
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

577 | P a g e

www.ijacsa.thesai.org

Parallel Improved Genetic Algorithm for the

Quadratic Assignment Problem

Huda Alfaifi
1

College of Computer & Information Sciences

Al-Imam Mohammad Ibn Saud Islamic University

Dept. of Computer Science, Riyadh, Saudi Arabia

Yassine Daadaa
2

College of Computer & Information Sciences

Al-Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Saudi Arabia

Abstract—Quadratic Assignment Problem is one of the most

common combinatorial optimization problems that represents

many real-life problems. Many techniques are applied to solve

Quadratic Assignment Problem, these include exact, heuristic,

and metaheuristic methods. A Genetic Algorithm is a powerful

heuristic approach used to find optimal solutions or near-to-

optimal for Quadratic Assignment smelborp. In this paper, we

developed a Genetic Algorithm with a new crossover operator

with new technology closer to that found in nature without a

crossover point and a new suggested intelligent mutation

operator, then we developed a Parallel Genetic Algorithm using

the same crossover and mutation. The sequential Genetic

Algorithm will be implemented in the Central Processing Unit

(CPU), and the Parallel Genetic Algorithm will be implemented

in the Graphical Processing Unit (GPU). This paper presents two

comparisons, first calculates elapsed time for crossover,

mutation, and selection in both CPU and GPU, then compares

the results. This comparison clearly shows the enhancement

degree of computation time in the parallel environment, which is

around half the time executed in the sequential environment.

The second comparison, iterates these operators into several

generations, using twenty benchmark instances reported in

Quadratic Assignment Problem Library with sizes from (12-70),

population size equal to 600, the number of generations equal to

2000, and the maximum number of parallel threads will be 600.

Proposed crossover and mutation give the optimal solutions with

ten benchmarks with problem sizes from 12 to 32 in both

Sequential Genetic Algorithm and Parallel Genetic Algorithm,

the next ten benchmarks give solutions closed to the optimal

solution with a small error rate.

Keywords—Component; Quadratic Assignment Problem

(QAP); Genetic Algorithm (GA); Parallel Genetic Algorithm

(PGA); Sequential Genetic Algorithm (SGA); Central Processing

Unit (CPU); Compute Unified Device Architecture (CUDA);

Quadratic Assignment Problem Library (QAPLIB); Best Known

Solution (BKS); Average Percent Deviation (APD)

I. INTRODUCTION

The Quadratic Assignment Problem (QAP) is one of the
most common combinatorial optimization problems that
represents many real-life problems. The QAP involves the
assignment of n facilities that have flows (weights) among
them to n possible locations that also have distances among
them to achieve the minimum sum of the distances multiplied
by flows, this minimum sum will be reached by assigning high
facilities to nearby locations and small facilities to far
locations. The problem was first introduced as a mathematical

model for economic activities in 1957[1], then it was becoming
a fundamental and important problem to represent several
applications in different areas, such as computer backboard
wiring, locating clinics with a hospital, locating machine and
electronic components, assignment of buildings in a university
campus, etc.

The quadratic assignment problem (QAP) consists of n
facilities and n possible locations, exactly one facility for each
location. For each pair of facilities, a flow matrix, F = [is
defined, which consists of flow values that must be required to
move from facility i to facility j. Also, for each pair of
locations, a distance matrix, D = [is defend and it consists
of distance values between location k to location l. The
assignment of facility i is not independent of other
assignments, so when assigning facility i to location k we must
consider the assignment for all other facilities that have
nonzero relationships with facility i. Let

)}(),.......,2(),1({ naaaa 
 be an assignment, where a(i)

represents the location of the facility i. The problem is to assign
to each location exactly one facility to minimize the cost of the
objective function as shown in Equation. 1.


 


n

i

n

j

jaiaija dfZ
1 1

)()(

 (1)

Since the solution is derived from n! possible assignments,
it makes the problem impossible to solve in polynomial time
with moderate problem size, even with modern computers.

The QAP solving methods can be categorized into three
main classifications: exact methods, heuristic methods, and
meta-heuristic methods. The exact methods give the exact
optimal solution, but the drawback of such methods is the long
computational time that makes the solution impossible.
Therefore, the problem was restored to be solved using
heuristics and meta-heuristic methods which overcome the
problem of long computational time, but they also have their
drawback. Heuristics and meta-heuristic methods do not
guarantee to provide the exact optimal solution, but they
instead provide a good solution, near to optimal solution, in
reasonable computational time. Genetic algorithms, simulated
annealing, tabu search, artificial neural network, etc., are some
well-known heuristic methods, and genetic algorithm is
considered as one of the best heuristic methods.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

578 | P a g e

www.ijacsa.thesai.org

A Genetic Algorithm (GA) provides individual candidate
solutions that do not hold any dependencies between them, so,
it will be easy to implement such an algorithm in parallel to get
a more considerable speedup.

This paper uses a parallelism concept which in turn
becomes an effective way to simplify the difficult problems
and reduce its computational time. Additionally, GA is a
popular effective heuristic approach in both computation time
and solution quality. So, they have motivated us to take the
advantage of both GA and parallelism to solve that difficult
problem.

This work exploits the recent improvement in the graphical
processing unit (GPU) which is expanded to include parallel
computation rather than just graphical purpose. So, we will
propose a solution for QAP using a proposed genetic algorithm
with enhancement in crossover and mutation. These
enhancements are suggested new crossover operator with new
technology which closer to that found in nature without
crossover point and new intelligent mutation operator which in
turn improve solution quality.

II. BACKGROUND AND RELATED WORK

 Genetic algorithms were first invented on QAP by John
Holland at the University of Michigan in 1975[2]. The first
applied for GA in QAP was in 1994 by Fleurent and
Ferland[3]. GA is considered as a type of stochastic and local
search technique, which are based on three natural operators:
selection, crossover, and mutation. Also, there are many recent
efficient algorithms, we will present a brief study about them to
explore the new techniques and take advantage of them.

Radomil Matousek et al [4] presented Metaheuristic
Optimization Using HC12 Algorithm. It is categorized as a
parallel algorithm implemented on GPU. It used HC12 which
is a Genetic Algorithm using binary encoding which depends
on the next population is a population from the current solution
neighborhood. This algorithm gives the optimal solutions for 8
problems with sizes (12 -32) in a short run time of an average
of 1.89 seconds.

Takeshi Okano et al [5] proposed variant k-opt local search
(vKLS) which is categorized as a sequential algorithm in a
CPU environment, vKLS used a variable depth approach that
depends on exchanging multiple nodes at a time rather than
just two nodes. They combine two strategies best-improvement
move and the first-improvement move. vKLS tested on 48
QAPLIB instances with a range of 20 - 150 in a fixed period
equal to 60 seconds.

Ensieh et al improved the performance of the (NIFLS) Fast
Local Search algorithm in the sequential environment by
adding Temperature characteristics from simulated annealing
to conduct the search to explore the search space wider[6]. The
algorithm gets 0.26 APD in average execution time 1207
seconds.

Erdener et al developed ILS (Iterated Local Search)
algorithm using GPU parallelism[7]. They implement the
multi-start technique, use the delta function instead of

calculating object function for each neighbor and design a
mutation operator to escape the local optimum. The algorithm
works 6.31 to 11.93 times faster than sequentially one.

Omar Abdelkaf et al. [8] suggested Parallel iterative Tabu
Search (PITS) by parallelizing an existing TS algorithm called
Ro-Ts using a grid of 5000 CPUs. PITS works with 350
iterations inside the process, 100 global iterations, and 40
processes. PITS gives an average standard deviation equal to
12.19 in average time equal to 13.01 minutes with problems
with size 343.

Also Emrullah et al presented an algorithm called the
Parallel Simulated Annealing method with multi-start
technique (PMSA) using GPU parallelism[8]. PMSA starts the
next SA algorithm with the best previous generated value
rather than a random permutation, this technique is called the
multi-start approach. It provides the optimal solution for 196
instances except for 14 instances in time less than 60 seconds.

Lopez et al presented GA-CPLS algorithm which is a type
of CPU level parallelism[9]. CPLS operation depends on a
group of nodes called explorers. GA-CPLS performed the
Genetic algorithm as the main explorer to generate the
population as a head node, other explorer nodes execute the
Extremal Optimization Algorithm and robust Tabu search. GA-
CPLS gives 0.054 APD on an average time of 82.7 minutes.

Seyda et al improved sequential Hybrid GA called
IHGA[10]. Its idea takes from combining genetic algorithm,
simulated annealing algorithm, and the greedy algorithm. It
enhances the solution by 13.33, 7.94, 2.50, and 0.29 percent
better than the greedy algorithm, DA, classical GA, and SA
respectively.

Soukaina et al developed a Hybrid Chicken Swarm
Optimization (HCSO)[11]. HCSO applies GPU level
parallelism and integrates Chicken Swarm Optimization CSO
with Greedy Randomized Adaptive Search Procedure GRASP.
GRASP run with a 2-opt Local Search for constructing the
initial population. HCSO finds the optimal solution for 85% of
30 QAP instances.

Mohamed et al enhanced Whales Optimization Algorithm
by integrating it with Tabu Search (WAITS)[12]. WAITS was
applied in a sequential environment, and it enhances the speed
of convergence and local search inside the Whales Algorithm
(WA). WAITS provides the optimal solutions for 86 instances
out of 122 instances.

Previous studies explored many recent heuristics and
metaheuristics algorithms in solving QAP either in parallel or
in a sequential environment. Parallelism can be designed at the
CPU level or GPU level. As we see from reviewed algorithms,
parallel algorithms designed by GPU produced better results in
computational time and algorithms like GA will provide a
high-quality solution in a reasonable time. This will motivate
us to design a new GA with a new crossover operator with new
technology closer to that found in nature, it depends on
arranging genes in a specific way without the need for a
crossover point, and also suggested an intelligent mutation
operator in the GPU environment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

579 | P a g e

www.ijacsa.thesai.org

The proposed method will be implemented and tested in a
sequential environment and then in parallel to compare results
and to show the degree of parallel improvement using
benchmark instances available in QAPLIB[13].

This paper was organized into sections, each section treats
a part of our works. The second section shows the
methodology of our works, the next section illustrates the
overall structure of the proposed algorithm, the fourth section
analyzes and explores the results, and finally the conclusion.

III. METHODOLOGY

A. Population Initialization Method

Population sets will be initialized randomly concerning the
problem size. Additionally, make sure this population does not
have incomplete or invalid individuals and all nodes are
existing and forming a complete solution. Also, be sure the
individual does not have redundant nodes or invalid nodes.

B. Selection Method

The proposed GA applied the selection to two places in the
algorithm. First, parents’ selection is called the stochastic
remainder selection method. It works by assigning a
probability to every individual to be chosen as a parent. This
method takes each individual’s fitness then divides it by
average fitness, the integer part of the division represents the
number of appearances of the individual as a parent, and the
remaining fractional part is used to stochastically fill the
remaining parents to stochastic places.

The second application of selection was after crossover
operation when deciding about if a current parent will stay for
the next generation or be replaced by its best offspring. This
type of survivor selection is called the steady-state approach.

C. Crossover Operator

In this paper, we propose a new crossover method that
produces an individual who inherits from parent's
characteristics as much as possible. This method will preserve
the order of the inherited nodes from both parents without
making a crossover point.

The following example will illustrate the proposed
crossover method by using the facility matrix and distance
matrix that is used in the “Hud12” benchmark. If we have two
parents parent1 with cost = 1956 and parent2 with cost = 1936
each with size 12, as shown in Fig. 1 and Fig. 2, and offspring
will be as shown in Fig. 3.

Parent1:

5 4 12 6 10 9 7 1 8 3 11 2

Fig. 1. Crossover _ parent1

Parent2:

12 6 9 2 4 11 10 1 5 8 7 3

Fig. 2. Crossover _ parent2.

Offspring:

5 4 12 6 10 9 2 11 1 8 7 3

Fig. 3. Crossover_offspring.

There are two indexes (index1= 0) which point to the first
index in parent1, (index2=size-1=11) which point to the last
index in parent2. Start filling offspring by these two indexes, at
the same time, as shown in Fig. 4.

Step1: index1=0, index 2=11, offspring will be:

5 3

Fig. 4. Crossover First Step.

5 is the first node in parent1, 3 is the last node in parent2,
increment index 1, decrement index2, index1=1, index2=10.

Step2: index1=1, index2=10, before inserting must check if
the new node exists in new offspring if not just insert it, if exist
go to the next node in the corresponding parent, offspring will
be , as shown in Fig. 5.

5 4 7 3

Fig. 5. Crossover Second Step.

4 is the second node in parent1, 7 is the second node from
the last in parent2, increment index 1, decrement index2,
index1=2, index2=9.

Step3: index1=2, index 2= 9, before inserting must check if
the new node exists in new offspring if not just insert it, if exist
go to the next node in the corresponding parent, offspring will
be as shown in Fig. 6:

5 4 12 8 7 3

Fig. 6. Crossover Third Step.

12 is the third node in parent1, 8 is the third node from the
last in parent2, increment index1, decrement index2, index1=3,
index2=8.

Step4: index1=3, index 2= 8, before inserting must check if
a new node exists in new offspring if not just insert it, if exist
go to the next node in the corresponding parent, offspring will
be , as shown in Fig. 7.

5 4 12 6 1 8 7 3

Fig. 7. Crossover Fourth Step.

6 is the fourth node in parent1, 5 is the fourth node from the
last in parent2 but 5 exists in offspring, so go to the fifth node
from the last in parent2 which is 1 then check if doesn’t exist in
offspring insert 1, increment index1, decrement index2,
index1=4, index2=7.

Step5: index1=4, index 2= 7, before inserting must check if
the new node exists in new offspring if not just insert it, if
exists go to the next node in the corresponding parent,
offspring will be as shown in Fig. 8.

5 4 12 6 10 11 1 8 7 3

Fig. 8. Crossover Fifth Step.

Ten (10) is the fifth node in parent1, 10 is the sixth node
from the last in parent2 but 10 exists in offspring, so go to the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

580 | P a g e

www.ijacsa.thesai.org

seventh node from the last in parent2 which is 11 then check if
does not exist in offspring insert 11, increment index 1,
decrement index2, index1=5, index2=6.

Step 6: index1=5, index 2= 6, before inserting must check
if the new node exists in new offspring if not just insert it, if
exist go to the next node in the corresponding parent, offspring
will appear as shown in Fig. 9.

5 4 12 6 10 9 2 11 1 8 7 3

Fig. 9. Crossover Sixth Step.

Nine (9) is the sixth node in parent1, 4 is the eighth node
from the last in parent2 but 14 exists in offspring, so go to the
ninth node from the last in parent2 which is 2 then check if
doesn’t exist in offspring insert 2. The cost for the generated
offspring = 1868 which is better than the cost of parents.

Crossover must be simple as possible to achieve maximum
utilization of GPU benefits. The generated offspring was
produced by simple crossover but inherit many features from
parents selected by a strong selection method.

D. Mutation Operators

The proposed GA uses a new mutation operator that works
as scanning the individual to find the maximum product (flow
* distance) located between facility(i) to the facility (i+1). Then
swap facility (i+1) with random node from the individual.

This proposed mutation can be illustrated as shown in the
following example: The following individual belongs to the
“Had12” benchmark with cost = 1902, as shown in Fig. 10.

4 6 3 1 8 2 9 10 7 12 5 11

Fig. 10. Individual before Mutation.

After applying the mutation operator, the cost will be =
1834, and the individual will be as shown in Fig. 11.

4 6 3 1 7 2 9 10 8 12 5 11

Fig. 11. Individual after Mutation.

IV. STRUCTURE OF THE PROPOSED PARALLEL GENETIC

ALGORITHM

The following algorithm shows the general structure of the
proposed PGA, followed by a system diagram to represent the
PGA structure, as shown in Fig. 12.

PGA exploited graphical processing unit (GPU) for non-
graphical parallel computation, the proposed algorithm uses a
large single population of individuals which is distributed
among several threads in GPU. Each thread performs three GA
operators Crossover, Mutation Survivor, and Selection because
they are suitable to implement in the parallel environment as
shown in Fig. 12. This means, does not need to force threads to
communicate between each other or lock other threads, or wait
for other threads until unlocking, this parallelism technique
maintains data integrity and consistency also threads’ waiting
time is almost non-existent. The proposed algorithm was
shown in Table I.

TABLE I. ALGORITHM1

Algorithm1: proposed Parallel Genetic Algorithm

Population Size= N

Problem Size = n

Number of threads =N

Termination condition=2000 generation

Create random Population with size N

while termination condition is not reached do

 calculate fitness values

 Reorder individuals according to stochastic probability

 For each thread i , in parallel do

 Select parent 1 =individual i

 Select parent 2 = individual i+1,

 For each facility j in offspring

 offspring = Assign facility j from left of individual i

 offspring =Assign facility n - j+1 right of individual i+1

 Find maximum product (flow * distance) between facility(k) to

facility (k+1) in individual i

 offspring = swap facility (k+1) with random picked facility.

 If offspring cost < parent 1 cost

 Replace (individual i = offspring)

end while

Fig. 12. Overall Proposed PGA Structure.

V. RESULT AND DISCUSSION

This section will show an analysis, discussion, and
illustration of the output and results of the proposed method in
this paper, results are going to be analyzed in two ways. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

581 | P a g e

www.ijacsa.thesai.org

first analysis will present six tables that show elapsed time for
GPU and CPU during the execution of proposed crossover,
mutation, and selection. The second analysis presents a test of
the proposed method in GPU and CPU after embedding it
inside several iterations (generations).

The proposed method was tested in CPU of type intel®
core™ i7-8565U CPU @ 1.80GHz (8 CPUs) and GPU of kind
NVIDIA GeForce MX250 using both CUDA (Compute
Unified Device Architecture) and C++ programming
languages.

The following four figures show a comparison between
CPU and GPU using common QAP benchmarks, while N
means the size of population, CPU and GPU time is measured
in milliseconds.

A. First Test Illustration

This test shows elapsed time for GPU and CPU during the
execution of proposed crossover, mutation, and selection.

Fig. 13. CPU and GPU Time Illustration with Problem Sizes.

1) For the “lipa20a” benchmark: “lipa20a” benchmark

with problem size equal to 20. We notice that when population

size equal to 100, 200, 300, and 400 CPU show better results

than GPU. Here the problem size is small, and we will only

see the enhancement in GPU when the size of the problem and

population increase. After increasing the population size to

600 we will observe the GPU enhancement and CPU time

become approximately twice the time of GPU. Fig. 13 shows a

graphical representation of this problem.

2) For the “lipa30a” benchmark: The enhancement on

GPU begins at N=300, then the CPU time will take an

increasing rate when population size increases. Compared to

GPU time, GPU time does not take a significantly increasing

rate while the population size increases, it just took a small

increasing rate ≈ of 0.56 milliseconds, as shown in

Figure ‎IV.1. CPU continues increasing until it reaches more

than 2x time of GPU time at N= 600. Fig. 13 Shows a

graphical representation of this problem.

3) For the “lipa40a” benchmark: The improvement on

GPU starts when N=300, then the CPU time will increase

when population size increases until it reaches nearly 2x the

time of GPU at N= 600. On the other hands, GPU time takes a

small increasing rate ≈ of 0.58 while the population size

increases. Fig. 13 shows a graphical representation of this

problem.

4) For the “lipa50a” benchmark: shows the same result

as “lipa40”. The CPU looks better than GPU when N=300, but

after that, it becomes worse when N>300. CPU becomes

around 2x time of GPU at N= 600. As we noted earlier GPU

time is not affected much by population increase, as shown in

Fig. 13.

5) For “lipa60a” and “lipa70a” benchmarks: CPU looks

worse than GPU when population size > 200, it becomes

around 2.3x time of GPU at problem size =60 and N= 600 and

it becomes around 2.5x time of GPU at problem size = 70 and

population size N= 600, as shown in Fig. 13.

6) Fig. 14: shows the worst CPU time state when

population size = 600, it becomes around 2x GPU time and it

increases at a significant rate when the problem size increases.

B. Second Test

Table II presents a test set using a group of common QAP
benchmarks in size range (12 - 70) and population size N =600.
After inserting the proposed tested method into the whole
Genetic Algorithm program, we will show their elapsed CPU
and GPU time after 2000 generations then show the best
solution found in both CPU and GPU. Also, measure Average
Percent Deviation to measure how much the solution is closed
to best known solution (BKS), as shown in Equation. 2.

 (2)

Fig. 14. CPU and GPU Time when Increased Problem Size and N=600.

0

10

20

30

40

50

60

70

80

90

100

N=100 N=200 N=300 N=400 N=500 N=600

population size

CPU lipa20a GPU lipa20a CPU lipa30a

GPU lipa30a CPU lipa40a GPU lipa40a

CPU lipa50a GPU lipa50a CPU lipa60a

GPU lipa60a CPU lipa70a GPU lipa70a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

582 | P a g e

www.ijacsa.thesai.org

TABLE II. SOLUTIONS AND ELAPSED TIME FOR CPU AND GPU

Problem Instances
Avg. Whole CPU

program time

Avg. Whole GPU

program time
CPU solution GPU solution Optimal solution CPU APD GPU APD

Esc16a 13112.34 22242.32 68 68 68 0 0

Esc16b 7565.65 22133.45 292 292 292 0 0

Esc16c 8301.25 21650.29 160 160 160 0 0

Esc16d 8986.33 21722.73 16 16 16 0 0

Esc16e 8227.89 22620.11 28 28 28 0 0

Esc16g 17005.75 21929.62 26 26 26 0 0

Esc32g 29679.09 31093.71 6 6 6 0 0

Had12 4577.27 19788.06 1652 1652 1652 0 0

Had14 5973.67 20853.74 2724 2724 2724 0 0

Had16 14555.79 21911.14 3720 3726 3720 0 0

Lipa20a 11250.61 24875.72 3797 3809 3683 0.03 0.03

Lipa30a 51688.26 34824.34 13555 13565 13178 0.03 0.03

Lipa40a 60049.76 48419.51 32340 32346 31538 0.03 0.03

Lipa50a 70703.40 65243.23 63476 63557 62093 0.02 0.02

Lipa60a 142518.61 85710.54 109388 109429 107218 0.02 0.02

Lipa70a 133348.29 110122.11 172941 172894 169755 0.02 0.02

Sko42 95743.75 51448.87 16900 17286 15812 0.07 0.09

Sko49 124436.57 62790.45 26719 27317 23386 0.14 0.17

Sko56 176624.76 77348.33 37858 38412 34458 0.1 0.11

Sko64 215862.65 98184.77 53072 53504 45736 0.16 0.17

The proposed crossover and mutation give the optimal
solution with the first ten benchmarks with problem sizes from
12 to 32 in both sequential Genetic Algorithm and Parallel
Genetic Algorithm, next ten benchmarks give a solution close
to the optimal solution with a small error rate, CPU and GPU
time are measured in milliseconds.

VI. CONCLUSION

After this study, we found that the GPU time is not affected
much by increasing either population size or problem size
compared to CPU time. GPU time was increased by a small

rate ≈ of 0.61 when increasing population size and take a

small rate ≈ of 4.5 when the size of the problem increases.

Also, the CPU time shows its worst when the population size =
600, it becomes around 2x GPU time, and it increases at a
significant rate when the problem size increases.

This paper concentrates on applying proposed GA to QAP,
which in turn, gives a successful result in finding optimal
solutions or solutions near to optimal.

Also, this paper applies proposed GA in the parallel
environment which shows a good result in execution time
enhancement. As mentioned before, the proposed solution uses
a large population size; therefore, a lot of synchronous threads
will be needed. So, as future works, we can increase the
number of threads by increasing the size of the screen card
(NVIDIA). Furthermore, the proposed PGA can be generalized

to cover other optimization problems such as TSP (traveling
salesman problem) or VRP (Vehicle routing problem).

As a future work we try to enhance some drawbacks that
make algorithm slower such as sequential parent selection, it
needs to convert to be work in parallel environment.

REFERENCES

[1] T. Koopmans and M. Beckmann, “Assignment problems and the
location of economic activities,” Econometrica: Journal of the
Econometric Society, vol. 25, no. 1. pp. 53–76, 1957, doi:
10.2307/1907742.

[2] M. Melanie, “An Introduction to Genetic Algorithms,” Cambridge,
Massachusetts London, England, Fifth printing, 3, pp. 62–75, 1999.

[3] C. Fleurent and J. Ferland, “Genetic hybrids for the quadratic
assignment problem,” Anon. DIMACS Ser. Discret. Math. Theor.
Comput. Sci., vol. 16, pp. 173–187, 1994.

[4] R. Matousek, L. Dobrovsky, and J. Kudela, “The quadratic assignment
problem: Metaheuristic optimization using HC12 algorithm,” GECCO
2019 Companion - Proc. 2019 Genet. Evol. Comput. Conf. Companion,
pp. 153–154, 2019, doi: 10.1145/3319619.3322088.

[5] T. Okano, K. Katayama, K. Kanahara, and N. Nishihara, “A Local
Search Based on Variant Variable Depth Search for the Quadratic
Assignment Problem,” 2018 IEEE 7th Glob. Conf. Consum. Electron.
GCCE 2018, pp. 390–391, 2018, doi: 10.1109/GCCE.2018.8574497.

[6] E. Mohassesian and B. Karasfi, “A new method for improving the
performance of fast local search in solving QAP for optimal exploration
of state space,” 7th Conf. Artif. Intell. Robot. IRANOPEN 2017, pp. 64–
72, 2017, doi: 10.1109/RIOS.2017.7956445.

[7] E. Ozcetin and G. Ozturk, “A Parallel Iterated Local Search Algorithm
on GPUs for Quadratic Assignment Problem,” vol. 4, no. 2, pp. 123–
128, 2018.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

583 | P a g e

www.ijacsa.thesai.org

[8] O. Abdelkafi, B. Derbel, and A. Liefooghe, “A Parallel Tabu Search for
the Large-scale Quadratic Assignment Problem,” 2019 IEEE Congr.
Evol. Comput. CEC 2019 - Proc., pp. 3070–3077, 2019, doi:
10.1109/CEC.2019.8790152.

[9] J. Lopez, D. Munera, D. Diaz, and S. Abreu, “On integrating population-
based metaheuristics with cooperative parallelism,” Proc. - 2018 IEEE
32nd Int. Parallel Distrib. Process. Symp. Work. IPDPSW 2018, pp.
601–608, 2018, doi: 10.1109/IPDPSW.2018.00100.

[10] S. M. Turkkahraman and D. Oz, “An Improved Hybrid Genetic
Algorithm for the Quadratic Assignment Problem,” pp. 86–91, 2021,
doi: 10.1109/ubmk52708.2021.9558978.

[11] S. C. Bourki Semlali, M. Essaid Riffi, and F. Chebihi, “Hybrid chicken
swarm optimization with a GRASP constructive procedure using multi-

Threads to solve the quadratic assignment problem,” Int. Conf.
Multimed. Comput. Syst. -Proceedings, vol. 2018-May, 2018, doi:
10.1109/ICMCS.2018.8525992.

[12] M. Abdel-Basset, G. Manogaran, D. El-Shahat, and S. Mirjalili,
“Integrating the whale algorithm with Tabu search for quadratic
assignment problem: A new approach for locating hospital
departments,” Appl. Soft Comput. J., vol. 73, pp. 530–546, 2018, doi:
10.1016/j.asoc.2018.08.047.

[13] R. E. Burkard, E. Çela, S. E. Karisch, and F. Rendl, “QAPLIB - A
Quadratic Assignment Problem Library,” J. Glob. Optim., vol. 10, no. 4,
pp. 391–403, 1997.

