
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

348 | P a g e

www.ijacsa.thesai.org

Effective Prediction of Software Defects using

Random-tree Entropy based Feature Selection

Framework

Abdulaziz Alhumam

Department of Computer Science

College of Computer Sciences and Information Technology

King Faisal University, Al-Ahsa, Saudi Arabia

Abstract—Software systems have grown in size and

complexity. These characteristics increase the difficulty of

preventing software errors. As a result, forecasting the frequency

of software module failures is critical to a developer’s efficiency.

Many methods for defect detection and correcting problems

exist. Hence, Machine Learning (ML) classification performance

has to be greatly improved. Thus, in this study, a novel approach

is proposed for predicting the number of software defects based

on relevant variables using ML. First, feature entropy on each

raw features is performed and then identifying the un-pruned

random feature. Then is selected the relevant feature through the

identical existence among the entropy and un-pruned feature.

And finally, the software defect dataset of National Aeronautics

and Space Administration (NASA) PC-1 is sent to an ML-based

model to estimate the number of faults. Initial PC-1 dataset

comprises 37 raw features from this only 8 critical characteristics

are utilized to enhance the ML model. A random tree feature

selection strategy is shown to be accurate and potentially

outperform existing methods in the experimental results. The

proposed method considerably outperformed the performance of

current ML models by obtaining the accuracy of 97.76% in

Random Forest (RF) model.

Keywords—Software defect prediction; machine learning;

classification; feature entropy

I. INTRODUCTION

In the recent years, the researcher tried to find different
techniques and tools in taming the quality, dependability, and
reliability of the software systems [1]. A software defect can
cause minor inconvenience or catastrophic failure. Pre-
deployment fault prediction for testing is supported by recent
research in software fault prediction (SFP). Object-oriented
programming is harder than procedural programming due of
inheritance. By identifying faulty software modules before to
the start of the testing process, software defect prediction can
help enhance software quality and testing efficiency. These
findings aid software engineers in allocating scarce resources
to more prone-to-failure modules. Complex software
application can deliver high efficient, accurate and powerful
work to modern organizations [2]. Software defect prediction
(SDP) has grown in popularity during the previous two
decades. The results of the SDP assist in allocating resources
for software testing. However, defect prediction is often
employed for activities with a high degree of precision. It is

difficult to ensure resource allocation prior to software testing
or without prior execution data. Machine learning is used to
identify problematic modules, as it reveals hidden patterns in
software properties [3]. The feature selection activity removes
non-classification features with low performance [4]. The
variant selection activity selects the best versions of
classification methods for their ensemble [5].

A data collection method based on regular expressions and
bug-code linking [6] is proposed. In terms of accuracy and
consistency, our strategy outperforms other commonly used
data collection methods and their publicly available datasets
[7]. Around 65 publicly available base datasets containing
Chidamber and Kemerer (CK) and other inheritance indicators
were used to determine the effect of inheritance on SFP [8].
They investigate the degree to which an inheritance metric
accurately predicts software fault proneness. Additionally, they
choose CK measures and inheritance metrics for predicting
software problems. In SFP experiments, metrics such as
exclusive usage and inheritance viability are analyzed [9].
They combed publicly available inheritance metrics data sets
and discovered approximately 40 that contained inheritance
metrics. Their initial cleanup included nine metrics relating to
inheritance.

They preprocessed selected data sets and then merged them
using all possible inheritance metrics combinations. The study
[10] examined defect prediction datasets. There is no memory
data management strategy proposed, nor is a mechanism for
defect detection proposed. The proposed technique for defect
prediction keeps track of the error rate performance. The defect
prediction detector initiates the generation of defects, warning,
and control flags. The proposed technique outperforms the
conventional technique (p-value 0.05) and within-group
comparisons yield statistically significant effect sizes. We
observe that increasing the error rate results in DP, which
results in suboptimal prediction performance. To overcome the
difficulties associated with zero value thresholds, a spectral
classifier based on the median absolute deviation threshold was
developed [11]. Rather than using a measure of central
tendency, this method makes use of the dispersion of
eigenvector values. The report's baseline technique is a zero-
value threshold spectral classifier, and the entity class is
predicted using a heuristic technique.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

349 | P a g e

www.ijacsa.thesai.org

The highest co-entropy criteria [12] successfully handle the
non-Gaussian noise for SDP. A new classifier is created after
instance filtering, feature selection, and reduction. It also finds
a non-normal distribution for the 21 most significant software
indicators. The hybrid feature selection (HFS) [13] is divided
into two stages and it clusters features first using hierarchical
agglomerative clustering and then eliminates un-normalized
and duplicate features using two wrapper methods. Three
distinct classifiers with four performance metrics were
evaluated empirically on 11 well-studied NASA programs such
as accuracy, precision, recall, and F-measure.

II. RELATED WORK

To predict defects on NASA datasets, decision tree (DT),
random forest (RF), Naive Bayes (NB), multi-layer perceptron
(MLP), radial basis function (RBF), support vector machine
(SVM), and k-nearest neighbour classifiers are used [14].
Precision, Recall, F-Measure, Accuracy, Matthew Correlation
co-efficient, and ROC Area are used to evaluate classification
performance. A two-stage data pre-processing method for
software failure prediction models and semi-supervised deep
fuzzy C-mean clustering feature extraction is presented [15].
The main goal is to optimise intra-cluster class and feature
using deep multi-clusters of unlabelled and labelled data sets.
A new strategy called conditional domain adversarial
adaptation (CDAA) [16] can help with a variety of SDP
problems. The CDAA has a generator, discriminator, and
classifier. This is how the generator learns to move between
spaces. The discriminator learns to spot the generator's bogus
instances. The classifier learns to classify occurrences
appropriately. In our CDAA, both classifier and discriminator
loss functions propagate to generator. The enhanced wrapper
feature selection (EWFS) [17] method selects features in stages
while keeping previous choices in mind. This feature selection
improves subset assessment while maintaining model
performance. On software defect datasets of various
granularities, the DT and NB classifiers were used to evaluate
EWFS. This feature selection outperformed existing
metaheuristics and sequential search-based WFS techniques in
the experiments.

For feature exploration and categorization, neural forest
(NF) [18] combines deep neural network with decision forest.
After the neural network, a decision forest is connected to
perform classification and guide feature representation
learning. For efficient defect prediction, NF combines NN and
decision forests, and the performance of this hybrid method is
examined [19]. The hybrid approach [20] improved
classification accuracy compared to existing methods. This
method investigates the relationship between defect density,
velocity, and introduction time. An integrated machine learning
approach is used in ten PROMISE data sets with 22838
instances.

To see how FRFS (filter-based ranking feature selection)
[21] methods affect software defect using feature selection
methods that are too computationally costly. Empirically, they

look at three large-scale web applications. Then they build
SVP models using a random forest classifier and seven FRFS
methods. To address the prediction model's low classification
rates, a hybrid strategy called DELT (diverse ensemble
learning technique) [22] is presented. Unlabelled test modules
are predicted by majority voting. The DPAHM (Defect
Prediction based association hierarchy method) [23] is used to
allocate resources for coarse-level activities. FAHP (Fuzzy
Analytical Hierarchy Process) is a prevalent multi-criteria
decision-making method [24]. Conversely, this evaluation
methodology employs a wide range of performance indicators.
They may now trust study findings more, avoid misleading
conclusions and set realistic restrictions. They employed 11
defect classifiers and 22 prominent performance
measurements. The study used KNIME data mining and 12
NASA MDP software defect data sets.

With KMFOS, the class imbalance problem is solved [25].
KMFOS creates additional faulty instances by interpolating
between two clusters. They would then spread out in the
flawed dataset space. To reduce the noise, CLNI uses cluster-
based oversampling. To develop an HDP model, a structured
unsupervised deep domain adaptation is applied [26]. They
start by combining data from both source and target projects
into one statistic. The authors then develop an SNN (simple
neural network) model to manage the various and class-
imbalanced difficulties in SDP. The hybrid defect prediction
model [27] uses the cross-entropy loss function as the
classification loss function to reduce distribution mismatch. A
heterogeneous defect prediction approach [28], [29] addresses
the issue of extreme class imbalance in real-world software
datasets. Minority samples in defect data are balanced using
the Majority technique based on Mahalanobis distance in the
first step. Ensemble learning and joint similarity measurement
are used in the second stage to identify the most relevant and
representative features across the source and target projects. At
last, knowledge transmission from source to target project
inside Grassmann manifold space.

The PROMISE Source Code (PSC) dataset was created to
expand the CNN research's initial PSC dataset [30]. Our study
used 30-repetition holdout and 10-fold cross-validation. An
improved CNN model was then proposed and compared to
previous CNN findings and an empirical study. It is used to
identify contributing elements and independent variables [31].
Defect-free modules have their bugs replaced by a negative
number, while faulty modules have their bugs left alone.
Negate the false values of defect-free modules while increasing
the false values of defective modules. In the next step,
algorithms from NASA, SoftLab, and Promise are used. RKEE
[32] is preceded by feature selection and rough set-based KNN
noise filtering. Remove redundant features first using the
feature ranking algorithm. A rough-KNN noise filter removes
noisy samples from both minority and majority classes in the
second stage. Both the minority and majority classes deal with
ambiguity and overlap. NASA and Eclipse data sets have been
used to test our technique.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

350 | P a g e

www.ijacsa.thesai.org

There are considerable discrepancies in data sharing
between the source and destination projects, which leads to
inconsistencies in metrics. First, we present a clustering-based
metric matching approach. An extract multi-granularity metric
feature vector unifies the metric dimension while keeping
maximum information. A strategy for predicting cross-project
defects [33]. That is, it converts the project's original feature
space into a manifold space, then uses that manifold space to
train a superior naive Bayes prediction model. FSLBDA (few-
shot learning based balanced distribution adaptation) technique
[34] for unique defect prediction. Under-sampling can correct
class imbalance in defect datasets, but reduces the size of
training datasets. They remove redundant measurements from
severe gradient boosting datasets. Dual innovative approaches
[35] for learning from imbalanced data sets to improve
minority class forecasting accuracy. These strategies try to
distinguish between oversampling and misclassification costs.
Experiment findings showed that identifying problematic
modules accurately reduced detection system costs by G-mean
and AUC. Instance weight is determined by information
gravity among source and destination domains, whereas feature
load is determined by high correlation with the learning goal,
low correlation with other features, and low domain difference.
Using 25 real-world datasets, the suggested methodology
outperforms existing CPDP (cross project defect prediction)
approaches [36]. The suggested approach builds a better CPDP
model by allocating weights based on the varying contribution
of characteristics and cases to the predictor.

III. PROPOSED METHOD

This section summarizes the software defect classification
framework, as well as the significance of each feature. There
are a total of 37 software defect attributes in total, with 8
significant features chosen for model performance evaluation.
The proposed framework's system block diagram is shown in
Fig. 1. NASA software defect datasets must be analyzed using
machine learning models. The model is trained using six
classification methods in this experiment: DT, EB, RF, SVM,
LM, and NN. The experiments are carried out with the help of
the R programming language, which trains models to classify
software defects. The RF random tree and DT entropy have
used feature values for each measurement and measurement
class as inputs.

A. Dataset Description

The publicly available NASA Defect Dataset of PC1 was
used in this study which is presented in Table I. In the dataset,
there are 759 samples and 37 features, respectively. Lines of
code, normalised cyclomatic complexity, cyclomatic density,
essential complexity, maintenance severity, halstead content,
halstead difficulty, parameter count, and other metrics are
included in the data as presented in the Table II.

Fig. 1. Experiment Workflow with NASA– PC1.

TABLE I. PC1 FEATURES OF NASA DATA SET

F1_Loc_blank F19_Halstead_difficulty

F2_Branch_count F20_Halstead_effort

F3_Call_pairs F21_Halstead_error_est

F4_Loc_code_and_comment F22_Halstead_length

F5_Loc_comments F23_Halstead_level

F6_Condition_count F24_Halstead_prog_time

F7_Cyclomatic_complexity F25_Halstead_volume

F8_Cyclomatic_density F26_Maintenance_severity

F9_Decision_count F27_Modified_condition_count

F10_Decision_density F28_Multiple_condition_count

F11_Design_complexity F29_Node_count

F12_Design_density F30_Normalized_cylomatic_complexity

F13_Edge_count F31_Num_operands

F14_Essential_complexity F32_Num_operators

F15_Essential_density F33_Num_unique_operands

F16_Loc_executable F34_Num_unique_operators

F17_Parameter_count F35_Number_of_lines

F18_Halstead_content F36_Percent_comments

 F37_Loc_Total

TABLE II. PC1 FEATURES SELECTED FROM NASA DATA SET

Cyclomatic_density Halstead_difficulty

Essential_complexity Maintenance_severity

Parameter_count Normalized_cylomatic_complexity

Halstead_content Number_of_lines

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

351 | P a g e

www.ijacsa.thesai.org

B. Algorithm

The algorithm was input with different dataset of different
raw features along with m sample, the different models were
trained with, and the performance model was observed for
True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) for the model performance evaluation.
The steps were followed for each feature with various entropy
features using recursive partitioning and with different decision
criteria.

Input dataset with n raw features Fr = {f1, f2, f3, …, fn} and m samples.

1. Train various models TMs= {tm1, tm2, tm3, tms} to observe the TP, TN,

FP, FN for model performance evaluation.

2. for each feature do

 if  a entropy  raw feature Fr then

 Execute entropy features Fe= {f1, f2, f3, …, fe} using recursive

partitioning and decision criteria.

 end if

end for

3. for each feature do

if  a significance  raw feature Fr then

Execute RF variable significance features RFv= {rf1, rf2, rf3, …, rfv}

using un-pruned random tree with less error.

 end if

end for

4. Obtain the significant features SFk={sf1,sf2,sf3, …, sfk} using the Step 2

and 3 as follows:

 Significant features SFk = Fe ∩ SFk

5. Evaluate the model TMs performance using significant features SFk of

Step 4.

6. for each model TMs do

if  a model with high accuracy then

Select the model for classification

 end if

end for

IV. RESULT AND DISCUSSION

In this section, the summary of the experimental results
obtained by various machine-learning models are presented.
These experiments are conducted on the dataset NASA PC1
Dataset. The results obtained from various ML models are
shown in Table III. In the next stage, the ML method on the
dataset with all the features of confusion matrix calculated and
shown in Fig. 2. The accuracy and precision are also calculated
and are shown in Fig. 2 and Fig. 3. The Sensitivity and
Specificity are also calculated the results are shown in Fig. 4.

Fig. 2. Confusion Matrix of ML Models.

Fig. 3. Accuracy and Precision of ML Models.

Fig. 4. Sensitivity and Specificity of ML Models.

The results obtained from ML models are shown in Fig. 5.

Fig. 5. Significant Features of Defective and Non-defective Class.

In the next stage, the ML method on the dataset with
significant features are applied and confusion matrix calculated
and shown in Fig. 6. The accuracy and precision with
significant features are calculated and the presented in Fig. 7.
The Sensitivity and Specificity are also calculated the results
are shown in Fig. 8.

0

100

200

300

400

500

600

700

DT EB RF SVM LM NN

TN

TP

FP

FN

0

20

40

60

80

100

Accuracy

Precision

0

20

40

60

80

100

DT EB RF SVM LM NN

Sensitivity

Specificity

-5 0 5 10 15 20

No defective

Defective

PARAMETER_COUNT

HALSTEAD_DIFFICULTY

HALSTEAD_CONTENT

ESSENTIAL_COMPLEXITY

MAINTENANCE_SEVERITY

CYCLOMATIC_DENSITY

NUMBER_OF_LINES

NORMALIZED_CYLOMATIC_COMPLEXITY

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

352 | P a g e

www.ijacsa.thesai.org

TABLE III. RESULTS OF ML MODEL WITHOUT SIGNIFICANT FEATURES

ML n TN TP FP FN Accuracy Error Rate Sensitivity Specificity Precision

DT 759 675 28 23 33 92.62 7.38 45.90 96.70 54.90

EB 759 689 48 9 13 97.10 2.90 78.69 98.71 84.21

RF 759 690 50 8 11 97.50 2.50 81.97 98.85 86.21

SVM 759 698 14 0 47 93.81 6.19 22.95 100.00 100.00

LM 759 680 20 18 41 92.23 7.77 32.79 97.42 52.63

NN 759 690 0 8 61 90.91 9.09 - 98.85 -

Fig. 6. Confusion Matrix of ML Models with Significant Features.

Fig. 7. Accuracy and Precision of ML Models with Significant Features.

Although this result is obtained by using with only 8
features out of 37 features, the proposed approach time
consuming due to the large number of parameters in features

selection. Since the proposed model utilizes only important
features and avoid features which are not have high impact.
Machine Learning models are used in to find out optimal
feature selection and significant result improvement achieved
by using Random Forest method in selection process.

The results revealed that our proposed method performed
better than existing methods without significant features. The
machine learning models with all features accuracy results
obtained 97.50 % by using Random Forest method. The same
dataset with significant features results in accuracy
improvement 97.76 is achieved. Six distinct models are
investigated for software defect data classification with
selected features. As a result, the results of all six classification
methods are compared using the outputs of the suggested
feature ranking algorithms as input. The experimental results in
Table IV shows that the suggested feature with an RF model
have the greatest accuracy scores of all six features.

Fig. 8. Sensitivity and Specificity of ML Models with Significant Features.

TABLE IV. RESULTS OF ML MODEL WITH SIGNIFICANT FEATURES

ML TN TP FP FN Accuracy Precision Sensitivity Specificity

DT 666 32 32 29 91.96 50.00 52.46 95.42

EB 684 49 14 12 96.57 77.78 80.33 97.99

RF 692 50 6 11 97.76 89.29 81.97 99.14

SVM 698 4 0 57 92.49 100.00 6.56 100.00

LM 689 9 9 52 91.96 50.00 14.75 98.71

NN 698 0.1 0.1 61 91.95 50.00 0.16 99.99

0

100

200

300

400

500

600

700

DT EB RF SVM LM NN

TN

TP

FP

FN

0

20

40

60

80

100

DT EB RF SVM LM NN

Accuracy

Precision

0

20

40

60

80

100

DT EB RF SVM LM NN

Sensitivity

Specifictiy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

353 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION

Software defect prediction method plays important role and
important to prevent and predict the bugs in the software in
early stages are very difficult and challenging. However, this
work using machine learning models perform evaluation of
defect prediction with all features used in NASA dataset. The
Machine learning models like DT, EB, RF, SVM, LM, and NN
are used. The evaluation process carried out using with
significant features and all features. The experimental results
analyzed and summarized based on confusion matrix,
accuracy, precision, sensitivity and specificity. The accuracy is
plays major role and error rate also evaluated by using random
forest the results are improved. The comparison results with all
features and significant features used with ML models shows
improvements. As future work, many more ML models and
performs comparison among them to make more optimal
results.

ACKNOWLEDGMENT

The author wishes to thank the College of Computer
Sciences and Information Technology, King Faisal University,
Saudi Arabia, for providing the infrastructure for this study.

REFERENCES

[1] S. K. Alferidah and S. Ahmed, "Automated Software Testing Tools,"
Proceedings-2020 IEEE, International Conference on Computing and
Information Technology, ICCIT-1441, 2020, pp. 1-4.

[2] A. A. Alsayyah and S. Ahmed, ―Energy Efficient Software
Development Techniques for Cloud based Applications,‖ International
Journal of Advanced Trends in Computer Science and Engineering, vol.
9, no. 5, pp. 8043–8054, 2020.

[3] D. Chen, X. Chen, H. Li, J. Xie and Y. Mu, ―DeepCPDP: Deep learning
based cross-project defect prediction,‖ IEEE Access, vol. 7, pp. 184832-
184848, 2019.

[4] U. Ali, S. Aftab, A. Iqbal, Z. Nawaz, M. S. Bashir et al., ―Software
Defect Prediction Using Variant based Ensemble Learning and Feature
Selection Techniques,‖ International Journal of Modern Education and
Computer Science, vol. 12, no. 5, pp. 29-40, 2020.

[5] H. Alsawalqah, N. Hijazi, M. Eshtay, H. Faris, A. A. Radaideh et al.,
―Software Defect Prediction Using Heterogeneous Ensemble
Classification Based on Segmented Patterns,‖ Applied Science, vol. 10,
no. 1745, 2020.

[6] G. Mauša, T.G. Grbac and B.D. Bašić, ―A systematic data collection
procedure for software defect prediction,‖ Computer Science and
Information Systems, vol. 13, no. 1, pp. 173-197, 2016.

[7] M. A. Alshammari and M. Alshayeb, ―The effect of the dataset size on
the accuracy of software defect prediction models: An empirical study,‖
Inteligencia Artificial, vol. 24, no. 68, pp. 72-88, 2021.

[8] S. R. Aziz, T. Khan and A. Nadeem, ―Experimental validation of
inheritance metrics' impact on software fault prediction,‖ IEEE Access,
vol. 7, no. 8742643, pp. 85262-85275, 2019.

[9] S.R. Aziz, T. A. Khan and A. Nadeem, ―Exclusive use and Evaluation of
Inheritance Metrics Viability in Software Fault Prediction—an
Experimental Study,‖ Peer. J Computer Science, 7, pp. 1-47, 2021.

[10] M. A. Kabir, J. W. Keung, K. E. Bennin and M. Zhang, ―A Drift
Propensity Detection Technique to Improve the Performance for Cross-
Version Software Defect Prediction,‖ Proceedings - 2020 IEEE 44th
Annual Computers, Software, and Applications Conference, COMPSAC
2020, art. no. 9202527, pp. 882-891.

[11] A. Marjuni, T. B. Adji and R. Ferdiana, ―Unsupervised software defect
prediction using median absolute deviation threshold based spectral
classifier on signed Laplacian matrix,‖ Journal of Big Data, vol. 6, no. 1,
2019.

[12] H. Ji and S. Huang, ―A New Framework Consisted of Data
Preprocessing and Classifier Modelling for Software Defect Prediction,‖
Mathematical Problems in Engineering, no. 9616938, 2018.

[13] Y. Jian, X. Yu, Z. Xu and Z. Ma, ―A hybrid feature selection method for
software fault prediction,‖ IEICE Transactions on Information and
Systems, vol. 10, pp. 1966-1975, 2019.

[14] A. Iqbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana et al., ―Performance
analysis of machine learning techniques on software defect prediction
using NASA datasets,‖ International Journal of Advanced Computer
Science and Applications, vol. 10, no. 5, pp. 300-308, 2019.

[15] A. Arshad, S. Riaz, L. Jiao and A. Murthy, ―The empirical study of
semi-supervised deep fuzzy c-mean clustering for software fault
prediction,‖ IEEE Access, vol. 6, no. 8439927, pp. 47047-47061, 2018.

[16] L. Gong, S. Jiang and L. Jiang, ―Conditional Domain Adversarial
Adaptation for Heterogeneous Defect Prediction,‖ IEEE Access, vol. 8,
no. 9169630, pp. 150738-150749, 2020.

[17] A.O. Balogun, S. Basri, L.F. Capretz, S. Mahamad, A. A. Imam et al.,
―Software defect prediction using wrapper feature selection based on
dynamic re-reranking strategy,‖ Symmetry, vol. 13, no. 11, 2021.

[18] Y. Qiu, Y. Liu, A. Liu, J. Zhu and J. Xu, ―Automatic Feature
Exploration and an Application in Defect Prediction,‖ IEEE Access, vol.
7, no. 8794540, pp. 112097-112112, 2019.

[19] E. A. Felix and S.P. Lee, ―Integrated Approach to Software Defect
Prediction,‖ IEEE Access, vol. 5, no. 8058420, pp. 21524-21547, 2017.

[20] M. Banga, A. Bansal and A. Singh, ―Proposed hybrid approach to
predict software fault detection,‖ International Journal of Performability
Engineering, vol. 15, no. 8, pp. 2049-2061, 2019.

[21] X. Chen, Z. Yuan, Z. Cui, D. Zhang and X. Ju, ―Empirical studies on the
impact of filter-based ranking feature selection on security vulnerability
prediction,‖ IET Software, vol. 15, no. 1, pp. 75-89, 2021.

[22] U. S. Bhutamapuram and R. Sadam, ―With-in-project defect prediction
using bootstrap aggregation based diverse ensemble learning technique,‖
Journal of King Saud University - Computer and Information Sciences,
(In Press), 2021.

[23] C. Cui, B. Liu, P. Xiao and S. Wang, ―Can Defect Prediction Be Useful
for Coarse-Level Tasks of Software Testing?,‖ Applied Sciences, vol.
10, no. 15, 2020.

[24] H. Ghunaim and J. Dichter, ―Applying the FAHP to Improve the
Performance Evaluation Reliability of Software Defect Classifiers,‖
IEEE Access, vol. 7, no. 8710236, pp. 62794-62804, 2019.

[25] L. Gong, S. Jiang and L. Jiang, ―Tackling Class Imbalance Problem in
Software Defect Prediction through Cluster-Based Over-Sampling with
Filtering,‖ IEEE Access, vol. 7, no. 8861051, pp. 145725-145737, 2019.

[26] L. Gong, S. Jiang, Q. Yu and L. Jiang, ―Unsupervised deep domain
adaptation for heterogeneous defect prediction,‖ IEICE Transactions on
Information and Systems, E102D, pp. 537-549, 2019.

[27] Y. Shao, J. Zhao, X. Wang, W. Wu and J. Fang, ―Research on Cross-
Company Defect Prediction Method to Improve Software Security,‖
Security and Communication Networks, no. 5558561, 2021.

[28] K. Jiang, Y. Zhang, H. Wu, A. Wang and Y. Iwahori, ―Heterogeneous
defect prediction based on transfer learning to handle extreme
imbalance,‖ Applied Sciences, vol. 10, no. 1, 2020.

[29] A. Wang, Y. Zhang and Y. Yan, ―Heterogeneous Defect Prediction
Based on Federated Transfer Learning via Knowledge Distillation,‖
IEEE Access, vol. 9, no. 9352701, pp. 29530-29540, 2021.

[30] C. Pan, M. Lu, B. Xu and H. Gao, ―An improved CNN model for
within-project software defect prediction,‖ Applied Sciences, vol. 9, no.
10, 2019.

[31] J.-H. Ren and F. Liu, ―Predicting software defects using self-organizing
data mining,‖ IEEE Access, vol. 7, no. 8758097, pp. 122796-122810,
2019.

[32] S. Riaz, A. Arshad and L. Jiao, ―Rough Noise-Filtered Easy Ensemble
for Software Fault Prediction,‖ IEEE Access, vol. 6, no. 8435900, pp.
46886-46899, 2018.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

354 | P a g e

www.ijacsa.thesai.org

[33] Y. Sun, X-Y. Jing, F. Wu, and Y.Sun, ―Manifold embedded distribution
adaptation for cross-project defect prediction,‖ IET Software, vol. 14,
no. 7, pp. 825-838, 2020.

[34] A. Wang, Y. Zhang, H. Wu, K. Jiang and M. Wang, ―Few-Shot
Learning Based Balanced Distribution Adaptation for Heterogeneous
Defect Prediction,‖ IEEE Access, vol. 8, no. 8999527, pp. 32989-33001,
2020.

[35] J. Zheng, X. Wang, D. Wei, B. Chen and Y. Shao, ―A Novel Imbalanced
Ensemble Learning in Software Defect Predication,‖ IEEE Access, vol.
9, no. 9404009, pp. 86855-86868, 2021.

[36] Q. Zou, L. Lu, S. Qiu, X. Gu and Z. Cai, ―Correlation feature and
instance weights transfer learning for cross project software defect
prediction,‖ IET Software, vol.15, no. 1, pp. 55-74, 2021.

