SS14-5 150 Group 1.5  20 28 No 2 

SS14-6 150 Scattered 1.5  20 28 No 2 

SS14-7 200 Group 1.5  21 28 No 1 

SS14-8 200 Scattered 1.5  21 28 No 1 

SS14-9 250 Group 1.5  22 28 Yes 2 

SS14-10 250 Scattered 1.5  22 28 Yes 2 

The values are chosen depending on the building‟s 
appropriateness. The number of agents begins at 50 and rises 
by 50 in each iteration until the total number of agents reaches 
250. A group or scattered behaviour distinguishes the agent. 
The room size is based on the original layout set and is set at 
1.5E    . The number of doors is determined by the total 
number of doors utilized by the agents, and the number of 
staircases can either be two or four, depending on the structure. 
This research uses the time taken for agents to escape using 
stairs of 0.44m/s for the mean overall movement speed [28], 
and the length of the stairs is 7384mm from up to down [29]. 
The requirement for a blockage is assessed, and the number of 
exits is set to one or two.  

IV. RESULT AND DISCUSSION 

A. Optimal k number Results 

When using K-Mean clustering algorithms, determining the 
appropriate k number is crucial. The best k number for K-Mean 
is found using the Elbow and Silhouette approaches. The 
Elbow and Silhouette method findings and the Silhouette 
analysis are included in the results. The graph depicts the 
outcomes of finding the best k number. The elbow point in the 
graph for the Elbow technique reveals that the point is the ideal 
k number for determining the optimal k number based on the 
graphs. The optimum k for the Silhouette technique is the point 
with the highest silhouette score. The result of visualization 

graphs depends on the simulation study; thus, we only show 
the result for SS13-1 since inserting all the results will take too 
many pages. Fig. 4 depicts the Elbow method‟s result where 
the elbow point can be seen as either 3 or 4. 4 is chosen to be 
the elbow point. Fig. 5 shows the Silhouette method‟s result 
where the highest silhouette score shown is 2. Silhouette 
analysis in Fig. 6 shows the silhouette plot of the clusters and 
the visualization of the clustered data. The dotted red line in the 
silhouette plot of the clusters shows the optimal silhouette 
coefficient value. Table IV shows the k number results 
suggested by both Elbow and Silhouette methods for level 13, 
and Table V shows the k number suggested by both Elbow and 
Silhouette methods for level 14. 

 

Fig. 4. Elbow method result for SS13-1 
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Fig. 5. Silhouette Method Result for SS13-1. 

 

Fig. 6. Silhouette Analysis for SS13-1. 

B. V-measure Score Results 

The V-measure score is then used to validate the suggested 
optimal k number. It will compare the Elbow and Silhouette 
methods outcomes. If one of the scores is higher than the other, 
the Elbow or Silhouette approach with the highest score is 
picked. Table VI shows the V-measure score results based on 
the k number results suggested by Elbow and Silhouette 
methods for level 13. Table VII shows the V-measure score 

results based on the k number results suggested by Elbow and 
Silhouette methods for level 14. The chosen k number is also 
shown in the tables. 

TABLE IV. SUGGESTED OPTIMAL K NUMBERS FOR LEVEL 13 

Simulation study Elbow method Silhouette method 

SS13-1 4 2 

SS13-2 5 2 

SS13-3 4 2 

SS13-4 3 2 

SS13-5 3 2 

SS13-6 3 2 

SS13-7 3 2 

SS13-8 3 2 

SS13-9 3 3 

SS13-10 4 3 

TABLE V. SUGGESTED OPTIMAL K NUMBERS FOR LEVEL 14 

Simulation study Elbow method Silhouette method 

SS14-1 - 2 

SS14-2 4 4 

SS14-3 5 2 

SS14-4 3 2 

SS14-5 3 2 

SS14-6 4 2 

SS14-7 4 2 

SS14-8 - 2 

SS14-9 4 2 

SS14-10 4 2 

TABLE VI. V-MEASURE SCORE RESULTS FOR LEVEL 13 

Simulation study Elbow method Silhouette method Elbow’s V-measure Score Silhouette’s V-measure score Chosen k number 

SS13-1 4 2 0.5221779373241466 0.2983631321334766 4 

SS13-2 5 2 0.5714202764885019 0.2983631321334766 5 

SS13-3 4 2 0.4491895619366153 0.2615824154232080 4 

SS13-4 3 2 0.3824680569409242 0.2616480412956257 3 

SS13-5 3 2 0.3578833679207950 0.2430208702257761 3 

SS13-6 3 2 0.3583568830279575 0.2359561227375162 3 

SS13-7 3 2 0.3429001741769688 0.2312453476439503 3 

SS13-8 3 2 0.3417016541809229 0.2312453476439503 3 

SS13-9 3 3 0.3192609377271065 0.3192609377271065 3 

SS13-10 4 3 0.3961601706307684 0.3265114737514012 4 
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TABLE VII. V-MEASURE SCORE RESULTS FOR LEVEL 14 

Simulation study Elbow method Silhouette method Elbow’s V-measure Score Silhouette’s V-measure score Chosen k number 

SS14-1 - 2 - 0.3007347242825145 2 

SS14-2 4 4 0.4868437889158798 0.4868437889158797 4 

SS14-3 5 2 0.5136239262825523 0.2615824154232080 5 

SS14-4 3 2 0.3847749621887950 0.2600032659164130 3 

SS14-5 3 2 0.3573284764772723 0.2430208702257760 3 

SS14-6 4 2 0.4318826415735761 0.2430482521519111 4 

SS14-7 4 2 0.4062920631507129 0.2275753301350341 4 

SS14-8 - 2 - 0.2311419664100973 2 

SS14-9 4 2 0.3964760790239892 0.2215198295727177 4 

SS14-10 4 2 0.3953084843355343 0.2228414459888911 4 

C. Intracluster Distance Results 

The result of time taken from each simulation research is 
incorporated in K-Mean using the Elbow and Silhouette 
techniques to discover the optimal k number and the V-
measure score to decide which optimal k number is superior 
when both approaches are compared. The intracluster distance 
may then be computed for each cluster in each simulated 
experiment. The intracluster distance is calculated using 
Rapidminer. Table VIII shows each simulation study‟s lowest 
intracluster distance results for level 13, and Table IX shows 
each simulation study‟s lowest intracluster distance results for 
level 14. The chosen cluster is also shown in the tables. 

TABLE VIII. INTRACLUSTER DISTANCE RESULTS FOR LEVEL 13 

Simulation Study Lowest Intracluster Distance Chosen Cluster 

SS13-1 -251.299 3 

SS13-2 -181.858 3 

SS13-3 -1726.339 3 

SS13-4 -1847.029 0 

SS13-5 -1265.699 0 

SS13-6 -1399.664 0 

SS13-7 -3823.050 0 

SS13-8 -3723.412 1 

SS13-9 -5497.067 2 

SS13-10 -4800.702 1 

D. Chosen Lowest Time Taken Results 

The intracluster distance aids in determining which cluster 
is ideal for finding the quickest evacuation time. The 
evacuation model implemented in the chosen building is 
determined by the lowest time chosen from the three 
simulation software findings based on each simulation study by 
level. The simulation software‟s time-based findings are 
incorporated into the assessment algorithm, which is then 
examined and contrasted. For level 13, Table X provides the 
lowest time taken findings from the selected clusters based on 
each simulation study and its accompanying simulation 
software. For level 14, Table XI provides the shortest time 
taken findings from the selected clusters based on each 
simulation study and its accompanying simulation software. 

TABLE IX. INTRACLUSTER DISTANCE RESULTS FOR LEVEL 14 

Simulation Study Lowest Intracluster Distance Chosen Cluster 

SS14-1 -809.222 0 

SS14-2 -323.855 0 

SS14-3 -1081.111 3 

SS14-4 -1944.537 0 

SS14-5 -4780.017 1 

SS14-6 -3604.302 2 

SS14-7 -1878.660 0 

SS14-8 -2626.092 1 

SS14-9 -10050.669 2 

SS14-10 -10286.633 1 

TABLE X. LIST OF LOWEST TIME TAKEN FOR LEVEL 13 

Simulation 

Study 

Number of 

agents 

Agents’ 

behaviour 

Room size, 

    

Number 

of doors 

Number of 

staircases 

Blockage 

Condition 

Number of 

exits 

Lowest Time 

Taken, s 

Evacuation 

Simulation 

SS13-1 50 Group 1.5  13 26 Yes 2 241.96 Pathfinder 

SS13-2 50 Scattered 1.5  13 26 Yes 2 243.63 Pathfinder 

SS13-3 100 Group 1.5  16 26 Yes 1 231.63 Pathfinder 

SS13-4 100 Scattered 1.5  16 26 Yes 1 231.13 PedGo 

SS13-5 150 Group 1.5  21 26 No 2 228.26 Pathfinder 

SS13-6 150 Scattered 1.5  21 26 No 2 227.13 PedGo 

SS13-7 200 Group 1.5  19 26 No 1 241.26 Pathfinder 

SS13-8 200 Scattered 1.5  19 26 No 1 235.68 Pathfinder 

SS13-9 250 Group 1.5  21 26 Yes 2 225.56 Pathfinder 

SS13-10 250 Scattered 1.5  21 26 Yes 2 250.13 PedGo 
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TABLE XI. LIST OF LOWEST TIME TAKEN FOR LEVEL 14 

Simulation 

Study 

Number of 

agents 

Agents’ 

behaviour 

Room size, 

    

Number 

of doors 

Number of 

staircases 

Blockage 

Condition 

Number of 

exits 

Lowest Time 

Taken, s 

Evacuation 

Simulation 

SS14-1 50 Group 1.5  13 28 Yes 2 245.92 Pathfinder 

SS14-2 50 Scattered 1.5  13 28 Yes 2 244.12 Pathfinder 

SS14-3 100 Group 1.5  14 28 Yes 1 300.92 PedGo 

SS14-4 100 Scattered 1.5  14 28 Yes 1 256.82 Pathfinder 

SS14-5 150 Group 1.5  20 28 No 2 242.55 Pathfinder 

SS14-6 150 Scattered 1.5  20 28 No 2 242.52 Pathfinder 

SS14-7 200 Group 1.5  21 28 No 1 247.92 PedGo 

SS14-8 200 Scattered 1.5  21 28 No 1 237.95 Pathfinder 

SS14-9 250 Group 1.5  22 28 Yes 2 244.07 Pathfinder 

SS14-10 250 Scattered 1.5  22 28 Yes 2 272.92 PedGo 

 

Fig. 7. Piechart of Lowest Time Taken for each Simulation. 

As a reminder, the building‟s architecture determines the 
appropriateness of existing evacuation models. Different types 
of evacuation models are suitable for different high-rise 
structures. Based on the distributed result for each level, Fig. 7 
depicts a piechart of the percentages of the lowest time taken 
for each simulation software. Pathfinder accounts for 70% of 
the lowest time taken, PedGo for 30%, and AnyLogic for 0%. 
As a result, it can be determined that ABM is the optimal 
evacuation model for Yayasan Melaka‟s building. 

V. CONCLUSION 

Many developed evacuation models now focus on 
investigating various evacuation behaviours and times. As a 
result, the characteristics of the models differ, making it 
difficult for users to choose a suitable evacuation model. Thus, 
we presented the indoor evacuation algorithm for high-rise 
buildings and assessed the proposed solution. Methods and 
specific attributes for each simulation software were identified, 
and we managed to compare and analyze the results. It helps to 
prove how well the assessment algorithm can assess the 
evacuation model. The result of the lowest time taken has been 
validated to determine the best evacuation model. Since this 
study uses a single case study for the simulation and 
assessment, thus, for future recommendations, the developed 
assessment algorithm is advised to be evaluated using various 
high-rise buildings and expand the research by examining the 

complete building plan. It is fascinating to compare and 
contrast because each layout, structure, construction, and fire-
resistant capability has its degree of difficulty. 
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