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Abstract—Software systems have grown in size and 

complexity. These characteristics increase the difficulty of 

preventing software errors. As a result, forecasting the frequency 

of software module failures is critical to a developer’s efficiency. 

Many methods for defect detection and correcting problems 

exist. Hence, Machine Learning (ML) classification performance 

has to be greatly improved. Thus, in this study, a novel approach 

is proposed for predicting the number of software defects based 

on relevant variables using ML. First, feature entropy on each 

raw features is performed and then identifying the un-pruned 

random feature. Then is selected the relevant feature through the 

identical existence among the entropy and un-pruned feature. 

And finally, the software defect dataset of National Aeronautics 

and Space Administration (NASA) PC-1 is sent to an ML-based 

model to estimate the number of faults. Initial PC-1 dataset 

comprises 37 raw features from this only 8 critical characteristics 

are utilized to enhance the ML model. A random tree feature 

selection strategy is shown to be accurate and potentially 

outperform existing methods in the experimental results. The 

proposed method considerably outperformed the performance of 

current ML models by obtaining the accuracy of 97.76% in 

Random Forest (RF) model. 
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I. INTRODUCTION 

In the recent years, the researcher tried to find different 
techniques and tools in taming the quality, dependability, and 
reliability of the software systems [1]. A software defect can 
cause minor inconvenience or catastrophic failure. Pre-
deployment fault prediction for testing is supported by recent 
research in software fault prediction (SFP). Object-oriented 
programming is harder than procedural programming due of 
inheritance. By identifying faulty software modules before to 
the start of the testing process, software defect prediction can 
help enhance software quality and testing efficiency. These 
findings aid software engineers in allocating scarce resources 
to more prone-to-failure modules. Complex software 
application can deliver high efficient, accurate and powerful 
work to modern organizations [2]. Software defect prediction 
(SDP) has grown in popularity during the previous two 
decades. The results of the SDP assist in allocating resources 
for software testing. However, defect prediction is often 
employed for activities with a high degree of precision. It is 

difficult to ensure resource allocation prior to software testing 
or without prior execution data. Machine learning is used to 
identify problematic modules, as it reveals hidden patterns in 
software properties [3]. The feature selection activity removes 
non-classification features with low performance [4]. The 
variant selection activity selects the best versions of 
classification methods for their ensemble [5]. 

A data collection method based on regular expressions and 
bug-code linking [6] is proposed. In terms of accuracy and 
consistency, our strategy outperforms other commonly used 
data collection methods and their publicly available datasets 
[7]. Around 65 publicly available base datasets containing 
Chidamber and Kemerer (CK) and other inheritance indicators 
were used to determine the effect of inheritance on SFP [8]. 
They investigate the degree to which an inheritance metric 
accurately predicts software fault proneness. Additionally, they 
choose CK measures and inheritance metrics for predicting 
software problems. In SFP experiments, metrics such as 
exclusive usage and inheritance viability are analyzed [9]. 
They combed publicly available inheritance metrics data sets 
and discovered approximately 40 that contained inheritance 
metrics. Their initial cleanup included nine metrics relating to 
inheritance. 

They preprocessed selected data sets and then merged them 
using all possible inheritance metrics combinations. The study 
[10] examined defect prediction datasets. There is no memory 
data management strategy proposed, nor is a mechanism for 
defect detection proposed. The proposed technique for defect 
prediction keeps track of the error rate performance. The defect 
prediction detector initiates the generation of defects, warning, 
and control flags. The proposed technique outperforms the 
conventional technique (p-value 0.05) and within-group 
comparisons yield statistically significant effect sizes. We 
observe that increasing the error rate results in DP, which 
results in suboptimal prediction performance. To overcome the 
difficulties associated with zero value thresholds, a spectral 
classifier based on the median absolute deviation threshold was 
developed [11]. Rather than using a measure of central 
tendency, this method makes use of the dispersion of 
eigenvector values. The report's baseline technique is a zero-
value threshold spectral classifier, and the entity class is 
predicted using a heuristic technique. 
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The highest co-entropy criteria [12] successfully handle the 
non-Gaussian noise for SDP. A new classifier is created after 
instance filtering, feature selection, and reduction. It also finds 
a non-normal distribution for the 21 most significant software 
indicators. The hybrid feature selection (HFS) [13] is divided 
into two stages and it clusters features first using hierarchical 
agglomerative clustering and then eliminates un-normalized 
and duplicate features using two wrapper methods. Three 
distinct classifiers with four performance metrics were 
evaluated empirically on 11 well-studied NASA programs such 
as accuracy, precision, recall, and F-measure. 

II. RELATED WORK 

To predict defects on NASA datasets, decision tree (DT), 
random forest (RF), Naive Bayes (NB), multi-layer perceptron 
(MLP), radial basis function (RBF), support vector machine 
(SVM), and k-nearest neighbour classifiers are used [14]. 
Precision, Recall, F-Measure, Accuracy, Matthew Correlation 
co-efficient, and ROC Area are used to evaluate classification 
performance. A two-stage data pre-processing method for 
software failure prediction models and semi-supervised deep 
fuzzy C-mean clustering feature extraction is presented [15]. 
The main goal is to optimise intra-cluster class and feature 
using deep multi-clusters of unlabelled and labelled data sets. 
A new strategy called conditional domain adversarial 
adaptation (CDAA) [16] can help with a variety of SDP 
problems. The CDAA has a generator, discriminator, and 
classifier. This is how the generator learns to move between 
spaces. The discriminator learns to spot the generator's bogus 
instances. The classifier learns to classify occurrences 
appropriately. In our CDAA, both classifier and discriminator 
loss functions propagate to generator. The enhanced wrapper 
feature selection (EWFS) [17] method selects features in stages 
while keeping previous choices in mind. This feature selection 
improves subset assessment while maintaining model 
performance. On software defect datasets of various 
granularities, the DT and NB classifiers were used to evaluate 
EWFS. This feature selection outperformed existing 
metaheuristics and sequential search-based WFS techniques in 
the experiments. 

For feature exploration and categorization, neural forest 
(NF) [18] combines deep neural network with decision forest. 
After the neural network, a decision forest is connected to 
perform classification and guide feature representation 
learning. For efficient defect prediction, NF combines NN and 
decision forests, and the performance of this hybrid method is 
examined [19]. The hybrid approach [20] improved 
classification accuracy compared to existing methods. This 
method investigates the relationship between defect density, 
velocity, and introduction time. An integrated machine learning 
approach is used in ten PROMISE data sets with 22838 
instances. 

To see how FRFS (filter-based ranking feature selection) 
[21] methods affect software defect using feature selection 
methods that are too computationally costly. Empirically, they 

look at three large-scale web applications. Then they build 
SVP models using a random forest classifier and seven FRFS 
methods. To address the prediction model's low classification 
rates, a hybrid strategy called DELT (diverse ensemble 
learning technique) [22] is presented. Unlabelled test modules 
are predicted by majority voting. The DPAHM (Defect 
Prediction based association hierarchy method) [23] is used to 
allocate resources for coarse-level activities. FAHP (Fuzzy 
Analytical Hierarchy Process) is a prevalent multi-criteria 
decision-making method [24]. Conversely, this evaluation 
methodology employs a wide range of performance indicators. 
They may now trust study findings more, avoid misleading 
conclusions and set realistic restrictions. They employed 11 
defect classifiers and 22 prominent performance 
measurements. The study used KNIME data mining and 12 
NASA MDP software defect data sets. 

With KMFOS, the class imbalance problem is solved [25]. 
KMFOS creates additional faulty instances by interpolating 
between two clusters. They would then spread out in the 
flawed dataset space. To reduce the noise, CLNI uses cluster-
based oversampling. To develop an HDP model, a structured 
unsupervised deep domain adaptation is applied [26]. They 
start by combining data from both source and target projects 
into one statistic. The authors then develop an SNN (simple 
neural network) model to manage the various and class-
imbalanced difficulties in SDP. The hybrid defect prediction 
model [27] uses the cross-entropy loss function as the 
classification loss function to reduce distribution mismatch. A 
heterogeneous defect prediction approach [28], [29] addresses 
the issue of extreme class imbalance in real-world software 
datasets. Minority samples in defect data are balanced using 
the Majority technique based on Mahalanobis distance in the 
first step. Ensemble learning and joint similarity measurement 
are used in the second stage to identify the most relevant and 
representative features across the source and target projects. At 
last, knowledge transmission from source to target project 
inside Grassmann manifold space. 

The PROMISE Source Code (PSC) dataset was created to 
expand the CNN research's initial PSC dataset [30]. Our study 
used 30-repetition holdout and 10-fold cross-validation. An 
improved CNN model was then proposed and compared to 
previous CNN findings and an empirical study. It is used to 
identify contributing elements and independent variables [31]. 
Defect-free modules have their bugs replaced by a negative 
number, while faulty modules have their bugs left alone. 
Negate the false values of defect-free modules while increasing 
the false values of defective modules. In the next step, 
algorithms from NASA, SoftLab, and Promise are used. RKEE 
[32] is preceded by feature selection and rough set-based KNN 
noise filtering. Remove redundant features first using the 
feature ranking algorithm. A rough-KNN noise filter removes 
noisy samples from both minority and majority classes in the 
second stage. Both the minority and majority classes deal with 
ambiguity and overlap. NASA and Eclipse data sets have been 
used to test our technique. 
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There are considerable discrepancies in data sharing 
between the source and destination projects, which leads to 
inconsistencies in metrics. First, we present a clustering-based 
metric matching approach. An extract multi-granularity metric 
feature vector unifies the metric dimension while keeping 
maximum information. A strategy for predicting cross-project 
defects [33]. That is, it converts the project's original feature 
space into a manifold space, then uses that manifold space to 
train a superior naive Bayes prediction model. FSLBDA (few-
shot learning based balanced distribution adaptation) technique 
[34] for unique defect prediction. Under-sampling can correct 
class imbalance in defect datasets, but reduces the size of 
training datasets. They remove redundant measurements from 
severe gradient boosting datasets. Dual innovative approaches 
[35] for learning from imbalanced data sets to improve 
minority class forecasting accuracy. These strategies try to 
distinguish between oversampling and misclassification costs. 
Experiment findings showed that identifying problematic 
modules accurately reduced detection system costs by G-mean 
and AUC. Instance weight is determined by information 
gravity among source and destination domains, whereas feature 
load is determined by high correlation with the learning goal, 
low correlation with other features, and low domain difference. 
Using 25 real-world datasets, the suggested methodology 
outperforms existing CPDP (cross project defect prediction) 
approaches [36]. The suggested approach builds a better CPDP 
model by allocating weights based on the varying contribution 
of characteristics and cases to the predictor. 

III. PROPOSED METHOD 

This section summarizes the software defect classification 
framework, as well as the significance of each feature. There 
are a total of 37 software defect attributes in total, with 8 
significant features chosen for model performance evaluation. 
The proposed framework's system block diagram is shown in 
Fig. 1. NASA software defect datasets must be analyzed using 
machine learning models. The model is trained using six 
classification methods in this experiment: DT, EB, RF, SVM, 
LM, and NN. The experiments are carried out with the help of 
the R programming language, which trains models to classify 
software defects. The RF random tree and DT entropy have 
used feature values for each measurement and measurement 
class as inputs. 

A. Dataset Description 

The publicly available NASA Defect Dataset of PC1 was 
used in this study which is presented in Table I. In the dataset, 
there are 759 samples and 37 features, respectively. Lines of 
code, normalised cyclomatic complexity, cyclomatic density, 
essential complexity, maintenance severity, halstead content, 
halstead difficulty, parameter count, and other metrics are 
included in the data as presented in the Table II. 

 

Fig. 1. Experiment Workflow with NASA– PC1. 

TABLE I. PC1 FEATURES OF NASA DATA SET 

F1_Loc_blank F19_Halstead_difficulty 

F2_Branch_count F20_Halstead_effort 

F3_Call_pairs F21_Halstead_error_est 

F4_Loc_code_and_comment F22_Halstead_length 

F5_Loc_comments F23_Halstead_level 

F6_Condition_count F24_Halstead_prog_time 

F7_Cyclomatic_complexity F25_Halstead_volume 

F8_Cyclomatic_density F26_Maintenance_severity 

F9_Decision_count F27_Modified_condition_count 

F10_Decision_density F28_Multiple_condition_count 

F11_Design_complexity F29_Node_count 

F12_Design_density F30_Normalized_cylomatic_complexity 

F13_Edge_count F31_Num_operands 

F14_Essential_complexity F32_Num_operators 

F15_Essential_density F33_Num_unique_operands 

F16_Loc_executable F34_Num_unique_operators 

F17_Parameter_count F35_Number_of_lines 

F18_Halstead_content F36_Percent_comments 

  F37_Loc_Total 

TABLE II. PC1 FEATURES SELECTED FROM NASA DATA SET 

Cyclomatic_density Halstead_difficulty 

Essential_complexity Maintenance_severity 

Parameter_count Normalized_cylomatic_complexity 

Halstead_content Number_of_lines 
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B. Algorithm 

The algorithm was input with different dataset of different 
raw features along with m sample, the different models were 
trained with, and the performance model was observed for 
True Positive (TP), True Negative (TN), False Positive (FP), 
and False Negative (FN) for the model performance evaluation. 
The steps were followed for each feature with various entropy 
features using recursive partitioning and with different decision 
criteria. 

Input dataset with n raw features Fr = {f1, f2, f3, …, fn} and m samples. 

1. Train various models TMs= {tm1, tm2, tm3, tms} to observe the TP, TN, 

FP, FN for model performance evaluation. 

2. for each feature do  

 if  a entropy  raw feature Fr then  

 Execute entropy features Fe= {f1, f2, f3, …, fe} using recursive 

partitioning and decision criteria. 

 end if  

end for 

3. for each feature do  

if  a significance  raw feature Fr then  

Execute RF variable significance features RFv= {rf1, rf2, rf3, …, rfv} 

using un-pruned random  tree with less error. 

 end if  

end for 

4. Obtain the significant features SFk={sf1,sf2,sf3, …, sfk} using the Step 2 

and 3 as follows: 

  Significant features SFk = Fe ∩ SFk 

5. Evaluate the model TMs performance using significant features SFk of 

Step 4. 

6. for each model TMs do  

if  a model with high accuracy then 

Select the model for classification 

  end if  

end for 

IV. RESULT AND DISCUSSION 

In this section, the summary of the experimental results 
obtained by various machine-learning models are presented. 
These experiments are conducted on the dataset NASA PC1 
Dataset. The results obtained from various ML models are 
shown in Table III. In the next stage, the ML method on the 
dataset with all the features of confusion matrix calculated and 
shown in Fig. 2. The accuracy and precision are also calculated 
and are shown in Fig. 2 and Fig. 3. The Sensitivity and 
Specificity are also calculated the results are shown in Fig. 4. 

 

Fig. 2. Confusion Matrix of ML Models. 

 

Fig. 3. Accuracy and Precision of ML Models. 

 

Fig. 4. Sensitivity and Specificity of ML Models. 

The results obtained from ML models are shown in Fig. 5. 

 

Fig. 5. Significant Features of Defective and Non-defective Class. 

In the next stage, the ML method on the dataset with 
significant features are applied and confusion matrix calculated 
and shown in Fig. 6. The accuracy and precision with 
significant features are calculated and the presented in Fig. 7. 
The Sensitivity and Specificity are also calculated the results 
are shown in Fig. 8. 
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TABLE III. RESULTS OF ML MODEL WITHOUT SIGNIFICANT FEATURES 

ML n TN TP FP FN Accuracy Error Rate Sensitivity  Specificity  Precision 

DT 759 675 28 23 33 92.62 7.38 45.90 96.70 54.90 

EB 759 689 48 9 13 97.10 2.90 78.69 98.71 84.21 

RF 759 690 50 8 11 97.50 2.50 81.97 98.85 86.21 

SVM 759 698 14 0 47 93.81 6.19 22.95 100.00 100.00 

LM 759 680 20 18 41 92.23 7.77 32.79 97.42 52.63 

NN 759 690 0 8 61 90.91 9.09   - 98.85 - 

 

Fig. 6. Confusion Matrix of ML Models with Significant Features. 

 

Fig. 7. Accuracy and Precision of ML Models with Significant Features. 

Although this result is obtained by using with only 8 
features out of 37 features, the proposed approach time 
consuming due to the large number of parameters in features 

selection. Since the proposed model utilizes only important 
features and avoid features which are not have high impact. 
Machine Learning models are used in to find out optimal 
feature selection and significant result improvement achieved 
by using Random Forest method in selection process. 

The results revealed that our proposed method performed 
better than existing methods without significant features. The 
machine learning models with all features accuracy results 
obtained 97.50 % by using Random Forest method. The same 
dataset with significant features results in accuracy 
improvement 97.76 is achieved. Six distinct models are 
investigated for software defect data classification with 
selected features. As a result, the results of all six classification 
methods are compared using the outputs of the suggested 
feature ranking algorithms as input. The experimental results in 
Table IV shows that the suggested feature with an RF model 
have the greatest accuracy scores of all six features. 

 

Fig. 8. Sensitivity and Specificity of ML Models with Significant Features. 

TABLE IV. RESULTS OF ML MODEL WITH SIGNIFICANT FEATURES 

ML TN TP FP FN Accuracy Precision Sensitivity  Specificity  

DT 666 32 32 29 91.96 50.00 52.46 95.42 

EB 684 49 14 12 96.57 77.78 80.33 97.99 

RF 692 50 6 11 97.76 89.29 81.97 99.14 

SVM 698 4 0 57 92.49 100.00 6.56 100.00 

LM 689 9 9 52 91.96 50.00 14.75 98.71 

NN 698 0.1 0.1 61 91.95 50.00 0.16 99.99 
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V. CONCLUSION 

Software defect prediction method plays important role and 
important to prevent and predict the bugs in the software in 
early stages are very difficult and challenging. However, this 
work using machine learning models perform evaluation of 
defect prediction with all features used in NASA dataset. The 
Machine learning models like DT, EB, RF, SVM, LM, and NN 
are used. The evaluation process carried out using with 
significant features and all features. The experimental results 
analyzed and summarized based on confusion matrix, 
accuracy, precision, sensitivity and specificity. The accuracy is 
plays major role and error rate also evaluated by using random 
forest the results are improved. The comparison results with all 
features and significant features used with ML models shows 
improvements. As future work, many more ML models and 
performs comparison among them to make more optimal 
results. 
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