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Abstract—Quadratic Assignment Problem is one of the most 

common combinatorial optimization problems that represents 

many real-life problems. Many techniques are applied to solve 

Quadratic Assignment Problem, these include exact, heuristic, 

and metaheuristic methods. A Genetic Algorithm is a powerful 

heuristic approach used to find optimal solutions or near-to-

optimal for Quadratic Assignment smelborp. In this paper, we 

developed a Genetic Algorithm with a new crossover operator 

with new technology closer to that found in nature without a 

crossover point and a new suggested intelligent mutation 

operator, then we developed a Parallel Genetic Algorithm using 

the same crossover and mutation. The sequential Genetic 

Algorithm will be implemented in the Central Processing Unit 

(CPU), and the Parallel Genetic Algorithm will be implemented 

in the Graphical Processing Unit (GPU). This paper presents two 

comparisons, first calculates elapsed time for crossover, 

mutation, and selection in both CPU and GPU, then compares 

the results. This comparison clearly shows the enhancement 

degree of computation time in the parallel environment, which is 

around half the time executed in the sequential environment.  

The second comparison, iterates these operators into several 

generations, using twenty benchmark instances reported in 

Quadratic Assignment Problem Library with sizes from (12-70), 

population size equal to 600, the number of generations equal to 

2000, and the maximum number of parallel threads will be 600. 

Proposed crossover and mutation give the optimal solutions with 

ten benchmarks with problem sizes from 12 to 32 in both 

Sequential Genetic Algorithm and Parallel Genetic Algorithm, 

the next ten benchmarks give solutions closed to the optimal 

solution with a small error rate. 
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I. INTRODUCTION 

The Quadratic Assignment Problem (QAP) is one of the 
most common combinatorial optimization problems that 
represents many real-life problems. The QAP involves the 
assignment of n facilities that have flows (weights) among 
them to n possible locations that also have distances among 
them to achieve the minimum sum of the distances multiplied 
by flows, this minimum sum will be reached by assigning high 
facilities to nearby locations and small facilities to far 
locations. The problem was first introduced as a mathematical 

model for economic activities in 1957[1], then it was becoming 
a fundamental and important problem to represent several 
applications in different areas, such as computer backboard 
wiring, locating clinics with a hospital, locating machine and 
electronic components, assignment of buildings in a university 
campus, etc. 

The quadratic assignment problem (QAP) consists of n 
facilities and n possible locations, exactly one facility for each 
location. For each pair of facilities, a flow matrix, F = [     is 
defined, which consists of flow values that must be required to 
move from facility i to facility j. Also, for each pair of 
locations, a distance matrix, D = [     is defend and it consists 
of distance values between location k to location l. The 
assignment of facility i is not independent of other 
assignments, so when assigning facility i to location k we must 
consider the assignment for all other facilities that have 
nonzero relationships with facility i. Let 

)}(),.......,2(),1({ naaaa 
 be an assignment, where a(i) 

represents the location of the facility i. The problem is to assign 
to each location exactly one facility to minimize the cost of the 
objective function as shown in Equation. 1. 
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Since the solution is derived from n! possible assignments, 
it makes the problem impossible to solve in polynomial time 
with moderate problem size, even with modern computers. 

The QAP solving methods can be categorized into three 
main classifications: exact methods, heuristic methods, and 
meta-heuristic methods. The exact methods give the exact 
optimal solution, but the drawback of such methods is the long 
computational time that makes the solution impossible. 
Therefore, the problem was restored to be solved using 
heuristics and meta-heuristic methods which overcome the 
problem of long computational time, but they also have their 
drawback. Heuristics and meta-heuristic methods do not 
guarantee to provide the exact optimal solution, but they 
instead provide a good solution, near to optimal solution, in 
reasonable computational time. Genetic algorithms, simulated 
annealing, tabu search, artificial neural network, etc., are some 
well-known heuristic methods, and genetic algorithm is 
considered as one of the best heuristic methods. 
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A Genetic Algorithm (GA) provides individual candidate 
solutions that do not hold any dependencies between them, so, 
it will be easy to implement such an algorithm in parallel to get 
a more considerable speedup. 

This paper uses a parallelism concept which in turn 
becomes an effective way to simplify the difficult problems 
and reduce its computational time. Additionally, GA is a 
popular effective heuristic approach in both computation time 
and solution quality. So, they have motivated us to take the 
advantage of both GA and parallelism to solve that difficult 
problem. 

This work exploits the recent improvement in the graphical 
processing unit (GPU) which is expanded to include parallel 
computation rather than just graphical purpose. So, we will 
propose a solution for QAP using a proposed genetic algorithm 
with enhancement in crossover and mutation. These 
enhancements are suggested new crossover operator with new 
technology which closer to that found in nature without 
crossover point and new intelligent mutation operator which in 
turn improve solution quality. 

II. BACKGROUND AND RELATED WORK 

 Genetic algorithms were first invented on QAP by John 
Holland at the University of Michigan in 1975[2]. The first 
applied for GA in QAP was in 1994 by Fleurent and 
Ferland[3]. GA is considered as a type of stochastic and local 
search technique, which are based on three natural operators: 
selection, crossover, and mutation. Also, there are many recent 
efficient algorithms, we will present a brief study about them to 
explore the new techniques and take advantage of them. 

Radomil Matousek et al [4] presented Metaheuristic 
Optimization Using HC12 Algorithm. It is categorized as a 
parallel algorithm implemented on GPU. It used HC12 which 
is a Genetic Algorithm using binary encoding which depends 
on the next population is a population from the current solution 
neighborhood. This algorithm gives the optimal solutions for 8 
problems with sizes (12 -32) in a short run time of an average 
of 1.89 seconds. 

Takeshi Okano et al [5] proposed variant k-opt local search 
(vKLS) which is categorized as a sequential algorithm in a 
CPU environment, vKLS used a variable depth approach that 
depends on exchanging multiple nodes at a time rather than 
just two nodes. They combine two strategies best-improvement 
move and the first-improvement move. vKLS tested on 48 
QAPLIB instances with a range of 20 - 150 in a fixed period 
equal to 60 seconds. 

Ensieh et al improved the performance of the (NIFLS) Fast 
Local Search algorithm in the sequential environment by 
adding Temperature characteristics from simulated annealing 
to conduct the search to explore the search space wider[6]. The 
algorithm gets 0.26 APD in average execution time 1207 
seconds. 

Erdener et al developed ILS (Iterated Local Search) 
algorithm using GPU parallelism[7]. They implement the 
multi-start technique, use the delta function instead of 

calculating object function for each neighbor and design a 
mutation operator to escape the local optimum. The algorithm 
works 6.31 to 11.93 times faster than sequentially one. 

Omar Abdelkaf et al. [8] suggested Parallel iterative Tabu 
Search (PITS) by parallelizing an existing TS algorithm called 
Ro-Ts using a grid of 5000 CPUs. PITS works with 350 
iterations inside the process, 100 global iterations, and 40 
processes. PITS gives an average standard deviation equal to 
12.19 in average time equal to 13.01 minutes with problems 
with size 343. 

Also Emrullah et al presented an algorithm called the 
Parallel Simulated Annealing method with multi-start 
technique (PMSA) using GPU parallelism[8]. PMSA starts the 
next SA algorithm with the best previous generated value 
rather than a random permutation, this technique is called the 
multi-start approach. It provides the optimal solution for 196 
instances except for 14 instances in time less than 60 seconds. 

Lopez et al presented GA-CPLS algorithm which is a type 
of CPU level parallelism[9]. CPLS operation depends on a 
group of nodes called explorers. GA-CPLS performed the 
Genetic algorithm as the main explorer to generate the 
population as a head node, other explorer nodes execute the 
Extremal Optimization Algorithm and robust Tabu search. GA-
CPLS gives 0.054 APD on an average time of 82.7 minutes. 

Seyda et al improved sequential Hybrid GA called 
IHGA[10]. Its idea takes from combining genetic algorithm, 
simulated annealing algorithm, and the greedy algorithm. It 
enhances the solution by 13.33, 7.94, 2.50, and 0.29 percent 
better than the greedy algorithm, DA, classical GA, and SA 
respectively. 

Soukaina et al developed a Hybrid Chicken Swarm 
Optimization (HCSO)[11]. HCSO applies GPU level 
parallelism and integrates Chicken Swarm Optimization CSO 
with Greedy Randomized Adaptive Search Procedure GRASP. 
GRASP run with a 2-opt Local Search for constructing the 
initial population. HCSO finds the optimal solution for 85% of 
30 QAP instances. 

Mohamed et al enhanced Whales Optimization Algorithm 
by integrating it with Tabu Search (WAITS)[12]. WAITS was 
applied in a sequential environment, and it enhances the speed 
of convergence and local search inside the Whales Algorithm 
(WA). WAITS provides the optimal solutions for 86 instances 
out of 122 instances. 

Previous studies explored many recent heuristics and 
metaheuristics algorithms in solving QAP either in parallel or 
in a sequential environment. Parallelism can be designed at the 
CPU level or GPU level. As we see from reviewed algorithms, 
parallel algorithms designed by GPU produced better results in 
computational time and algorithms like GA will provide a 
high-quality solution in a reasonable time. This will motivate 
us to design a new GA with a new crossover operator with new 
technology closer to that found in nature, it depends on 
arranging genes in a specific way without the need for a 
crossover point, and also suggested an intelligent mutation 
operator in the GPU environment. 
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The proposed method will be implemented and tested in a 
sequential environment and then in parallel to compare results 
and to show the degree of parallel improvement using 
benchmark instances available in QAPLIB[13]. 

This paper was organized into sections, each section treats 
a part of our works. The second section shows the 
methodology of our works, the next section illustrates the 
overall structure of the proposed algorithm, the fourth section 
analyzes and explores the results, and finally the conclusion. 

III. METHODOLOGY 

A. Population Initialization Method 

Population sets will be initialized randomly concerning the 
problem size. Additionally, make sure this population does not 
have incomplete or invalid individuals and all nodes are 
existing and forming a complete solution. Also, be sure the 
individual does not have redundant nodes or invalid nodes. 

B. Selection Method 

The proposed GA applied the selection to two places in the 
algorithm. First, parents’ selection is called the stochastic 
remainder selection method. It works by assigning a 
probability to every individual to be chosen as a parent. This 
method takes each individual’s fitness then divides it by 
average fitness, the integer part of the division represents the 
number of appearances of the individual as a parent, and the 
remaining fractional part is used to stochastically fill the 
remaining parents to stochastic places. 

The second application of selection was after crossover 
operation when deciding about if a current parent will stay for 
the next generation or be replaced by its best offspring. This 
type of survivor selection is called the steady-state approach. 

C. Crossover Operator 

In this paper, we propose a new crossover method that 
produces an individual who inherits from parent's 
characteristics as much as possible. This method will preserve 
the order of the inherited nodes from both parents without 
making a crossover point. 

The following example will illustrate the proposed 
crossover method by using the facility matrix and distance 
matrix that is used in the “Hud12” benchmark. If we have two 
parents parent1 with cost = 1956 and parent2 with cost = 1936 
each with size 12, as shown in Fig. 1 and Fig. 2, and offspring 
will be as shown in Fig. 3. 

Parent1: 

5 4 12 6 10 9 7 1 8 3 11 2 

Fig. 1. Crossover _ parent1 

Parent2: 

12 6 9 2 4 11 10 1 5 8 7 3 

Fig. 2. Crossover _ parent2. 

Offspring: 

5 4 12 6 10 9 2 11 1 8 7 3 

Fig. 3. Crossover_offspring. 

There are two indexes (index1= 0) which point to the first 
index in parent1, (index2=size-1=11) which point to the last 
index in parent2. Start filling offspring by these two indexes, at 
the same time, as shown in Fig. 4. 

Step1: index1=0, index 2=11, offspring will be: 

5           3 

Fig. 4. Crossover First Step. 

5 is the first node in parent1, 3 is the last node in parent2, 
increment index 1, decrement index2, index1=1, index2=10. 

Step2: index1=1, index2=10, before inserting must check if 
the new node exists in new offspring if not just insert it, if exist 
go to the next node in the corresponding parent, offspring will 
be , as shown in Fig. 5. 

5 4         7 3 

Fig. 5. Crossover Second Step. 

4 is the second node in parent1, 7 is the second node from 
the last in parent2, increment index 1, decrement index2, 
index1=2, index2=9. 

Step3: index1=2, index 2= 9, before inserting must check if 
the new node exists in new offspring if not just insert it, if exist 
go to the next node in the corresponding parent, offspring will 
be as shown in Fig. 6: 

5 4 12       8 7 3 

Fig. 6. Crossover Third Step. 

12 is the third node in parent1, 8 is the third node from the 
last in parent2, increment index1, decrement index2, index1=3, 
index2=8. 

Step4: index1=3, index 2= 8, before inserting must check if 
a new node exists in new offspring if not just insert it, if exist 
go to the next node in the corresponding parent, offspring will 
be , as shown in Fig. 7. 

5 4 12 6     1 8 7 3 

Fig. 7. Crossover Fourth Step. 

6 is the fourth node in parent1, 5 is the fourth node from the 
last in parent2 but 5 exists in offspring, so go to the fifth node 
from the last in parent2 which is 1 then check if doesn’t exist in 
offspring insert 1, increment index1, decrement index2, 
index1=4, index2=7. 

Step5: index1=4, index 2= 7, before inserting must check if 
the new node exists in new offspring if not just insert it, if 
exists go to the next node in the corresponding parent, 
offspring will be as shown in Fig. 8. 

5 4 12 6 10   11 1 8 7 3 

Fig. 8. Crossover Fifth Step. 

Ten (10) is the fifth node in parent1, 10 is the sixth node 
from the last in parent2 but 10 exists in offspring, so go to the 
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seventh node from the last in parent2 which is 11 then check if 
does not exist in offspring insert 11, increment index 1, 
decrement index2, index1=5, index2=6. 

Step 6: index1=5, index 2= 6, before inserting must check 
if the new node exists in new offspring if not just insert it, if 
exist go to the next node in the corresponding parent, offspring 
will appear as shown in Fig. 9. 

5 4 12 6 10 9 2 11 1 8 7 3 

Fig. 9. Crossover Sixth Step. 

Nine (9) is the sixth node in parent1, 4 is the eighth node 
from the last in parent2 but 14 exists in offspring, so go to the 
ninth node from the last in parent2 which is 2 then check if 
doesn’t exist in offspring insert 2. The cost for the generated 
offspring = 1868 which is better than the cost of parents. 

Crossover must be simple as possible to achieve maximum 
utilization of GPU benefits. The generated offspring was 
produced by simple crossover but inherit many features from 
parents selected by a strong selection method. 

D. Mutation Operators 

The proposed GA uses a new mutation operator that works 
as scanning the individual to find the maximum product (flow 
* distance) located between facility(i) to the facility (i+1). Then 
swap facility (i+1) with random node from the individual. 

This proposed mutation can be illustrated as shown in the 
following example: The following individual belongs to the 
“Had12” benchmark with cost = 1902, as shown in Fig. 10. 

4 6 3 1 8 2 9 10 7 12 5 11 

Fig. 10. Individual before Mutation. 

After applying the mutation operator, the cost will be = 
1834, and the individual will be as shown in Fig. 11. 

4 6 3 1 7 2 9 10 8 12 5 11 

Fig. 11. Individual after Mutation. 

IV. STRUCTURE OF THE PROPOSED PARALLEL GENETIC 

ALGORITHM 

The following algorithm shows the general structure of the 
proposed PGA, followed by a system diagram to represent the 
PGA structure, as shown in Fig. 12. 

PGA exploited graphical processing unit (GPU) for non-
graphical parallel computation, the proposed algorithm uses a 
large single population of individuals which is distributed 
among several threads in GPU. Each thread performs three GA 
operators Crossover, Mutation Survivor, and Selection because 
they are suitable to implement in the parallel environment as 
shown in Fig. 12. This means, does not need to force threads to 
communicate between each other or lock other threads, or wait 
for other threads until unlocking, this parallelism technique 
maintains data integrity and consistency also threads’ waiting 
time is almost non-existent. The proposed algorithm was 
shown in Table I. 

TABLE I. ALGORITHM1 

Algorithm1: proposed Parallel Genetic Algorithm 

Population Size= N 

Problem Size = n 

Number of threads =N 

Termination condition=2000 generation 

Create random Population with size N 

while termination condition is not reached do 

       calculate fitness values         

       Reorder individuals according to stochastic probability 

       For each thread i , in parallel do 

               Select parent 1 =individual i  

               Select parent 2 = individual i+1, 

              For each facility j in offspring  

                      offspring = Assign facility j from left of individual i 

                     offspring =Assign facility n - j+1 right of individual i+1 

              Find maximum product (flow * distance) between facility(k) to 

facility (k+1) in individual i 

                     offspring = swap facility (k+1) with random picked facility. 

               If offspring cost < parent 1 cost 

                      Replace (individual i = offspring) 

end while 

 

Fig. 12. Overall Proposed PGA Structure. 

V. RESULT AND DISCUSSION 

This section will show an analysis, discussion, and 
illustration of the output and results of the proposed method in 
this paper, results are going to be analyzed in two ways. The 
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first analysis will present six tables that show elapsed time for 
GPU and CPU during the execution of proposed crossover, 
mutation, and selection. The second analysis presents a test of 
the proposed method in GPU and CPU after embedding it 
inside several iterations (generations). 

The proposed method was tested in CPU of type intel® 
core™ i7-8565U CPU @ 1.80GHz (8 CPUs) and GPU of kind 
NVIDIA GeForce MX250 using both CUDA (Compute 
Unified Device Architecture) and C++ programming 
languages. 

The following four figures show a comparison between 
CPU and GPU using common QAP benchmarks, while N 
means the size of population, CPU and GPU time is measured 
in milliseconds. 

A. First Test Illustration 

This test shows elapsed time for GPU and CPU during the 
execution of proposed crossover, mutation, and selection. 

 

Fig. 13. CPU and GPU Time Illustration with Problem Sizes. 

1) For the “lipa20a” benchmark: “lipa20a” benchmark 

with problem size equal to 20. We notice that when population 

size equal to 100, 200, 300, and 400 CPU show better results 

than GPU. Here the problem size is small, and we will only 

see the enhancement in GPU when the size of the problem and 

population increase. After increasing the population size to 

600 we will observe the GPU enhancement and CPU time 

become approximately twice the time of GPU. Fig. 13 shows a 

graphical representation of this problem. 

2) For the “lipa30a” benchmark: The enhancement on 

GPU begins at N=300, then the CPU time will take an 

increasing rate when population size increases. Compared to 

GPU time, GPU time does not take a significantly increasing 

rate while the population size increases, it just took a small 

increasing rate ≈ of 0.56 milliseconds, as shown in 

Figure ‎IV.1. CPU continues increasing until it reaches more 

than 2x time of GPU time at N= 600. Fig. 13 Shows a 

graphical representation of this problem. 

3) For the “lipa40a” benchmark: The improvement on 

GPU starts when N=300, then the CPU time will increase 

when population size increases until it reaches nearly 2x the 

time of GPU at N= 600. On the other hands, GPU time takes a 

small increasing rate ≈  of 0.58 while the population size 

increases. Fig. 13 shows a graphical representation of this 

problem. 

4) For the “lipa50a” benchmark: shows the same result 

as “lipa40”. The CPU looks better than GPU when N=300, but 

after that, it becomes worse when N>300. CPU becomes 

around 2x time of GPU at N= 600. As we noted earlier GPU 

time is not affected much by population increase, as shown in 

Fig. 13. 

5) For “lipa60a” and “lipa70a” benchmarks: CPU looks 

worse than GPU when population size > 200, it becomes 

around 2.3x time of GPU at problem size =60 and N= 600 and 

it becomes around 2.5x time of GPU at problem size = 70 and 

population size N= 600, as shown in Fig. 13. 

6) Fig. 14: shows the worst CPU time state when 

population size = 600, it becomes around 2x GPU time and it 

increases at a significant rate when the problem size increases. 

B. Second Test 

Table II presents a test set using a group of common QAP 
benchmarks in size range (12 - 70) and population size N =600. 
After inserting the proposed tested method into the whole 
Genetic Algorithm program, we will show their elapsed CPU 
and GPU time after 2000 generations then show the best 
solution found in both CPU and GPU. Also, measure Average 
Percent Deviation to measure how much the solution is closed 
to best known solution (BKS), as shown in Equation. 2. 

    
             

   
             (2) 

 

Fig. 14. CPU and GPU Time when Increased Problem Size and N=600. 
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TABLE II. SOLUTIONS AND ELAPSED TIME FOR CPU AND GPU 

Problem Instances 
Avg. Whole CPU 

program time 

Avg. Whole GPU 

program time 
CPU solution GPU solution Optimal solution CPU APD GPU APD 

Esc16a 13112.34 22242.32 68 68 68 0 0 

Esc16b 7565.65 22133.45 292 292 292 0 0 

Esc16c 8301.25 21650.29 160 160 160 0 0 

Esc16d 8986.33 21722.73 16 16 16 0 0 

Esc16e 8227.89 22620.11 28 28 28 0 0 

Esc16g 17005.75 21929.62 26 26 26 0 0 

Esc32g 29679.09 31093.71 6 6 6 0 0 

Had12 4577.27 19788.06 1652 1652 1652 0 0 

Had14 5973.67 20853.74 2724 2724 2724 0 0 

Had16 14555.79 21911.14 3720 3726 3720 0 0 

Lipa20a 11250.61 24875.72 3797 3809 3683 0.03 0.03 

Lipa30a 51688.26 34824.34 13555 13565 13178 0.03 0.03 

Lipa40a 60049.76 48419.51 32340 32346 31538 0.03 0.03 

Lipa50a 70703.40   65243.23 63476 63557 62093 0.02 0.02 

Lipa60a 142518.61 85710.54 109388 109429 107218 0.02 0.02 

Lipa70a 133348.29 110122.11 172941 172894 169755 0.02 0.02 

Sko42 95743.75 51448.87 16900 17286 15812 0.07 0.09 

Sko49 124436.57 62790.45 26719 27317 23386 0.14 0.17 

Sko56 176624.76 77348.33 37858 38412 34458 0.1 0.11 

Sko64 215862.65 98184.77 53072 53504 45736 0.16 0.17 

The proposed crossover and mutation give the optimal 
solution with the first ten benchmarks with problem sizes from 
12 to 32 in both sequential Genetic Algorithm and Parallel 
Genetic Algorithm, next ten benchmarks give a solution close 
to the optimal solution with a small error rate, CPU and GPU 
time are measured in milliseconds. 

VI. CONCLUSION 

After this study, we found that the GPU time is not affected 
much by increasing either population size or problem size 
compared to CPU time. GPU time was increased by a small 

rate ≈ of 0.61 when increasing population size and take a 

small rate ≈ of 4.5 when the size of the problem increases. 

Also, the CPU time shows its worst when the population size = 
600, it becomes around 2x GPU time, and it increases at a 
significant rate when the problem size increases. 

This paper concentrates on applying proposed GA to QAP, 
which in turn, gives a successful result in finding optimal 
solutions or solutions near to optimal. 

Also, this paper applies proposed GA in the parallel 
environment which shows a good result in execution time 
enhancement. As mentioned before, the proposed solution uses 
a large population size; therefore, a lot of synchronous threads 
will be needed. So, as future works, we can increase the 
number of threads by increasing the size of the screen card 
(NVIDIA). Furthermore, the proposed PGA can be generalized 

to cover other optimization problems such as TSP (traveling 
salesman problem) or VRP (Vehicle routing problem). 

As a future work we try to enhance some drawbacks that 
make algorithm slower such as sequential parent selection, it 
needs to convert to be work in parallel environment. 
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