
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

547 | P a g e

www.ijacsa.thesai.org

A Graph-oriented Framework for Online Analytical

Processing

Abdelhak KHALIL
1

LEFCG-SIAD Laboratory

Hassan First University of Settat

Settat, Morocco

Mustapha BELAISSAOUI
2

LEFCG-SIAD Laboratory

Hassan First University of Settat

Settat, Morocco

Abstract—OLAP (Online Analytical Processing) is a tried-

and-tested technology and a core concept in Business

Intelligence. With data flowing from different and countless

sources, exploring data in order to deliver actionable insights has

become a daunting task with current OLAP tools despite the

cycle of improvement that has gone through it. In the last decade,

with the emergence of the big data phenomenon, NoSQL

databases are seeing a spike in popularity and become more used

in industry and academia as their value in handling a huge and

varied amount of data become increasingly evident. Graph

oriented database is one of the four chief types of NoSQL

oriented databases that represent a promising technology

candidate for big data analytics. In this paper we bring forward

our contribution to graph-oriented analytical processing, which

is twofold. First, we provide a novel approach for modeling a

graph-oriented data warehouse. Second, we propose a data cube

materialization through the precomputation of aggregated nodes.

We present how typical OLAP queries can be performed against

data warehouses stored in NoSQL graph-oriented database

management systems. An implementation is conducted on a

fictional data warehouse using Neo4j and the Cypher declarative

language. The same dataset is stored in a relational data

warehouse in order to compare storage space and query

performance. Thus, the obtained results shows that graph OLAP

implementation outperform clearly the relational alternative in

term of query response time.

Keywords—Graph OLAP; data warehousing; graph databases;

NoSQL; data cube; decision support system

I. INTRODUCTION

OLAP stands for (Online Analytical Processing) and
describe a software technology dedicated to decision-making
purpose. It is designed to locate meaningful intersections
between multiple axes of analysis. The dimensional modelling
is an integral part of OLAP systems and defines at the
conceptual level the fact concept which holds measurements
or metrics regarding a business process event, and the
dimension concept which provides a context describing the
fact. Data conversion from an OLTP (Online Transaction
Processing) database of two-dimensional to the multi-
dimensional model is done by an ETL (Extract, Transform,
Load) tool. OLAP servers have historically been implemented
mainly using four approaches: Relational-OLAP(ROLAP),
Multidimensional-OLAP(MOLAP), Hybrid-OLAP(HOLAP)
and Desktop-OLAP(DOLAP)[1], [2]. Each implementation
has its strengths and its limitation and must be evaluated based
on the business requirements.

With the IT revolution, and being aware of the potential of
information, organizations around the globe has moved from
the archaic age, which relies on industrial economy into a new
era characterized by data driven economy. This race after
technology in order to gain competitive advantages has
contributed to the generation of large volumes of data. As a
consequence, data analytics are becoming a huge challenge for
traditional OLAP systems due its vertical scalability and its
low computation ability. Indeed, earlier-generation of OLAP
implementations are of poor storage and computational
capacities, because they are built upon on old architectures
and cannot match the requirement of big data analytics,
especially data storage and data retrieval requirements.
Another common problem is OLAP cube building over big
data which could reach a critical complexity due to the
increasing number of dimensions and the unstructured nature
which characterize big data sets [3],[4].

To overcome the challenges of scale and complexity
associated with today‟s data, OLAP researches moved in a
new direction. Namely, the use of NoSQL databases in OLAP
solutions which is considered as a promising alternative for
traditional data storage tools [5]–[8], [9]. This revolutionary
technology offers several interesting features that cannot be
achieved with classical database management systems like
cluster computing and the ability to process both semi-
structured and unstructured data. In this paper, we are focused
particularly in graph database, a class of NoSQL databases
that uses a graph model composed of nodes and edges instead
of relational model [10][11], and we claim that the graph data
structure is suitable for data warehousing and online analysis.

Implementing an OLAP cube using a graph database is not
a straightforward process. The multidimensional model used
to instantiate the data cube must be converted to a logical
model suitable to graph oriented database. Furthermore,
typical OLAP queries must be translated to a specific
language supported by this technology. The aim of this work
is to illustrate the potentiality of graph databases to handle
OLAP structures designed for reporting. In this context, we
define a set of mapping rules in order to migrate
dimensionally modelled data into the graph database. And we
demonstrate how typical OLAP operations can be performed
against a graph database. In Fig. 1, we position our proposal
regarding the literature. The key contributions of this work can
be summarized as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

548 | P a g e

www.ijacsa.thesai.org

 We propose an implementation of OLAP engines under
graph database using two different logical models that
are equivalent to ROLAP and MOLAP models. We
define a set of rules used for the mapping from the
multidimensional model to these models. An
experiment is conducted to highlight the differences
between the two meta-models using a case study.

 We propose an effective aggregation technique to build
the lattice of cuboids from a data warehouse built upon
a graph database management system.

 Then, we provide an extension of the declarative
Cypher language to basic OLAP queries. We consider
in this work Neo4j as a graph database engine.

The remainder of this paper is structured as follows. In the
next section we present the background of our work, and we
provide an overview of the state of the art related on Graph-
OLAP. In Section III we present our modeling approach for
graph OLAP. In Section IV we give an implementation of the
proposed approach using the Cypher language. In Section V,
we discuss experimental results. The last section concludes
this work and suggests eventual research directions.

Fig. 1. Convestion from the Conceptual Level to different OLAP

Implementations.

II. RELATED WORK

A. The Multidimensional Schema

The multidimensional schema is the starting point to
design and implement data warehouse systems. It defines four
major concepts: fact, measures, dimensions and hierarchies
[12].

Formally, a Multidimensional Schema denoted S is a

triplet  ,D ,S S SF Star where:

 1{ ,..., }S

nF F F
 a finite set of facts.

 1{D ,...,D }S

mD  a finite set of dimensions.

: 2 iDS

iStar F  is an incidence function mapping each fact

S

iF F to its associated dimensions
S

jD D .

A fact is the business process studied and is represented by

a pair  ,i iF F
N M where:


iF

N is the name of the fact.

  1 ,...,i i iF F F

nM m m a finite set of measures.

A dimension S

iD D is defined by  , ,i i iD D D
N Att H

where:

 iD
N is the name of the dimension.

  1 ,...,i i iD D D

mAtt a a a finite set of attributes.

  1 ,...,i i iD D D

kH l l a set of hierarchy levels.

A hierarchy organizes measures at different level of

aggregations. A hierarchy level i iD D

jl H can by defined by

(, ,)
D D Di i i
j j jl l l

N Att Weak where:


Di
jl

N is the name of the hierarchy level.

  1 ,...,
D D Di i i
j j jl l l

mAtt a a an ordered set of attributes.

  1: ,...
D Di i
i il l

j kWeak a wa wa is a function possibly

associating parameters to a set of weak attributes.

B. The Graph Model

NoSQL graph-oriented database are based upon the
concepts of graph model which organize data into collections
of nodes and edges. Once data loaded, graph theory
algorithms make it easy to handle semantic queries by
calculating the shortest path between nodes. Graph database
specify connections at insert time and avoid by then the
problem of join index lookup performance as querying data
becomes a matter of graph traversal. This makes graph
engines optimum when the meta-model of data being stored
has many overlapping relationships. This contrast with
relational database which store the links between tables at the
logical level and relies on relational algebra operations to
manipulate the data stored in the database management
systems in a relevant logical format.

Formally, a graph database denoted G is a set of properties

(, , , , , ,)N E N EN E L L P P comprising:

 N a set of nodes (also called vertices).

 E N N  a set of edges (also called links).

   : , | , ,E x y x y N x y    a function linking an

edge to a pair of nodes.


 1,...,N nL l l

 a set of node labels.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

549 | P a g e

www.ijacsa.thesai.org


 1,...,E mL l l

 a set of edge labels.

  1 ,...,N N

N jP p p a set of node properties.

  1 ,...,E E

E kP p p a set of edge properties.

A node
in N is a pair  ,

ii nl a , where
i Nl L is the

node label, and  1,...,
in na a a a set of attributes associated

with the node. Identically an edge je E is represented as

 , , ,
jj e x yl a   , where j El L the edge label ,

iea a set of edge

attributes,
x the starting node and

y the ending node.

C. Graph-Based OLAP

Over the last few years, big data analytics have known a
meteoric adoption of NoSQL. Considerable attempts to model
an OLAP cube with this technology have appeared. Several
research works have been conducted to implement OLAP
systems using columnar databases [5],[6],[7], others using the
document-oriented database [8],[13],[14],[15],[16] and last
but not least key-value stores [17],[18],[19].

Although graph databases are widely used in OLTP
systems, especially when the need of modeling multiple
connections is self-evident, it does not exist, to the best of our
knowledge, any OLAP solution which uses a graph database
at the physical level in the market. However, graph OLAP
concept has been around for years. Indeed, some interesting
works attempted to implement OLAP systems using graph
technology. A decade ago, Chen et al.[20], [21] studied the
possibility to perform multi-dimensional analysis on graph
data, the authors developed a graph OLAP framework having
two major subcases: Informational OLAP and Typological
OLAP and proposed the basic definition of OLAP operations
under this framework.

Many recent research works have been interested in
implementing OLAP engines under property graph databases.
In [22], the authors introduce a new data warehousing concept
called Graph Cube which stands for an OLAP infrastructure
that support analytical queries over a multidimensional
network. In [23], the authors define the concept of GOLAP
which is an extension of Online Analytic Processing(OLAP)
under graph database, some features are listed such as
semantics queries and structural analytics. In this work the
authors address the challenges of speed and storage related to
GOLAP and proposes possible solution to deal with them like
graph data reduction and query result approximation when the
execution time is too long, unfortunately the authors did not
provide an implementation of the proposed framework and
focus rather on the possible formalization. In [24], the authors
propose a novel graph cube framework called Two-Step
Multi-dimensional Heterogeneous(TSMH) which consists of
an Entity Hyper Cube and Dimension Cube. In the Entity
Hyper Cube n-meta path relation algorithm is used to guide
the aggregation of the network and to extend drill-down/roll-
up operations. In the Dimension Cube the efficiency of
dimension operation is improved by using a hierarchical
coding for entity type and dimensions.

Along the same vein, in [25] the author proposed an OLAP
data structure that relies on typed nodes to store facts and
dimensions, and introduced an extension of the Cypher
language to basic OLAP queries. The authors didn‟t provide
any experimental campaign to validate their proposal as they
rather focused on the demonstration of its feasibility. In [26],
[27], the authors proposed a formal multidimensional data
model for graph analysis based on node and edge-labeled
called graphoids, and presented a proof of concepted
implementation using a Neo4j graph database.

Regarding the instantiation of data warehouses using
property graph database, in [28] the authors define a set of
transformation rules for mapping between the
multidimensional conceptual model and NoSQL graph model.

All the cited works present an interesting background for
graph-based online analytical processing. The majority of
them addressed the issue of the adaptation of graph structure
to OLAP needs. Although they share some similarities with
ours, the contribution of this work is quite different as we
propose a novel approach for implementing both a data
warehouse and OLAP engine based on efficient data cube
materialization over graph database.

III. GRAPH OLAP MODEL

OLAP engines have been traditionally categorized whether
they perform pre-computation of OLAP cuboids or not.
Following this taxonomy, OLAP systems where all part of the
cube is pre-computed and stored in memory or disk are called
multidimensional OLAP systems (MOLAP) and systems
where computation of OLAP cuboids is performed on-demand
directly from the data warehouse are considered as Relational
OLAP models (ROLAP).

In this section we define the logical graph model for data
warehousing. We consider two approaches by analogy to the
ROLAP and MOLAP models; each one differs in term of
structure and content when the mapping from the conceptual
model is performed. In the first approach, fact, dimensions and
the link between them are materialized by nodes and edges
following several mapping rules, while in the second approach
we talk rather about an aggregate lattice modeled using the
graph paradigm. In what follows, we will use a fictional
electronics company as a running example. The star schema of
our cube is depicted in Fig. 2:

Fig. 2. The Star Schema.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

550 | P a g e

www.ijacsa.thesai.org

A. First Approach

This approach corresponds to the lightly summarized data
model. It defines a meta-model in which each component (fact
and its associated dimensions) will be transformed to a node.
The relation between nodes will be materialized by edges as
detailed by the following mapping rules:

Rule.1. Each fact component S

iF F is converted to a node

defined by  ,
ii nl a where:

 il is the name of the fact.

 Each measure i iF F

km M is converted to a node

attribute
ik na a .

Rule.2. Each dimension component
S

jD D is translated

to a node defined by  ,
ii nl a where:

 Each dimension attribute i iD D

ka Att is mapped into a

node attribute
ik na a .

 Each hierarchy level i iD D

kl H will be stored as a node

alike dimension.

 Hierarchy levels are connected by edges to express how
they are hierarchically linked.

Rule.3. The link between fact and its associated dimensions

is represented by an edge (, ,)i x yl   where:

 j El L is the name of the relation.

 x a node representing the fact.

 y a node representing an associated dimension

For the star schema represented in Fig. 2, the application
of the aforementioned rules will give us the following meta-
model, Fig. 3:

Fig. 3. The Graph-OLAP Schema According the the First Appraoch.

B. Second Approach

When we want to perform aggregation on a graph OLAP
built according to the first approach, the query we should
write is served on-demand and relies on fact nodes which are
retrieved then aggregated using an aggregation function. This
technique achieves the required result, but it is not optimized
for a large data volume. Moreover, it is tending to the opposite
of OLAP philosophy where data aggregation is pre-computed
and stored.

The second approach corresponds to a highly summarized
data model where measure aggregations are pre-calculated and
directly available for the sake of query performance. The set
of pre-computed aggregations is called an aggregate lattice.
Concretely, fact measures are aggregated according to
different combinations of dimensions and stored as a node
with two labels.

 il identify the multidimensional concept il

=’Aggregate.

 jl a label which follows a particular pattern that identify

uniquely which cuboid the aggregate is calculated for.
This label is in the form of a bitmask starting with a
letter that indicate the type of the aggregate (S for Sum,
A for Average, etc.). The remaining part is an ordered
sequence of n position (one of each hierarchy level),
each position can have three possible values: (x) if the
aggregate is calculated for all occurrences of the level,
(1) if the aggregate is performed for each occurrence of
the level and (0) if the aggregate is not calculated for
the level.

If we refer to our running example and considering only
high levels of granularity. Let‟s assume by convention that the
order of position levels is:

Product.Brand-Product.Product-Store.Region-
Store.Country-Date.Year-Date.Quarter.

An example of bitmask construction is depicted in Table I
and Fig. 4 displays such a representation:

Fig. 4. .Graph Aggregation According to the Second Approach.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

551 | P a g e

www.ijacsa.thesai.org

TABLE I. CUBOID BITMASK CONSTRUCTION

Node label Description Scope

Aggregate:S10x0x0 Sum by Product.Brand One level aggregate

Aggregate:Sx010x0 Sum by Store.Region One level aggregate

Aggregate:Ax0x010 Avg by Date.Year One level aggregate

Aggregate:S1010x0
Sum by Product.Brand
 and Store.Region

Two levels aggregate

IV. IMPLEMENTATION

A. Answering Typical Analytical Operation using Cypher

OLAP operations help users to view data from different
perspectives providing a convenient environment for real-time
data visualization and analysis. OLAP defines several basic
operations; the most popular ones are roll-up, dicing and
slicing. In this section we present how these operators can be
expressed over a data cube designed according to the first
approach.

Queries are written using the Cypher syntax, a declarative
query language intended to be executed on a database engine
built on the graph model. Cypher relies on the concept of
pattern matching for querying and updating graphs [12]. A
detailed description of the Cypher syntax is beyond the scope
of this paper.

1) Roll-up: The roll-up operation (also called

consolidation or aggregation operation) performs aggregation

on a data cube in two ways, either by reducing the number of

dimensions or by climbing up a concept hierarchy for a

dimension. It is like zooming-out feature from the most

detailed granularity level to the less detailed one.

In the query given in Listing.1, the rollup operation is
performed by climbing up the concept hierarchy of Product
dimension (Product → Brand), and of Store dimension (Store
→ City). The execution of the query results in the creation of a
node containing the aggregated measures and two new
relations linking the created node with its associated
dimension hierarchies.

Listing. 1. Roll up-Aggregation of sales and quantities by

product brand and store city.

1. MATCH (br:Brand)<-[]-(prod:Product)<-[]-(fact:Sales)

2. MATCH (ct:City)<-[]-(st:Store)<-[]-(fact:Sales)

3. WITH DISTINCT br, ct, SUM(fact.sales) AS SumSales, SUM(fact.quantity) As

SumQuantity

4. CREATE (br)<-[:AGGREGATE_OF]-(agg:Aggregate:S1010x0 {sales: SumSales,

quantity: SumQuantity})-[:AGGREGATE_OF]->(ct)

5. RETURN br,agg,ct;

2) Dicing: Dicing is the operation of selecting a subset

over all the dimensions and picking only specific dimension

parameter values. We can think of dicing as zoom feature

using smaller scale.

In Listing.2 the dice operation is performed using a
selection criterion over Brand and Year dimensions. The
generated cube has two dimensions.

Listing. 2. Dice-Selecting the sum of sales for the brand Apple

in 2018.

1. MATCH (br:Brand {brand: 'Apple'})<-[*]-(fact:Sales)

2. MATCH (year:Year {year: 2018})<-[*]-(fact:Sales)

3. RETURN SUM(fact.sales) AS Sales, SUM(fact.quantity) AS Quantity;

3) Slicing: Slicing is similar to dicing with a little

difference. It emphasizes one specific dimension and provides

a new sub-cube by filtering on a particular attribute. It can be

considered as a specialized filter for specific dimension

parameter value.

In Listing.3 Slice is carried out for the dimension Region
using the criterion Region= „Asia’.

Listing. 3. Slice- Selecting the sum of sales in region Asia

1. MATCH (reg:Region) <-[*]-(fact:Sales)

2. WHERE reg.name='Asia'

3. RETURN reg.region AS Region, SUM(meas.sales) AS Sales,

SUM(meas.units) AS Units;

B. Aggregates Creation

We refer to the property graph in Fig. 3 and the set of
aggregates in Table I, and then we show how we can perform
pre-calculation of our sample cuboids.

1) Aggregate by product brand: Query results in cypher

are evaluated by its core concept, namely, pattern matching.

By using patterns, you describe the requested data shape, then

the Cypher engine is responsible for restoring the data you are

looking for. For example, to build the aggregate value

Aggregate:S10x0x0, a join is implemented by means of

matching Sales → Brand against the OLAP-graph. It is worth

noting that the edge label linking the fact and the dimension

nodes is not required as it is inferred from node types.

In SQL, this is equivalent to a join between the fact table
Sales and the dimension table Brand followed by the
aggregation function SUM and GROUP By clause over Brand
attributes.

Listing. 4. Creation of the aggregate Aggregate:S10x0x0.

1. MATCH (brand:Brand)<-[*2]-(s:Sales)

2. WITH DISTINCT brand, SUM(s.sales) AS SumSales, SUM(s.quantity) AS

SumQuantity

3. CREATE (a:Aggregate:S10x0x0 {sales: SumSales, quantity: SumQuantity})-

[:AGGREGATE_OF]->(brand);

Fig. 5 shows how the aggregate Aggregate:S10x0x0 (By
product brand) fits in the property graph (colored in grey). It is
a one-level aggragate as it is calculated against one hierachical
level(colored in red).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

552 | P a g e

www.ijacsa.thesai.org

Fig. 5. Graph Visualization for Aggregates of Product Brands

2) Aggregate by region: In Listing. 5, the aggregate node

Aggregate:Sx010x0

(by region) is created:

Listing. 5. Creation of the aggregate Aggregate:Sx010x0

1. MATCH (r:Region)<-[*4]-(s:Sales)

2. WITH DISTINCT r, SUM(s.sales) AS SumSales, SUM(s.quantity) AS

SumQuantity

3. CREATE (a:Aggregate:Sx010x0 {sales: SumSales, quantity: SumQuantity})-

[:AGGREGATE_OF]->(r);

3) Aggregate by year

Listing. 6. Creation of the aggregate Aggregate:Sx010x0

1. MATCH (y:Year)<-[*3]-(s:Sales)

2. WITH DISTINCT y, AVG(s.sales) AS AvgSales, AVG(s.quantity) AS

AvgQuantity

3. CREATE (a:Aggregate:Ax0x010 {sales: AvgSales, quantity: AvgQuantity})-

[:AGGREGATE_OF]->(y);

4) Aggregate by product brand and region: In Listing.7,

the two-levels aggregate node Aggregate:S1010x0 (by product

brand and region) is created:

Listing. 7. Creation of the aggregate Aggregate:S1010x0

1. MATCH (brand:Brand)<-[*2]-(s:Sales)

2. MATCH (r:Region)<-[*4]-(s:Sales)

3. WITH DISTINCT brand, r, SUM(s.sales) AS SumSales, SUM(s.quantity) AS

SumQuantity

4. CREATE (brand)<-[:AGGREGATE_OF]-(a:Aggregate:S1010x0 {sales:

SumSales, quantity: SumQuantity})-[:AGGREGATE_OF]->(r);

Increasing the materialization of the aggregates can
improve considerably query performance, but can also affect
drastically storage space since aggregate nodes are stored on
disk. The precalulation of all possible aggregate values is
often not needed. Generally, OLAP engines chose the
percentage of precompted values based on business needs, the
remaining aggregates are calculated in response to a query.
We can imagine a scenario in which potentially requested
aggregates are infered from log files that contains previously
executed queries.

V. RESULTS AND DISCUSSION

We conducted experiments to evaluate two aspects for the
OLAP implementation under graph database: storage space
and query performance. For this, the solution we propose is
compared with a ROLAP implementation under Oracle
relational database containing the same dataset. The
experiment is carried out on a Unix machine (macOS) having
a core-i7 CPU,16GB of RAM and 1 TB of stockage memory
and running Neo4j community edition v4.3.

A. Data Generation

The dataset used in the experiment is generated using a
novel NoSQL star schema benchmark named KoalaBench
[29], [30], [30]. This tool is developed with Java language and
is derived from the reference benchmark TCP-H. For clarity
and to fit the meta-model in our running example the Supplier
is replaced with the Store dimension, LineItem is renamed
with Sales, and for the equivalent graph model, only few
dimension parameters are tracked. Datasets can be generated
in different configurations (different file format including tab,
csv, json, xml..., and multiple models). The size of the
generated data by scale factor is detailed in Table II.

TABLE II. SIZE OF THE DATA GENERATED BY SCALE FACTOR (SOURCE
1)

 Lines
Disk Space in

Byte (SF=1)

Avg. Disk

space/line

(Byte)

Tables

Sales (LineItem) SFx6000000 862558617,6 143,76

Product (Part) SFx200000 28521267,2 142,6

Customer SFx150000 16043212,8 1069,54

Store (Supplier) SFx10000 1677721,6 167,77

Nation 25 367 14,68

Region 5 73,4 14,68

Date SFx2556 168522 65,93

Size on disk 0,85 GB -

B. Experiment 1: Memory Consumption Per Scale Factor

In this experiment we use a global flat CSV file
representing data in a flat meta-model. In the appendix
(Listing.8), we attach the Cypher script for loading data from
an CSV file into Neo4j database according to our modeling
approach. A fragment of the generated graph is represented in
Fig. 6. The number of nodes and edges for the corresponding
graph is depicted in Table III.

1 http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-

h_v2.17.1.pdf

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

553 | P a g e

www.ijacsa.thesai.org

Fig. 6. A Portion of the Graph-OLAP.

TABLE III. MEMORY USAGE FOR THE GRAPH MODEL ON DIFFERENT

SCALE FACTORS

 Sf=1 Sf=5 Sf=10

Nodes

Sales 6000000 30000000 60000000

Product 200000 1000000 2000000

Brand 100 500 1000

Customer 150000 750000 1500000

Store 10000 50000 100000

Nation 25 25 25

Region 5 5 5

Month 79 395 790

Quarter 27 135 270

Year 7 35 70

Edges

FOR_PRODUCT 6000000 30000000 60000000

OF_BRAND 200000 1000000 2000000

BY_CUSTOMER 6000000 30000000 60000000

IN_STORE 6000000 30000000 60000000

IN_NATION 10000 50000 100000

IN_REGION 25 25 25

IN_MONTH 6000000 30000000 60000000

IN_QUARTER 79 395 790

IN_YEAR 27 135 270

Size on disk 3,3 GB 16.6 GB 33.2 GB

From the Table III, we can see that a snowflake schema on
a graph database requires more storage space than in a
relational one (more than 3 times for SF=1). This is easily

explained: property graph databases store relationships
physically on disk using edges while the concept of foreign
key is used instead by relational databases. Furthermore the
metadata is stored individually for each record in graph
database unlike relational model which define the structure of
the data at a higher level(the table itself). Which means that
property names are repeated for each item. Indeed, graph
databases are very storage intensive. This is traded for higher
query performance. Since nowadays hard disks are
inexpensive, it woud be worthwhile trade-off to buy more
storage space than keeping users waiting.

C. Experiment 2: Query Performance

The purpose of this experiment is to measure empirically
the performance of graph-OLAP to process analytical queries
when scaling up in comparison with the ROLAP
implementation under Oracle database. We have exposed the
system to a scale factor equal to 10 wich generates 11,6 Go of
random data in csv file format. Query configuration includes
queries involving gradually an increasing number of
dimensions as depicted in Table IV. Each query was executed
three times and the average of the elapsed time is presented in
Fig. 7.

Experiment results show that the relational implementation
defeats the Graph alternative when the query involves one
dimension, but when the query dimensionality increases the
graph alternative show better performance ranging from 1,82
to 2,29 times faster. Indeed, in relational databases the deeper
we go in joining tables the more queries show slower
processing time because it requires scanning of all table
involved in the query which has a considerable cost. Unlike
relational databases which suffer the pain of joining tables,
graph databases express relationship at the physical level. That
means, the links between nodes exists physically on disk and
are named and directed which, makes graph traversal easier.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

554 | P a g e

www.ijacsa.thesai.org

TABLE IV. QUERY CONFIGURATION

Query Dimensionality
Dimension

attributes
Measure

Q1 1D Date:year Sum(sales)

Q2 2D
Product:name

Store:region
Sum(sales)

Q3 3D
Product:name
Store:region

Date:month

Sum(sales)

Q4 4D

Product:name

Store:region

Date:quarter

Customer:name

Sum(sales)

Fig. 7. Query Response Time by Dimensionality.

VI. CONCLUSION

The ability of graph technology to handle highly
interconnected data makes it suitable for interactive analysis
and more relevant for businesses today. In this paper, we
addressed the topic of extending NoSQL graph-oriented
databases to OLAP. We have proposed a modeling approach
for implementing graph-based data warehouses using labeled
nodes and edges. We have also shown how materialized
aggregates can pre-computed across different levels to speed
up query processing. At the physical level Neo4J engine is
used as a graph-oriented database management system.
Typical OLAP queries are rewritten using its declarative query
language Cypher.

The Graph-OLAP implementation is compared to ROLAP
one in terms of query performance and storage space, results
show clearly that graph implementation of OLAP presents
better performances than relational alternative in term of query
response time when facing a huge data volume.

In the forthcoming extended work, we look forward to
extending Cypher to support OLAP features by writing a user-
defined aggregation function using the low-level API provided
by Neo4J engine.

Without any doubt, using NoSQL technology to support
OLAP features is a promising research direction. Therefore,

we claim that implementing OLAP engines under column-
oriented and document-oriented databases using novel
frameworks would be an interesting research issue that can be
addressed.

REFERENCES

[1] S. Chaudhuri and U. Dayal, “An overview of data warehousing and
OLAP technology,” ACM SIGMOD Rec., vol. 26, no. 1, pp. 65–74,
Mar. 1997, doi: 10.1145/248603.248616.

[2] A. Nanda, S. Gupta, and M. Vijrania, “A Comprehensive Survey of
OLAP: Recent Trends,” in 2019 3rd International conference on
Electronics, Communication and Aerospace Technology (ICECA),
Coimbatore, India, Jun. 2019, pp. 425–430. doi:
10.1109/ICECA.2019.8822203.

[3] A. Cuzzocrea, L. Bellatreche, and I.-Y. Song, “Data Warehousing and
OLAP over Big Data: Current Challenges and Future Research
Directions,” in Proceedings of the Sixteenth International Workshop on
Data Warehousing and OLAP, New York, NY, USA, 2013, pp. 67–70.
doi: 10.1145/2513190.2517828.

[4] M. Tremblay and A. Hevner, “Missing Data in OLAP Cubes:
Challenges and Strategies,” J. Database Manag., vol. 32, p. 1, Jun. 2021,
doi: 10.4018/JDM.2021070101.

[5] K. Dehdouh, O. Boussaid, and F. Bentayeb, “Big Data Warehouse:
Building Columnar NoSQL OLAP Cubes,” Int. J. Decis. Support Syst.
Technol., vol. 12, no. 1, pp. 1–24, Jan. 2020, doi:
10.4018/IJDSST.2020010101.

[6] K. Dehdouh, F. Bentayeb, O. Boussaid, and N. Kabachi, “Using the
column oriented NoSQL model for implementing big data warehouses,”
Int. Conf. Parallel Distrib. Process. Tech. Appl. PDPTA15, pp. 469–475,
2015.

[7] M. Boussahoua, O. Boussaid, and F. Bentayeb, “Logical Schema for
Data Warehouse on Column-Oriented NoSQL Databases,” in Database
and Expert Systems Applications, vol. 10439, D. Benslimane, E.
Damiani, W. I. Grosky, A. Hameurlain, A. Sheth, and R. R. Wagner,
Eds. Cham: Springer International Publishing, 2017, pp. 247–256. doi:
10.1007/978-3-319-64471-4_20.

[8] M. Chavalier, M. El Malki, A. Kopliku, O. Teste, and R. Tournier,
“Document-oriented data warehouses: Models and extended cuboids,
extended cuboids in oriented document,” Proc. - Int. Conf. Res. Chall.
Inf. Sci., vol. 2016-Augus, 2016, doi: 10.1109/RCIS.2016.7549351.

[9] Z. Challal, W. Bala, H. Mokeddem, K. Boukhalfa, O. Boussaid, and E.
Benkhelifa, “Document-oriented versus Column-oriented Data Storage
for Social Graph Data Warehouse,” 2019, pp. 242–247. doi:
10.1109/SNAMS.2019.8931718.

[10] C. Kamphuis, “Graph Databases for Information Retrieval,” in
Advances in Information Retrieval, Cham, 2020, pp. 608–612.

[11] A. Bhattacharyya and D. Chakravarty, “(Graph Database: A Survey),” in
2020 International Conference on Computer, Electrical &
Communication Engineering (ICCECE), Kolkata, India, Jan. 2020, pp.
1–8. doi: 10.1109/ICCECE48148.2020.9223105.

[12] R. Kimball, “Kimball Dimensional Modeling Techniques,” pp. 1–24,
2013, doi: 10.1016/B978-0-12-411461-6.00009-5.

[13] F. Davardoost, A. Babazadeh Sangar, and K. Majidzadeh, “Extracting
OLAP Cubes from Document-Oriented NoSQL Database Based on
Parallel Similarity Algorithms,” Can. J. Electr. Comput. Eng., vol. 43,
no. 2, pp. 111–118, 2020, doi: 10.1109/CJECE.2019.2953049.
S. Bouaziz, A. Nabli, and F. Gargouri, “Design a Data Warehouse
Schema from Document-Oriented database,” Procedia Comput. Sci.,
vol. 159, pp. 221–230, 2019, doi: 10.1016/j.procs.2019.09.177.

[14] E. Gallinucci, M. Golfarelli, and S. Rizzi, “Approximate OLAP of
document-oriented databases: A variety-aware approach,” Inf. Syst., vol.
85, pp. 114–130, Nov. 2019, doi: 10.1016/j.is.2019.02.004.

[15] M. L. Chouder, S. Rizzi, and R. Chalal, “EXODuS: Exploratory OLAP
over Document Stores,” Inf. Syst., vol. 79, pp. 44–57, Jan. 2019, doi:
10.1016/j.is.2017.11.004.

[16] A. Khalil and M. Belaissaoui, “New approach for implementing big
datamart using NoSQL key-value stores,” presented at the Proceedings
of 2020 5th International Conference on Cloud Computing and Artificial

5.3

10.3

20

27

3

18.8

34.4

61.7

0

10

20

30

40

50

60

70

Q 1 (1 D) Q 2 (2 D) Q 3 (3 D) Q 4 (4 D)

 E
LA

P
SE

D
 T

IM
E

(S
EC

)

Graph OLAP Oracle ROLAP

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

555 | P a g e

www.ijacsa.thesai.org

Intelligence: Technologies and Applications, CloudTech 2020, Nov.
2020. doi: 10.1109/CloudTech49835.2020.9365897.

[17] A. Khalil and M. Belaissaoui, “Key-value data warehouse: Models and
OLAP analysis,” presented at the 2020 IEEE 2nd International
Conference on Electronics, Control, Optimization and Computer
Science, ICECOCS 2020, Dec. 2020. doi:
10.1109/ICECOCS50124.2020.9314447.

[18] H. Zhao and X. Ye, “A Practice of TPC-DS Multidimensional
Implementation on NoSQL Database Systems,” in Performance
Characterization and Benchmarking, vol. 8391, R. Nambiar and M.
Poess, Eds. Cham: Springer International Publishing, 2014, pp. 93–108.
doi: 10.1007/978-3-319-04936-6_7.

[19] C. Chen, X. Yan, F. Zhu, J. Han, and P. S. Yu, “Graph OLAP: a multi-
dimensional framework for graph data analysis,” Knowl. Inf. Syst., vol.
21, no. 1, pp. 41–63, Oct. 2009, doi: 10.1007/s10115-009-0228-9.

[20] C. Chen, X. Yan, F. Zhu, J. Han, and P. S. Yu, “Graph OLAP: Towards
Online Analytical Processing on Graphs,” in 2008 Eighth IEEE
International Conference on Data Mining, Pisa, Italy, Dec. 2008, pp.
103–112. doi: 10.1109/ICDM.2008.30.

[21] P. Zhao, X. Li, D. Xin, and J. Han, “Graph cube: on warehousing and
OLAP multidimensional networks,” in Proceedings of the 2011
international conference on Management of data - SIGMOD ‟11,
Athens, Greece, 2011, p. 853. doi: 10.1145/1989323.1989413.

[22] C.-H. Chou, M. Hayakawa, A. Kitazawa, and P. Sheu, “GOLAP: Graph-
Based Online Analytical Processing,” Int. J. Semantic Comput., vol. 12,
no. 04, pp. 595–608, Dec. 2018, doi: 10.1142/S1793351X18500071.

[23] P. Wang, B. Wu, and B. Wang, “TSMH Graph Cube: A novel
framework for large scale multi-dimensional network analysis,” in 2015
IEEE International Conference on Data Science and Advanced Analytics
(DSAA), Campus des Cordeliers, Paris, France, Oct. 2015, pp. 1–10.
doi: 10.1109/DSAA.2015.7344826.

[24] A. Castelltort and A. Laurent, “NoSQL graph-based OLAP analysis,”
KDIR 2014 - Proc. Int. Conf. Knowl. Discov. Inf. Retr., pp. 217–224,
2014, doi: 10.5220/0005072902170224.

[25] L. Gómez, B. Kuijpers, and A. Vaisman, “Performing OLAP over Graph
Data: Query Language, Implementation, and a Case Study,” in
Proceedings of the International Workshop on Real-Time Business
Intelligence and Analytics, Munich Germany, Aug. 2017, pp. 1–8. doi:
10.1145/3129292.3129293.

[26] L. Gómez, B. Kuijpers, and A. Vaisman, “Online analytical processsing
on graph data,” Intell. Data Anal., vol. 24, no. 3, pp. 515–541, May
2020, doi: 10.3233/IDA-194576.

[27] A. Sellami, A. Nabli, and F. Gargouri, “Transformation of Data
Warehouse Schema to NoSQL Graph Data Base,” in Intelligent Systems
Design and Applications, vol. 941, A. Abraham, A. K. Cherukuri, P.
Melin, and N. Gandhi, Eds. Cham: Springer International Publishing,
2020, pp. 410–420. doi: 10.1007/978-3-030-16660-1_41.

[28] M. Chevalier, M. El Malki, A. Kopliku, O. Teste, and R. Tournier,
“Benchmark for OLAP on NoSQL technologies comparing NoSQL
multidimensional data warehousing solutions,” Proc. - Int. Conf. Res.
Chall. Inf. Sci., vol. 2015-June, no. June, pp. 480–485, 2015, doi:
10.1109/RCIS.2015.7128909.

[29] M. El Malki, A. Kopliku, E. Sabir, and O. Teste, “Benchmarking Big
Data OLAP NoSQL Databases,” in Ubiquitous Networking, vol. 11277,
N. Boudriga, M.-S. Alouini, S. Rekhis, E. Sabir, and S. Pollin, Eds.
Cham: Springer International Publishing, 2018, pp. 82–94. doi:
10.1007/978-3-030-02849-7_8.

APPENDIX

Listing. 8. Script loading in Neo4J

1. UNWIND ["sales-sf1.csv"] AS sourceFile

2. LOAD CSV WITH HEADERS

3. FROM "file:///" + sourceFile

4. AS row

5. FIELDTERMINATOR ';'

6. MERGE (cus:Customer {cname: row.c_name})

7. MERGE (r:Region {region: row.s_region_name})

8. MERGE (n:Nation {nation: row.s_nation_name})

9. MERGE (st:Store {store: row.s_name})

10. MERGE (n)-[:IN_REGION]->(r)

11. MERGE (st)-[:IN_NATION]->(n)

12. WITH date(row.o_orderDate) AS date,row,st,cus

13. MERGE (y:Year {year: toInteger(date.year)})

14. MERGE (q:Quarter {year: date.year, quarter: date.quarter})

15. MERGE (m:Month {year: date.year, month: date.month, quarter:date.quarter})

16. MERGE (q)-[:IN_YEAR]->(y)

17. MERGE (m)-[:IN_QUARTER]->(q)

18. MERGE (b:Brand {brand: row.p_brand})

19. MERGE (prod:Product {product: row.p_name})

20. MERGE (prod)-[:OF_BRAND]->(b)

21. WITH

22. st, m, prod, row,cus,

23. st.store + '_' + toString(m.year) + '_' + toString(m.month) + '_' + prod.product+ '_' +

cus.cname AS SalesID

24. MERGE (f:Sales {fid: SalesID})

25. ON CREATE

26. SET f.sales = toFloat(row.sales),

27. f.quantity = toInteger(row.quantity)

28. ON MATCH

29. SET f.sales = f.sales + toFloat(row.sales),

30. f.quantity = f.quantity + toInteger(row.quantity)

31. MERGE (f)-[:IN_STORE]->(st)

32. MERGE (f)-[:IN_MONTH]->(m)

33. MERGE (f)-[:FOR_PRODUCT]->(prod)

34. MERGE (f)-[:BY_CUSTOMER]->(cus);

