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Abstract—As one of the important components of mechanical 

equipment, rolling bearing has been widely used, and its motion 

state affects the safety and performance of equipment. To 

enhance the fault feature information in the bearing signal and 

improve the classification accuracy of support vector machine, a 

hybrid fault diagnosis method based on wavelet packet energy 

spectrum and SSA-SVM is proposed. Firstly, the wavelet packet 

decomposition is used to decompose vibration signals to generate 

frequency band energy spectrum, and the bearing characteristic 

information is constructed from the energy spectrum to extract 

and enhance the bearing fault characteristic information. 

Secondly, the penalty and kernel parameters are optimized 

globally by sparrow search algorithm to improve the 

classification accuracy of support vector machine, and then 

construct the WPES-SSA-SVM model. Finally, the proposed 

model is used to diagnose and analyze the measured signals. 

Compared with BP, ELM and SVM, the effectiveness and 

superiority of the proposed method are verified. 

Keywords—Wavelet packet energy spectrum; sparrow search 

optimization; support vector machine; rolling bearing 

I. INTRODUCTION 

With the deep integration of new generation information 
technology and manufacturing industry, the mechanical 
equipment is becoming more and more complex, accurate and 
intelligent. With the continuous operation of mechanical 
equipment, its running state and key parts will gradually 
degenerate, and the probability of failure and shutdown will 
gradually increase, which will affect the normal production 
and processing of enterprises. As one of the important 
components of machinery, rolling bearings are widely used 
because of their convenient use and maintenance, reliable 
operation and good starting performance [1]. Using the 
characteristics of bearings, the sliding friction between parts is 
transformed into rolling friction, which improves the 
production efficiency of the equipment. Once damaged, it will 
lead to problems in the operation of mechanical equipment, 
reduce the working efficiency, and even cause the functional 
failure of rotating machinery, resulting in serious economic 
losses and personal casualties[2-3]. Therefore, it is of great 
practical value to timely find and take corresponding measures 
for the faults of rolling bearings, and it has become a research 
hotspots in intelligent fault diagnosis. 

In recent years, fault diagnosis methods for rolling 
bearings have been emerging and developing[4-7]. Fault 
diagnosis methods for rolling bearings have mushroomed and 
developed continuously. In general, the fault diagnosis 

techniques of rolling bearings include: based on vibration 
signal[8], acoustic signal[9], electrical signal[10] and 
temperature signal[11]. Among them, vibration signal is more 
widely used, more intuitive and simple, because it can best 
represent the fault characteristic information in the process of 
bearing operation. 

As the rapid and continuous development of machine 
learning and artificial intelligence, more and more researchers 
combine bearing fault diagnosis with it, and the intelligent 
fault diagnosis methods and systems are gradually improved. 
The common fault identification methods include deep 
learning (DL)[12], artificial neural network (ANN)[13], 
decision tree (DT)[14] and support vector machines 
(SVM)[15,16]. Literature [17] proposed the improved BP 
neural network algorithm Levenberg-Maquardt algorithm in 
order to improve the diagnostic efficiency of BP neural 
network. Literature [18] proposed a fault extraction method 
based on modified Fourier mode decomposition (MFMD) and 
multi-scale displacement entropy, and combined with BP 
neural network. Experiments show that this method has high 
recognition accuracy for different types of faults. In literature 
[19], wavelet packet energy and decision tree algorithm are 
combined to extract faults using wavelet packet energy, and 
then faults are identified and classified using decision tree 
model. In view of the low fault diagnosis rate of rolling 
bearings, the method of wavelet packet decomposition and 
gradient lifting decision tree (GBDT) was proposed in 
literature [20], and the extracted fault feature data set was 
input into the classification model of gradient lifting decision 
tree for fault diagnosis. In literature [21], scale invariant 
feature transform (SIFT) and kernel principal component 
analysis (KPCA) were used to extract faults, and SVM 
classifier was combined to achieve fault classification. 
Literature [22] applied SVM to fault state identification of 
rolling bearings and achieved good results. Literature [23] 
proposed a rolling bearing fault diagnosis method optimized 
by simplex evolutionary algorithm and SVM. Literature [24] 
diagnoses fault types by reducing high-dimensional data and 
using LSSVM. 

At present, various intelligent optimization algorithms 
have emerged one after another, such as particle swarm 
optimization (PSO), whale optimization algorithm (WOA), ant 
colony optimization (ACO), genetic algorithm (GA), sparrow 
search algorithm (SSA), etc., and the combination and 
improvement of other algorithms have also achieved good 
results[25]. In reference [26], PSO was used to optimize SVM 
to realize the identification of multiple fault states of rolling 
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bearings. In [27], gray wolf optimization algorithm (GWO) 
was used to optimize the kernel function parameters of SVM 
globally, so as to achieve the best classification performance 
of SVM and improve the accuracy of classification 
recognition. Aiming at the influence of mixed noise of bearing 
vibration signals on useful information extraction, a 
optimization classifier based on multi-scale permutation 
entropy and cuckoo search algorithm (CS) was proposed in 
literature [28], which used CS to optimize the global optimal 
solution of SVM. Literature [29] proposed a method based on 
quantum behavior particle swarm optimization algorithm 
(QPSO), multi-scale displacement entropy and SVM to 
construct fault feature sets to realize fault identification of 
rolling bearings. Compared with single method for fault 
diagnosis, the combinatorial optimization methods have 
higher accuracy, but at the same time, different optimization 
methods have different problems, for example, BP model must 
be learned through a large amount of sample data, even if has 
been optimized the BP network parameters globally by 
optimization algorithm, the model is still not ideal in a small 
sample environment. SVM parameters can be optimized by 
PSO and other optimization algorithms to improve the 
classification accuracy, but this algorithm is prone to fall into 
local extremum. Therefore, combining the advantages of each 
algorithm and joint application to improve the effectiveness of 
rolling bearing status identification and fault diagnosis is the 
current research trend. 

To improve the accuracy of bearing fault diagnosis, this 
paper firstly uses wavelet packet energy spectrum to extract 
energy spectrum feature vectors of bearing vibration signals, 
which are used as the input of SVM. Meanwhile, SSA 
algorithm is used to optimize the parameters of SVM globally, 
so as to build a hybrid model. The feasibility and effectiveness 
of the model are verified by experiments. 

The rest parts of this paper are given as lists: Section 2 
presents the preliminaries. Section 3 describes of the proposed 
method. Section 4 details the experimental setup. Section 5 
analyzes and discusses the experimental results. Finally, 
Section 6 outlines the main conclusions. 

II. PRELIMINARIES 

A. Wavelet Packet Energy Spectrum 

Wavelet packet decomposition can decompose signals into 
different frequency bands without leakage and overlap 
according to any time-frequency resolution. After wavelet 
packet transform, the information is intact and all frequencies 
are retained, which provides strong conditions for extracting 
the main information in the signal. This decomposition can be 
performed as many times as needed to obtain the desired 
frequency. 

Fig. 1 shows the schematic diagram of orthogonal wavelet 
packet decomposition of a signal. The original signal was 
denoted as   , and the two sub-bands     and     of layer 1 
can be obtained after wavelet packet decomposition through 
filters H and G. Decompose the two sub-components of the 
first layer respectively to obtain the four sub-bands    ,    , 
    and     of the second layer; By analogy, the sub-band of 
layer n can finally be obtained. 
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Fig. 1. Schematic Diagram of Wavelet Packet Decomposition. 

As can be seen from Fig.1, wavelet packet decomposition 
decomposes the decomposed frequency band several times, 
and re-decomposes the high frequency part without 
subdivision in the wavelet decomposition. In addition, 
according to the characteristics of the signal to be 
decomposed, the corresponding sub-frequency band can be 
adaptively selected to match the frequency spectrum of the 
signal. After wavelet decomposition, all the characteristic 
information, including the low frequency part and the high 
frequency part, can be preserved, which provides strong 
support for the feature information extraction of the signal. 

It can also be seen from Fig.1 that if there are too many 
decomposition layers, the dimension of the data to be 
processed will be increased and the unrestricted 
decomposition cannot continue. In practical application, it is 
necessary to select an appropriate decomposition level 
according to the actual situation. 

Wavelet packet energy spectrum enhances the stability of 
wavelet packet decomposition coefficient by extracting the 
energy of sub-band to construct feature vector. The wavelet 
packet frequency band energy is defined as follows: 

Using wavelet packet to decompose the original signal    
in n level, and 2n sub-frequency band can be decomposed. 
The energy calculation formula of sub-frequency band    is 
Formula 1. 

 (  )  ∑   
               (1) 

where,     is the coefficient of sub-frequency band   , 
             . 

Therefore, the wavelet packet frequency band energy 
spectrum is defined as Formula 2. 

   ,                    -            (2) 

B. Support Vector Machines 

SVM is a machine learning algorithm based on statistical 
learning theory, which can successfully deal with many data 
mining problems such as pattern recognition, classification 
and regression analysis. It shows many unique advantages in 
solving small sample, nonlinear and high-dimensional pattern 
recognition problems, and overcomes the problems of 
dimension disaster and over-learning to a large extent. 
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Based on the theory of minimum construction risk, support 
vector machine maximizes the distance between the elements 
closest to the hyperplane and the hyperplane. Its core is to 
establish the best classification hyperplane, so as to improve 
the generalization processing ability of learning classification 
machine. 

Taking binary classification as an example, its basic idea 
can be summarized as follows: first map the input vector to a 
high-dimensional feature space through some prior selected 
nonlinear mapping such as kernel function, and then seek the 
optimal classification hyperplane in the feature space, enables 
it to as much as possible to separate two classes of data points 
correctly, at the same time to separate two classes of data 
point furthest distance classification surface, as shown in 
Fig. 2. 

H1

H
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Input space

Kernel 
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Feature space γ 

 

Fig. 2. Classification Principle of SVM Method. 

In Fig. 2, square and triangle represent two types of 
samples respectively. H is the optimal classification 
hyperplane; H1 and H2 are straight lines that pass through the 
boundary points of the two types of samples and are parallel to 
H, and the distance between them γ is the interval. The 
optimal classification line requires that the classification line 
can not only correctly classify the two categories, but also 
maximize the interval. The vector closest to the optimal 
classification hyperplane is called the support vector. 

Assume the training sample set *     +          ; 
    

     *     +, where    is the input index,    is the 
output index,   is the sample number, and   is the 
characteristic dimension of the sample. In the case of linear 
divisibility, there is a hyperplane that separates the two types 
of samples completely, as shown in Formula 3. 

(   )                   (3) 

where,   (         ) is the weight vector of the 
training sample, which determines the direction of the 
hyperplane.   is the input vector;   is the distance between the 
hyperplane and the origin. 

Solving the optimal classified hyperplane is to find the 
optimal   and  , therefore, it can be summed up as the 
following quadratic programming problem: 

{
   

 

 
‖ ‖ 

   ,(    )   -          
            (4) 

In order to solve the quadratic programming problem of 
Formula 4, the Lagrange function   is introduced and the 
duality principle is used to transform the original optimization 
problem into Formula 5: 

{
    ( )  ∑    

 

 

 
   ∑ ∑           

   
 
   

 
   

    ∑     
 
                    

          (5) 

According to Formula 5, the optimal V is    
(  
    

      
 ) .Thus, the optimal weight vector    and the 

optimal value   can be calculated by Formula 6 and Formula 
7. 

   ∑   
     

 
                 (6) 

      ∑   
     

   
 
                (7) 

Then the optimal classification hyperplane is (    )  
    , and the optimal classification function is obtained. 

 ( )     (∑   
   (     )

 
      )                   (8) 

C. Sparrow Search Algorithm 

SSA realizes optimization based on the idea that swarm 
organisms in nature can obtain a better living environment 
through mutual cooperation[30]. The bionic principle is as 
follows: in order to obtain abundant food, the sparrow 
population is divided into explorers and followers in the 
process of foraging. The explorer in the sparrow population 
who finds abundant food sources is responsible for providing 
the foraging area and the direction of food sources for the 
population, and the followers is responsible for finding more 
food according to the location provided by the explorer. At the 
same time, individual sparrows will also monitor the behavior 
of other individuals and compete for supplies with high-
foraging peers. When the population is in danger, it will make 
anti predation behavior. The external sparrow will constantly 
adjust its position to move closer to an internal or adjacent 
partner to increase its own security. Therefore, the distribution 
of food in space can be regarded as the numerical value of 
function in three-dimensional space. The purpose of sparrow 
search is to find the global optimal value. 

The specific implementation process of sparrow search 
algorithm is as follows. In the process of searching for food, 
the randomly generated position matrix X of n sparrows in the 
d dimensional space is shown as follows: 

  

[
 
 
 
  
   

    
 

  
   

    
 

 
  
 

 
  
 

 
 

 
  
 ]
 
 
 

             (9) 

where n represents the number of sparrows, d represents 
the dimension of the variable of the problem to be optimized, 

  
 
 (                       ) is the position of the j 

sparrow in i-dimensional space. 
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The fitness values are calculated and sorted to determine 
the finders and entrants, and 10% of randomly selected 
individuals are scouters. Obtain the current optimal sparrow 
individual position, and the best fitness value. For the first 
generation of sparrows, the initial optimal is obtained. 

F [
 (,  

   
    

 -)
 

 (,  
   

    
 -)
]          (10) 

where f represents fitness values of individual sparrows. 

In constant iterative optimization process, the explorers in 
the sparrow population have two main tasks: looking for food 
and guiding the movement of the population. When the 
scouters feel dangerous, will alert the populations and guide 
the followers to a safe area. The location of the explorers is 
updated as follows: 

   
    {

   
     .

  

   
/          

   
                 

         (11) 

where    
  represents the position of the i-th sparrow in the 

j-th dimension of the t generation.   is a random number in 
the range of [0,1]; T represents the maximum number of 
iterations; Q is a random number that follows normal 
distribution; L represents a     matrix where each element 

is 1；  and    represents the alarm value and alarm 

threshold respectively,    ,   -,    ,     -. When 
      means that there are no predators around foraging at 
this time and the explorer can conduct extensive foraging 
operation. Conversely, it indicates that some sparrows in the 
group have found predators and send Danger Warnings to the 
rest, thus ensure that all sparrows can quickly move to a safe 
area to forage. 

Followers search for food by monitoring and following the 
explorers with the highest fitness. According to the sorting 
principle, when      , the individual fitness value is low, 
and these followers need to search other locations to improve 
the individual fitness value. Conversely, the sparrow will 
randomly find a location near the current optimal location for 
feeding. 

   
    {

     (
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     (   )              (13) 

where        represents the global worst position of the t-
th iteration;   

    is the best position of the t+1 generation 

explorer.   is a     dimensional matrix with each 
dimensional value randomly generated from 1 or -1. 

Individual sparrows will move to the search circle or other 
companions when they encounter danger during the foraging 
process. The method of updating the position of individual 
sparrows in this process is shown in Formula (14). 

   
    {

     
    |   

       
 |           

   
    (

|   
        

 |

(     )  
)             

        (14) 

where   is the step size control parameter, and it follows 

the normal distribution with mean value 0 and variance 1;   is 
the moving direction of the sparrow, and the value range is [-
1, 1];   is the minimum constant to avoid zero denominator; 

     
  represents the current global optimal location;    

represents the fitness value of sparrow i;    and    represent 

the current worst and best fitness values, respectively. 

III. PROPOSED MODEL 

To improve the fault diagnosis accuracy of bearing 
vibration signals, a hybrid fault diagnosis model is constructed 
by using wavelet packet energy spectrum, SSA and SVM, 
which is named WPES-SSA-SVM. In order to accurately 
extract features, wavelet packet energy spectrum is used to 
extract feature information from vibration signals, and the 
energy of reconstructed signals are calculated through wavelet 
packet decomposition and reconstruction, and the feature 
vector is established. Then, SSA is used to optimize the 
penalty parameter c and kernel parameter g globally to 
improve the learning ability and generalization ability of SVM 
classifier. The model consists of data feature extraction, SSA 
optimization and SVM recognition. The functions of each part 
and the information transmission between them are shown in 
Fig. 3. 

1) Data feature extraction module: Using wavelet packet 

decompose the bearing vibration signal, and the wavelet 

packet frequency band energy spectrum is generated 

according to the decomposition results. Taking the energy 

spectrum information as the fault diagnosis features, and 

divide it into training and test data set in proportion. Then, the 

training data is transmitted to the SSA optimization module, 

and the training and test data are transmitted to the SVM 

recognition module. 

2) SSA optimization module: The SSA optimization 

module receives the training data from the data feature 

extraction module and the value range of penalty parameter c 

and kernel parameter g from the SVM recognition module 

respectively, uses SSA to find the best penalty parameter c 

and kernel parameter g, and returns them to the SVM 

recognition module. 

3) SVM recognition module: The SVM recognition 

module first transmits the value range of penalty parameter c 

and kernel parameter g to the SSA optimization module for 

parameter optimization, then receives the optimized 

parameters, and carries out machine training using the training 

data received from the data feature extraction module. After 

that, the fault diagnosis on the test data is recognized to test 

the recognition effect. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 5, 2022 

56 | P a g e  

www.ijacsa.thesai.org 

Original vibration 

signal

Test data and 

training data
Training data

Value range of penalty 

parameter c and kernel 

parameter g

Optimal value of penalty 

parameter c and kernel 

parameter g

Data feature 

extraction

SSA 

optimization

SVM 

recognition

Wavelet packet energy spectrum 

to construct feature vector

Parameter 

optimization
Machine training, 

fault diagnosis

 

Fig. 3. Function and Information Transmission Path of each Module in 

WPES-SSA-SVM Model. 

The algorithm of the model is divided into nine steps, and 
the flow chart is shown in Fig. 4. 

Step 1: The original vibration signal is decomposed by 
wavelet packet, and the frequency band energy spectrum is 
calculated, and then the data is randomly divided into test data 
and training data in proportion. 

Step 2: Select the kernel function to construct SVM, 
mainly including linear kernel function, RBF kernel function, 
polynomial kernel function and Sigmod kernel function, and 
set the value range of penalty parameter c and kernel 
parameter g. 

Step 3: Initialize sparrow population. Set the population 
size Size, the maximum number of iterations Tmax, the 
individual position X, where X is the multidimensional 
coordinate composed of penalty parameter c and kernel 
parameter g, the proportion E, F, S of explorers, followers and 
scouters, and the safety threshold ST. 

Step 4: Using the classification accuracy as the fitness 
function value of SSA. 

Step 5: Find the global optimal position. The fitness value 
f of individual position is obtained by using training data. The 
larger the value is, the better the position is, and the global 
optimal position is the position with the largest f. If multiple 
positions at the same f, the optimal position is the one with the 
smallest penalty parameter c. 

Step 6: Update the population position and global optimal 
position. 

Step 7: Iteration number condition judgment. If the current 
of iterations       , return Step 6 to continue running; 
Otherwise, execute Step 8. 

Step 8: Using SSA optimization to get the best parameters, 
and the SVM is trained through the training data. 

Step 9: Input the test data into SVM, output the calculated 
bearing fault label value, identify the fault type, and compare 
it with the real fault type label in the original data to verify the 
diagnosis effect. 
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Fig. 4. Algorithm Flow Chart of WPES-SSA-SVM Model. 

IV. EXPERIMENTATION 

Feature extraction and fault diagnosis were performed 
using simulated fault data from the bearing experiment data 
provided by Case Western Reserve University (CWRU). The 
data set has been applied in many experimental studies and 
achieved good results. The time domain and wavelet packet 
characteristics of vibration signals are extracted from the 
official experimental data and fault diagnosis is carried out. 
The structure of the bearing test bench is shown in Fig. 5 [31]. 

 

Fig. 5. CWRU Bearing Test Bench. 
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The test bench is composed of three-phase induction 
motor, torque sensing device, electronic control unit, 
dynamometer and intermediate shaft. During the experiment, 
the motion state of the rolling bearing in the actual work is 
simulated. Single point defects with different widths such as 
0.007, 0.014, 0.021, 0.028 and 0.040 inch are machined on 
different parts of the bearing by spark machining technology, 
so as to obtain the experimental data of different fault types, 
such as rolling element, inner race and outer race fault. 

In this paper, the fault body diameter is 0.007 inch, the 
motor load horsepower is 1hp, the bearing model is SKF-
6205-2RS-JEM, and the sampling frequency of acceleration 
sensor is 48KHz to collect the vibration signal data of normal 
bearing, inner race fault, outer race fault and rolling element 
fault at the driving end. Take 100 groups of data samples for 
each state, with a total of 400 groups of data samples. 100 
samples are randomly divided into 70 training samples and 30 
test samples after feature extraction by wavelet packet energy 
spectrum. The training samples are used to extract features for 
classification model training, and the test samples are used to 
test the effect of classification model. The parameters of 
rolling bearing are shown in Table I. The division and label 
setting of experimental data are shown in Table II. 

TABLE I. ROLLING BEARING PARAMETERS 

Type Parameter 

Bearing model SKF-6205-2RS-JEM 

Inner diameter 25.00mm 

Outer diameter 52.00mm 

Rolling elements number 9 

Rolling element diameter 7.94mm 

Pitch diameter 39.04mm 

Contact angle 90o 

TABLE II. STATISTICAL TABLE OF EXPERIMENTAL DATA 

Bearing state 
Fault body 

diameter 

Number of 

samples 
Label 

Normal 0.007 100 1 

Inner race fault 0.007 100 2 

Outer race fault 0.007 100 3 

Rolling element fault 0.007 100 4 

V. RESULT AND DISCUSSION 

The time domain waveform diagram can intuitively 
observe the waveform distribution and amplitude of the 
vibration signal in each state. The waveform will fluctuate 
with the fault location and size. The vibration signals of 
normal and different faults of bearings are shown in Fig. 6. 

The wavelet packet decomposition with wavelet basis 
function as db3 is used to decompose the normal state, inner 
race, outer race and rolling element fault signals respectively, 
so as to obtain the decomposition coefficient and 
reconstruction coefficient, and then use the reconstruction 

coefficient to reconstruct, finally obtain 8 sub-band energy, 
and the energy proportion of each frequency band is analyzed. 
Due to space limitation, this paper only lists the wavelet 
packet components of reconstructed nodes in normal state, as 
shown in Fig. 7. The energy proportion of 8 sub-bands in 
different states is shown in Fig. 8. 

It can be clearly seen from Fig. 8 that there are differences 
in normalized amplitude of wavelet energy spectrum in 
different frequency bands after reconstruction of each node. 
Among them, the energy spectrum of sub-band 1 and 2 is 
relatively large in the four states, followed by the energy 
spectrum of sub-band 3 and 4, and the energy spectrum of 
sub-band 5, 6, 7 and 8 is relatively small, but there are slightly 
different in different states. 

 
(a) Normal. 

 
(b) Rolling Element Fault. 

 
(c) Inner Race Fault. 

 
(d) Outer Race Fault. 

Fig. 6. Bearing Vibration Signal Diagram. 
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Fig. 7. Wavelet Packet Component of Normal Bearing Vibration Signal. 

 
(a) Normal. 

 
(b) Rolling Element Fault. 

 
(c) Inner Race Fault. 

 
(d) Outer Race Fault. 

Fig. 8. Energy Spectrum of Wavelet Packet Frequency Band. 

For example, when the bearing is in the normal state, the 
energy spectrum value of sub-band 4 is higher than that in the 
fault state. When the outer race fault occurs, the energy 
spectrum value of sub-band 1 is lower than that in other cases. 
In case of bearing inner race fault or rolling element fault, the 
energy spectrum graph is relatively close, but there is still a 
certain gap between the values of sub-band 4 and sub-band 6. 
The difference of wavelet packet energy spectrum graphics in 
different states reflects that the features extracted by wavelet 
packet transform are sensitive to the fault feature information 
of vibration signal. Therefore, the energy amplitude 
corresponding to each sub-band and the energy difference 
between frequency bands can be used to evaluate the different 
states of bearings. 

To verify the feasibility and effectiveness of WPES-SSA-
SVM, experiments were conducted on BP, ELM, SVM and 
WPES-SSA-SVM respectively. The diagnosis results are 
shown in Fig. 9, where 'o' stands for the fault category of the 
actual testing set, and '*' stands for the fault category predicted 
by the model. 

From Fig. 9, the BP model misjudged 18 faults in total, 
including 5 rolling element faults misjudged into 3 inner race 
faults and 2 outer race faults, 8 inner race faults misjudged 
into 3 outer race faults and 4 rolling element faults and 1 
normal, 5 outer race faults misjudged into 2 inner race faults, 
2 rolling element faults and 1 normal, and the diagnostic 
accuracy is 85%. The ELM model misjudged a total of 16 
faults, of which 4 rolling element faults were misjudged as 1 
inner race fault and 3 outer race faults, 6 inner race faults were 
misjudged as 3 rolling element faults and 3 outer race faults, 6 
outer race faults were misjudged as 1 rolling element fault and 
5 inner race faults, and the diagnosis accuracy was 86.67%. 
There are 14 wrong judgments in SVM model, including 3 
wrong judgments of rolling element fault, 2 wrong judgments 
of inner race and 9 wrong judgments of outer race. The 
diagnosis accuracy is 88.33%. WPES-SSA-SVM model 
misjudged 4 faults in total, including 1 rolling element fault 
misjudged as inner race fault, 2 inner race faults misjudged as 
outer race fault and 1 outer race fault misjudged as rolling 
element fault. The number of misjudged in the four states has 
been well improved. WPES-SSA-SVM model has the best 
diagnostic effect for ELM model, SVM model and BP model, 
and the diagnostic accuracy is 96.67%. The experimental 
results show that using wavelet packet energy spectrum for 
feature extraction and SSA to optimize SVM model can 
improve the performance of fault diagnosis, and has obvious 
advantages over other non-optimized models. 
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(a) BP Diagnosis Result. 

 
(b) ELM Diagnosis Result. 

 
(c) SVM Diagnosis Result. 

 
(d) WPES-SSA-SVM Diagnosis Result. 

Fig. 9. Fault Diagnosis Results of Different Models. 

VI. CONCLUSION 

In this paper, we proposed a hybrid fault diagnosis method 
based on wavelet packet energy spectrum, SSA, and SVM in 
rolling bearing. Aiming at the difficulty of feature extraction 
of bearing vibration signals, wavelet packet decomposition 
was used to extract the wavelet packet features of vibration 
signals, and the energy spectrum of wavelet components is 
calculated and normalized to form the feature vector set, 
which fully contained the fault feature information of 
vibration signals. To improve the accuracy of fault diagnosis, 
the penalty parameter c and kernel parameter g of SVM are 
optimized by using the good global optimization ability of 
SSA, so as to build a hybrid fault diagnosis model WPES-
SSA-SVM. To verify the classification performance of 
WPES-SSA-SVM, the CWRU bearing vibration data set is 
used to extract fault features and diagnose faults. The results 
show that compared with BP, ELM, and SVM, the proposed 
method can accurately extract the feature information from the 

original vibration signals, and has higher diagnosis accuracy. 
SSA helps to optimize the parameters and improve the 
classification performance of SVM. In the future, we will use 
data from other industries and scenarios for diagnosis, and 
further investigate the improvement of model performance 
and diagnostic accuracy. 
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