
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

712 | P a g e

www.ijacsa.thesai.org

Improved Deep Learning Performance for Real-Time

Traffic Sign Detection and Recognition Applicable to

Intelligent Transportation Systems

Anass BARODI
1
*, Abderrahim Bajit

2
, Abdelkarim ZEMMOURI

3
, Mohammed Benbrahim

4
, Ahmed Tamtaoui

5

Laboratory of Advanced Systems Engineering (ISA), National School of Applied Sciences

Ibn Tofail University, Kenitra, 14000, Morocco
1, 2, 3, 4

National Institute of Posts and Telecommunications (INPT-Rabat)

SC Department, Mohammed V University, Rabat, 10000, Morocco
5

Abstract—In this paper, we improve the performance of Deep

Learning (DL) by creating a robust and efficient Convolutional

Neural Network (CNN) model. This CNN model will be subjected

to detecting and recognizing traffic signs in real-time. We apply

several techniques; the first is pre-processing, which includes

conversion of color space RGB, then equalization and

normalization histogram of the image dataset according to

Computer Vision (CV) tools. The second is devoted to Artificial

Intelligence (AI), which needs the right choice of a neural layer

such convolution layer, or dropout layer, with powerful

optimizer as Adam and activation functions such as ReLU and

SoftMax. Also, we use the technique of augmentation dataset

which characterizes by the function of batch size for each epoch.

The results obtained is very satisfactory, the prediction at the

average is equal to 98%, which encourages this approach to the

integration in Intelligent Transportation Systems (ITS) in the

automotive sector.

Keywords—Deep learning; convolutional neural network;

computer vision; artificial intelligence; traffic sign detection;

traffic sign recognition; intelligent transportation systems

I. INTRODUCTION

The detection and recognition of traffic road signs are done
in different ways, depending on the methodology or strategy
followed by the researcher. In general, the detection and
recognition methods can be summarized in three classes. The
first method can be based on color segmentation (red, blue,
yellow) [1]. In the second method, we can use the geometry of
objects (Triangular, Square, Rectangle)[2]. Finally, methods
that use artificial intelligence (AI), specifically DL of CNN
architecture [3]. For road safety, we use ITS systems [4]. This
system is devoted to detecting and recognizing all traffic road
signs by identifying them from other objects that existed in
environments (a passage, animals, cars, trucks, buildings……)
in real-time[5]. These systems are used in Advanced Driving
Assistance Systems (ADAS) [6][7] and are based on a digital
camera for perception road environment.

There is a standard technique for detecting and recognizing
traffic road signs. For example, the scale-invariant feature
transform (SIFT) [8][9], the local binary patterns (LBP) [10],
and the histogram of oriented gradients (HOG) [11]. Also, we
find advanced techniques to classify a different object, in
which the feature vectors are extracted normally from the

training dataset, for example, the support vector machine SVM
[12], VGG16 [13], and ImageNet [14]. In recent years, we
have been using the CNN model for complex classification
situations [15]. The CNN architectures are the best models;
they have the same analysis vision as the human being. [16].

To guarantee a reliable and effective model in the decision,
most of the research work in the field of AI often plays on the
following parameters: optimizer [17], accuracy function [18],
loss function [19], dataset [20], architectures [21].

In this paper, we play with several parameters to obtain a
robust and efficient model for traffic sign detection and
recognition. The first thing we will examine is the effect of
normalizing and equalizing the images in the traffic sign
dataset on model training. So according to the result of the first
step, the second step is choosing an optimal fitting function
(Simple, Generator) for deploying the best function between
them. Finally, we will use the data augmentation technique by
discussing the effect of batch size function during model
training. All this is to ensure that the proposed ITS system
detects and recognizes signs well in advance so the right
decisions can be made as quickly as possible.

In our work, we will test our approach based on Computer
Vision (CV) and Artificial Intelligence (AI), for the detection
and recognition of the different traffic road signs in real-time.
The approach results can be exploited by Intelligent Transport
System (ITS) to assist the driver. The paper is organized as
follows: Section 1 introduces the most techniques used for the
detection and recognition of road signs. Section 2 is dedicated
to related work, and then Section 3 presents a general view of
the approach proposed. Section 4 is for methodology. Section 5
is devoted to experimentation and evaluation of the approach
proposed. Section 6 with Section 7, is for the real-time
implementation to recognize traffic road signs. The last section
is devoted to the conclusion.

II. RELATED WORK

Most of the developed applications that have high accuracy
in object detection and recognition are based on the RNN and
CNN architecture [22]. Nevertheless, depending on the
available data or the problem to be solved, one type of neural
network may be more suitable and used than another for a
different problem than the one it is used. Generally, a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

713 | P a g e

www.ijacsa.thesai.org

Recurrent Neural Network (RNN) is used for text processing
and speech recognition as illustrated in Table I. In this regard,
convolution networks are applicable for object recognition in
images and can specifically identify the shape of objects as
illustrated in Table II. In this work, we will use the CNN
architecture which is the most efficient neural network model
concerning the available dataset.

A. The Constraints of the Traffic Sign Detection and

Recognition Algorithms

Detection and recognition based on color segmentation are
ranked as one of the fastest methods [41], applied for example
to the recognition of road lanes, traffic signs, and vehicle
license plates. Most algorithms use this technique to extract
regions of interest, by setting specific filters to recognize
apparent objects [42]. But this method can meet several
problems such as weather conditions (snow, rain...), time of
day (morning, night...) which has a great effect on the
appearance (light reflection on the signs), or object distance
(between the camera and road sign), lead to a false object
detection recognition.

Some authors apply a more reliable method, it is the
detection and recognition of the geometry of the road signs
[43], that the detection is made on the basis of the objects
contours in the image. To avoid any overlapping with the
objects existing in the road environment by a structural
analysis of the road signs [44].

TABLE I. MOST RNN ARCHITECTURE APPLICATIONS

Applications RNN Architecture Reference

Text processing

Efficient RNN Text

Classification

J. Du [23]
H.Chen [24]

Z. Parcheta [25]

Medical Text
Classification Framework

X. Li [26]
M. Ibrahim [27]

Speech recognition

Anticipation-RNN to

Interactive Music

Generation

F. Nielsen [28]
D. Bisharad [29]

Sentiment Analysis
A. Onan [30]
J. Huan [31]

TABLE II. MOST CNN ARCHITECTURE APPLICATIONS

Applications CNN Architecture Reference

Image recognition

Traffic sign

recognition systems

 Á. Arcos-García [32]

Á. Arcos-García [33]

Lane Detection in

Traffic Scene

J. Li [34]
J. Kim [35]

J. Tang [36]

Form recognition

CNN Design for Real-
Time Traffic Sign

Recognition

A. Shustanov [37]

F. Shao [38]

CNN Network for

Real-life Traffic Sign

Detection

T. Yang [39]
Á. Arcos-García [40]

B. Deep Learning and Neural Network

The learning methods are among the techniques that use
DL [45], this method has made a revolution in the industrial
sector, especially in the embedded systems in the automotive
sector [46]. This method is robust in object detection and
recognition compared to the geometric and colorimetric
methods, which are among the classic methods that suffer from
many factors.

The creation of CNN models was based on neural
networks. Many hidden layers of the neural network serve to
produce CNN. These neuron layers are grouped into a tree
category of layers, input layers, hidden layers, and output
layers. Firstly, the feature vectors dataset is accepted from the
input layer and has a bias neuron. Secondly, the liaison
between input and output is hidden layers that use the neuron
bias. Finally, the output of neural networks is not used for the
bias neuron. The output from a single neuron is calculated
according to the following equation (1).

 () (∑ () (1)

 The input vector (x) represents the feature vector.

 The vector θ represents the weights.

 The ɸ is the transfer/activation function.

III. THE APPROACH DESCRIPTION

The approach that will be proposed to integrate it into an
ITS system, is essentially based on the creation of a CNN
architecture to guarantee road safety for both passengers and
drivers of vehicles. Therefore, our approach is based on two
processes, the detection process and the recognition of traffic
signs as shown in Fig. 1. The detection process uses camera-
based CV techniques to receive images to ensure that traffic
signs are detected. When the signs are detected, the recognition
process is activated using AI techniques. We will use a CNN
architecture to extract the characteristics of the road signs. To
achieve our objective, the deep training will be done on the
German Traffic Sign Recognition Benchmark (GTSRB)
dataset. We arrive at the end to identify each detected by the
classes that belong to the prediction probability.

The strategy we will follow to have an efficient CNN
architecture is summarized in the following points:

 Transformation techniques (equalization and
normalization histogram).

 Creation of CNN architecture (convolution layers, and
max-pooling layers)

 DL of the CNN architecture with simple fit function and
generator fit function.

 Testing the performance of the CNN model in real-time
detection and recognition of traffic road signs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

714 | P a g e

www.ijacsa.thesai.org

Fig. 1. General View of Approach Applicable for the ITS System.

IV. METHODOLOGY

A. Transformation Techniques for Dataset

a) Visualization dataset: For our implementation, we use

a dataset of the German traffic sign Benchmark [47], composed

tree part, training data, validation data, and testing data. The

training set uses 80% of the data and the validation set uses

20%. The GTSRB is composed of 43 traffic road sign classes,

34799 images for training data, 4410 images for validation

data, and 12630 images for testing data, as illustrated in Fig. 2.

Fig. 2. Visualization of GTSRB Training Datasets.

b) Normalization of a histogram: Normalizing a

histogram is a technique consisting of transforming the discrete

distribution of intensities into a discrete distribution of

probabilities [48]. To do this, we need to divide each value of

the histogram by the number of pixels. In our case, the

normalization is done by dividing all pixels in an image by

255.

c) Equalization of a histogram: Histogram equalization

is an image processing method to adjust the contrast of an

image, by modifying the intensity distribution of the histogram

[49]. Equalization processing is based on the use of the

cumulative probability function. This function is a cumulative

sum of all the probabilities in its domain and is defined by

equation (2).

 () ∑ ()
 (2)

The idea of this processing is to give the resulting image a
linear cumulative distribution function.

B. Convolutional Neural Networks (CNNs)

Domain CV has been affected by AI mainly by CNNs. The
neural network architecture was introduced by LeNet-5 [50].
The next step is the description of each layer type used in the
CNN model.

a) Convolution layers: The first layer of analysis is the

convolution, it allows us to detect the characteristics of each

visual element: circles, lines, colors, edges ..., this work is done

by internal filters in the layer. If the number of filters is very

well brought, they have more features for better accuracy. The

filters have a square shape that sweeps over the image from the

right to the left. Then there is a very important parameter,

which is the width and length of the filter that normally affects

the number of features extracted from the images. The single

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

715 | P a g e

www.ijacsa.thesai.org

output matrix of the convolution layer is described in equation

(3).

 (∑

) (3)

Img : Input matrix. Ker: Kernel matrix.

bj: Bias. g: Non-linear activation.

Each set of kernel matrices represents a local feature
extractor that extracts regional features from the input matrices.
Optimizes neural network connection weights, and can be
applied here to train the kernel matrices, biases as shared
neuron connection weights.

b) Max pooling layers and dropout layers: Putting the

Max-Pooling layers belong after every convolution layer. It

serves for re-sizing a picture of 2D in a smaller dimension [51].

Most CNN frameworks implement dropout as a separate layer

to avoid the production in DL the overfitting. Dropout layers

function like a regular, densely connected CNN layer. The only

difference is that the dropout layers will periodically drop some

of their neurons during training.

c) Activation function: However, current deep neural

networks mainly use the following activation functions, each

function has a role to play in a neural network. For the output

of the hidden layers, we use the ReLU (Rectified Linear Unit)

function [52]. The ReLU function is calculated as follows in

equation (4).

 () () (4)

The ReLU activation function [53][54] was one of the key
improvements in CNN applications, that make deep learning.
Unfortunately, the ReLU function is not differentiable at the
origin, which makes it hard to use with backpropagation
training. ReLU for rectified the feature map, to find the final
value positive and deleted the negative value.

The output of classification CNN: We implemented
SoftMax. The SoftMax is calculated as follows in equation (5).

 ()

∑

 (5)

The SoftMax function is only useful with more than one
output neuron. It guarantees that the sum of all output neurons
is equal to 1.0. It is therefore very useful for classification,
where it indicates the probability that each of the classes is the
correct choice.

d) Optimization function: Adam optimizer is very

effective [55]. Adam estimates the first mean and second

variance moments to determine the weight corrections. Adam

begins with an exponentially decaying average of past

gradients (m) described in equation (6).

 () (6)

 : the gradient at time t.

This average accomplishes a similar goal as a classic
momentum update; however, its value is calculated
automatically based on the current gradient (gt). The update
rule then calculates the second moment (vt) in equation (7).

 ()
 (7)

The values mt and vt are estimates of the first moment (the
mean) and the second moment (the uncentered variance) of the
gradients respectively. 1 and 2: are exponential decay rates.
Adam is very tolerant of the initial learning rate (η) and other
training parameters. Default values of β1=0.9, β2=0.999, and
η=10

-8
 [45].

C. CNN Architecture

We have a dataset of dimensions (32,32,3), and we will
perform a conversion from RGB color space to gray level. The
input images of our architecture will have dimensions
(32,32,1). Table III presented the architecture of CNN in detail,
type of layers, output shapes, and activation functions. The
layers with their corresponding type are shown, denoting the
characteristics used. Then implementation of CNN in CPU
takes more time because we have a dataset of images that are
more difficult to execute. However, the faster implementation
we propose to use GPU.

TABLE III. PROPOSED CNN ARCHITECTURE

Layer Type
Output

shape
param Activation

Conv2d_1 Conv2D
(None, 28,
28, 60)

1560 ReLU

Conv2d_2 Conv2D
(None, 24,

24, 60)
90060 ReLU

Max_pooling2d_1 Max_pooling2d
(None, 12,

12, 60)
0 N/A

Conv2d_3 Conv2D
(None, 10,
10, 30)

16320 ReLU

Conv2d_4 Conv2D
(None, 8,

8, 30)
8130 ReLU

Max_pooling2d_2 Max_pooling2d
(None, 4,

4, 30)
0 N/A

Dropout_1 Dropout
(None, 4,

4, 30)
0 N/A

Flatten_1 Flatten
(None,

480)
240500 N/A

Dense_1 Dense
(None,
500)

0 ReLU

Dropout_2 Dropout
(None,

500)
21543 N/A

Dense_2 Dense (None, 43) Softmax

Total params: 378,023

Trainable params: 378,023

NON TRAINABLE PARAMS: 0

V. EXPERIMENTATION AND EVALUATION

The results are implemented in ASUSTek Computer,
processor intel® Core™ i7-7500 CPU @2.70GHz 2.90GHz,
Memory installed (RAM): 8,00 Go, exploitation System 64
bits, processor 64 bits Systems Model: X541UJ, GPU NVIDIA
GeForce 920M using the TensorFlow, Keras, and OpenCV
libraries.

A. Simple Fit Function

The training of the proposed CNN model requires two
essential elements, the training data, and the training labels. For
the training, we will use the fit function of the Keras library.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

716 | P a g e

www.ijacsa.thesai.org

The number of epochs is the number of times the model will
run through the data. The more epochs we run, the more the
model will improve, up to a certain point. We started our
model for 50 epochs with a batch size set to 32. We will also
train the dataset with equalization and normalization of the
histogram. Thus, the training without equalization and
normalization will be noted as Method 1, and the training with
equalization and normalization will be noted as Method 2.

We can visualize in Fig. 3 in the accuracy curve, a drop
during the training of the data in 2 steps for 50 and 100 epochs.
But for the loss curve, we have a huge increase in the error
value. So, method (1) leads us to overfit. We can deduct from
Fig. 4 that we don’t have any underfitting or overfitting in the
accuracy curve, we can easily observe that the increase in the
number of epochs did not disturb the learning stability. The
same thing for the loss curve, we have a very remarkable
degradation of the error values compared to the curve of

method (1). Equalization and normalization can be used
almost. However, this method (2) shows negligible effect loss
and we have the full precision of our network that shows a
significant improvement.

A comparison of the performance in Table IV sows
accuracy function and loss function. We can conclude from
Table IV which contains tests accuracy and loss for Method (1)
and Method (2). It is necessary to equalize and normalize. The
equalization is served to adjust the contrast in the image’s
dataset. For the normalization, it allows making training faster
and the loss becomes more circular symmetric. The next step is
to change the simple fit function by using a fit generator, we
visualize if does good predictions and evolution of accuracy
with a loss function. The equalization and normalization
algorithms result in improved performance of CNN
classification.

(a) (b)

Fig. 3. Method (1): (a) Training and Validation Accuracy, (b) Training and Validation Loss.

(a) (b)

Fig. 4. Method (2): (a) Training and Validation Accuracy, (b) Training and Validation Loss.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

717 | P a g e

www.ijacsa.thesai.org

TABLE IV. PERFORMANCE COMPARISON OF METHOD 1 AND METHOD 2

Method Model
Fit

Function

Learning

Rate

Loss

Function
Optimizer

Train

Dataset
Epochs

Test

Accuracy

(%)

Test

Loss

(%)

M
e
th

o
d

 1
 Without

Equalization

and

Normalization

images Datasets
CNN Simple 10-2

Categorical

Cross-

Entropy

Adam 34799

50 94.63 44.11

100 78.21 35.09

150 64.18 5.76(>100%)

M
e
th

o
d

 2
 With

Equalization

and

Normalization

images Datasets

50 96.43 17.65

100 96.19 25.48

150 96.52 42.29

B. Fit Generator Function

We propose to use the fit generator function to accept the
data sets, perform backpropagation, and update the weights in
our model. This function has a hyperparameter, it is the
number of steps per epoch, its value as the set of servant
landmarks becomes divided by the batch size. It is based on an
infinite loop, which must not return empty or exit. However, all
researchers calculate the value of steps per epoch as the total
number of training data divided by the batch size of training
data images.

So, the idea of our experiment is to use method 2 from the
previous section. Method 2 will be driven by the generator
fitting function with a batch size of 32. We will compare
different optimizers (Adam and SGD) and the loss function
(Categorical cross-entropy, and Mean squared error). We fixed
parameters learning rate in 10

-2
 and epochs in 50.

In Table V, when the loss function uses categorical cross-
entropy, we have a high prediction score with a low loss score.
Now we improved the model to get the lowest loss score. We
got the best scores with the Adam optimizer and the categorical
cross-entropy function, for 97.11% accuracy and 11.32% loss.
Moreover, the idea is now to improve the accuracy score.

As we can see in Fig. 5, using the fit generator function in
the training model the objective is achieved, at 90% we control
the situations for not have the overtraining our DL models. The
assumptions are therefore correct, we using all of the datasets

at each epoch. We need to choose a batch size and steps per
epoch which multiply to give a total number of samples.
Usually, it will be a resource. If memory is a problem, we need
to reduce the batch size until we can adapt a batch on a GPU.
Note that this implementation also allows us to use the
multiprocessing argument of a fit generator, where the number
of threads specified in workers corresponds to those which
generate batches in parallel. A fairly high number of workers
ensure that the calculations performed on the GPU are
managed efficiently, or in other words, the bottleneck of the
whole training process will be due to the propagation
operations. In our case, we would probably set batch size the
desired amount; we change it only if you want the model to not
use all the data for each epoch which deflects the definition of
the word epoch.

TABLE V. EXPERIMENT RESULTS OF OPTIMIZER AND LOSS FUNCTION

Loss

function
Model

Fit

Function
Optimizer

Test

Accuracy

(%)

Test

Loss

 (%)

Categorical

Cross-
Entropy

CNN Generator

SGD 86.74 46.27

Adam 97.11 11.32

Mean

Squared

Error

SGD 01.16 02.27

Adam 97.08 12.12

(a) (b)

Fig. 5. (a) Training and Validation Accuracy, (b) Training and Validation Loss.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

718 | P a g e

www.ijacsa.thesai.org

VI. DISCUSSION

We introduce one more technique to improve the model
training process data augmentation. This technique creates new
data for our CNN model to use during the training process.
This is done by taking our existing datasets and transforming
or altering the images in useful ways to create new images.

A. Image Data Generator Function

We can have a typical sign image such as this STOP sign
image, taking this image and transforming it to create a
different image representing the same stop sign. The
transformation could be rotation or simply zooming into the
image. Also, could even be a combination of both these
transformations. These newly created images are referred to as
augmented images because they essentially allow us to
augment our dataset by adding them. The data augmentation
technique is useful because it allows our model to look at each
image in our dataset from a variety of different perspectives.
This allows it to extract relevant features more accurately and
allows it to attain more feature-related data from each training
image. This is especially the case for our traffic sign datasets
because we have a small dataset (32x32) and a large number of
classes. This means that certain classes have very few
proximately only 200 training in the Fig. 2. It can benefit our
traffic sign recognition model.

We apply the five following transformations with shift
range, height shift range, zoom range share, and a rotation
range. Five transformations will add sufficient variety to
GTSRB datasets and will allow the training process to be much
more effective. The first transformation is with shifts, this
refers to a horizontal translation in the image which will cause
our images to be centered, and this will help our CNN model
adapt to test images that aren’t necessarily going to be
centered. The range can be defined in two ways, if the range
value is defined as a number between 0 and 1, then it refers to
the fraction of the image that can be shifted. A value of 0.1
would simply imply that the maximum horizontal shift possible
is 10 percent of the width of the image. The images with only
horizontal translation can be similar. So, to have a difference
between the generated, we apply a second technique is a
vertical translation. The range value is defined in much the
same way and for that reason; the value of vertical translation
is 0.1 (10%).

For zoom transformation, can be either zoom out or into the
image. The degree of zoom can be defined with a float value
between 0 and 1. While the maximum outer zoom is defined by
one minus the float value and the maximum zoom is defined by
a 1 plus the flow value. We will use a float value of 0.1 which
means that we can zoom as far as 0.1 eight’s and zoom in as
close as 0.2. Next, we have the shear transformation in plane
geometry a shear mapping is a linear map that displaces, each
point in a fixed direction by an amount proportional to its side
and distance. The line that is parallel to that direction, possible
in both the x-direction and the y-direction. This transformation
is defined using shear intensity which simply refers to the
magnitude of the shear, angle in degrees as seen in the image
above. We apply a small magnitude of shear to be effective,
using a value of 0.1. The last transformation is the rotation; this
transformation is a bit more intuitive it simply rotates an image

by a certain value of degrees. This value can be defined using
an integer value, in our case, we will use 10. These
transformations are simply applied to stop signs as shown in
Fig. 6, which will then be applied to the GTSRB dataset.

B. Batch Size Function

First, we declare a batch size is equal to 32 which mean that
our image generator will create a batch of 32 images at a time
for our CNN model to use our next argument as illustrated in
Fig. 7. Also, the steps per epoch this parameter essentially
refers to the number of batches. The steps per-epoch argument
must specify the number of batches of samples comprising one
epoch. In our case, the original dataset has 34799 images and
the batch size is 32. Then a reasonable value for steps per
epoch when fitting a model on the augmented data might be
ceil (34799/32), or 1087 batches. So, we fix the value of the
steps per epoch in 1000.

C. Experimental Results

We are fixed step pre-epochs to 1000, we switch the value
of epochs between 50 and 150, we behold augmentation
accuracy the same time value loss has diminution. We fit and
evaluate all these models in different batch sizes (32, 64, 128,
and 256) using the same procedure above of optimizer Adam
and the same value of steps pre-epochs with different epochs,
found through some minor experimentation. The model is
evaluated, reporting the classification accuracy on the test sets
between 96.86% and 98.01%. We can specify the results may
vary given the stochastic nature of the training algorithm.
Table VI demonstrates the effect of batch size, after testing
very hard which took an enormous time to find it up to
incredible values. When we have for batch size is 256, we have
a precision in 50 epochs of 98,01% which is very interesting,
and also a remarkable reduction in the function error of
09.15%. The same thing for size 100 epochs has values for the
two 97.99% and 09.11%.

 Original Image Random Rotation Random Zoom

Horizontal Shift Vertical Shift Shear Range

Fig. 6. Different Transformation for Dataset Augmentation.

Fig. 7. The Batch of the Training Dataset GTSRB.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

719 | P a g e

www.ijacsa.thesai.org

TABLE VI. FLOW DATA FOR BATCH SIZE FUNCTION

Batch

Size
Optimizer

Step pre-

epochs
Epoch

Test

Accuracy

(%)

Test

Loss

(%)

32

Adam 1000

50 97.15 10.94

100 97.11 11.32

150 96.86 14.16

64 Adam 1000

50 97.18 11.90

100 97.04 12.28

150 97.69 09.25

128 Adam 1000

50 97.38 11.02

100 97.85 10.74

150 97.94 09.68

256 Adam 1000

50 98.01 09.15

100 97.99 09.11

150 97.83 10.84

In Fig. 8, we can see the validation converges to above
99%. A significant improvement is shown over our previous
CNN model. This might be our modification that was pretty
effective. We have a much smaller gap and training accuracy
as well as our validation loss and accuracy, respectively. This
demonstrates consistency in our training and a better-trained
model and we now finish our model training with a validation
accuracy of over 98 % and training accuracy. This is all very
good to see and shows our augmentation technique was
effective. The model will not learn complex patterns and we
can avoid overfitting, we use more dropout layers in our
architecture and check its performance. So, the augmentation
dataset after performing histogram normalization and
equalization, the model learned the data better, and the
accuracy of the set improved. Now there is just one more test
that our model needs to pass and that is classifying images
from the test dataset to predict a couple of them correctly. So,
we'll start by testing out the image not seen before for our CNN
model.

D. Analyses Performance of a Model Trained

We define several measures based on the confusion matrix,
to quantify the performance of a classifier from different points
of view: Precision by class, average precision, Recall by class,
average recall, F-score by class, and f-score average.

a) Precision of classification: The accuracy of a

classifier concerning a certain class in other words, about a

certain modality of the variable to be predicted, is measured as

the proportion of individuals, among all those for whom the

classifier predicted this class, who belong to it, exposed in this

equation:

 (8)

 :(True Positive) Element of the class correctly predicted.

FP: (False Positive) Element of the class badly predicted.

The overall means of the precision over all the classes i can
be evaluated by the macro-average which first calculates the
precision on each class i followed by a calculation of the
average of the details on the n classes based on this equation:

 ∑

 (9)

 : precision each class i. : number of classes.

b) Recall of classification: The recall of a classifier with

a certain class is measured, like the proportion of individuals,

among all those who belong to this class, for which the

classifier predicted this class.

 (10)

The global averages of the recall over all of the classes i
can be evaluated by the macro-average which first calculates
the recall over each class i followed by a calculation of the
average of the reminders over the n classes:

 ∑

 (11)

 : recall each class i. : number of classes.

Fig. 8. Accuracy and Loss Curves of Epochs with a Batch Size of 256.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

720 | P a g e

www.ijacsa.thesai.org

c) F-score of classification: We can summarize the

recall precision measurements to a class in a single indicator,

by calculating the harmonic mean:

 ()

 (12)

 : precision each class i. : precision each class i.

The average over each class of these indicators gives global
indicators on the quality of the classifier.

 ()

 (13)

 : The average precision of all classes.

 : The average recall of all classes.

E. Confusion Matrix

The Confusion Matrix identifies the classes of signs and
also gives the number of times it gets the confused class to
identify the class from another in Fig. 9. Most of the color is
diagonal, but there are still some annoying spots somewhere.
When we narrowly look at the confusion matrix, we see that
the classes [0] have very less respectively all classes, but it’s
minimized for other classes. The diagonal observations are the
true positives of each class and other non-diagonal
observations are incorrect classifications of the model.

F. Classifier Metrics

A Classification report is used to measure the quality of
predictions from a classification algorithm. We can see in the
Table VII, the model has the as recall and precision are
calculated for individual classes, have a good score of all the
class of traffic road signs. We use macro or micro or weighted
scores of recalls, precision, and F1 score of a model for
multiclass classification problems have a higher score is 98%
this very satisfied.

Fig. 9. Confusion Matrix Epochs 100 and Batch Size 256.

TABLE VII. CLASSIFIER REPORT FOR THE CNN MODEL

Class names precision recall
f1-

score
support

Speed limit (20km/h) 0.98 1.00 0.99 60

Speed limit (30km/h) 0.99 1.00 0.99 720

Speed limit (50km/h) 0.99 0.99 0.99 750

Speed limit (60km/h) 0.99 0.94 0.96 450

Speed limit (70km/h) 1.00 0.98 0.99 660

Speed limit (80km/h) 0.95 0.99 0.97 630

End of speed limit (80km/h) 0.99 0.90 0.94 150

Speed limit (100km/h) 1.00 1.00 1.00 450

Speed limit (120km/h) 1.00 1.00 1.00 450

No passing 1.00 1.00 1.00 480

No passing for vechiles over

3.5 metric tons
1.00 1.00 1.00 660

Right-of-way at the next

intersection
0.98 0.96 0.97 420

Priority road 1.00 0.99 1.00 690

Yield 1.00 0.99 1.00 720

Stop 1.00 0.99 0.99 270

No vechiles 1.00 0.97 0.98 210

Vechiles over 3.5 metric tons

prohibited
0.99 1.00 1.00 150

No entry 1.00 0.97 0.99 360

General caution 0.99 0.89 0.94 390

Dangerous curve to the left 0.98 1.00 0.99 60

Dangerous curve to the right 0.98 1.00 0.99 90

Double curve 0.85 0.78 0.81 90

Bumpy road 1.00 0.93 0.96 120

Slippery road 0.98 1.00 0.99 150

Road narrows on the right 0.99 0.98 0.98 90

Road work 0.98 0.97 0.97 480

Traffic signals 0.91 0.98 0.95 180

Pedestrians 0.89 0.95 0.92 60

Children crossing 0.99 1.00 1.00 150

Bicycles crossing 1.00 0.99 0.99 90

Beware of ice/snow 0.89 0.95 0.92 150

Wild animals crossing 1.00 1.00 1.00 270

End of all speed and passing

limits
1.00 0.98 0.99 60

Turn right ahead 0.96 1.00 0.98 210

Turn left ahead 0.99 1.00 1.00 120

Ahead only 1.00 1.00 1.00 390

Go straight or right 0.99 1.00 1.00 120

Go straight or left 0.97 0.98 0.98 60

Keep right 1.00 0.97 0.98 690

Keep left 1.00 0.98 0.99 90

Roundabout mandatory 0.85 0.93 0.89 90

End of no passing 0.98 1.00 0.99 60

End of no passing by vechiles

over 3.5 metric tons
0.95 0.87 0.91 90

micro avg 0.98 0.98 0.98 12630

macro avg 0.98 0.97 0.97 12630

weighted avg 0.99 0.98 0.98 12630

samples avg 0.98 0.98 0.98 12630

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

721 | P a g e

www.ijacsa.thesai.org

VII. TESTING THE MODEL

A. Test with the Test Dataset

A remarkable performance is illustrated in Fig. 10. Now
we'll test for test datasets, we look reaction to our model, to see
where the fails. We tried to visualize the class predictions of
the test images, it is relevant to have good results, all the
images were well classified, and the curve shown next to each
image represents the class of the images among the 42 classes,
when we have the color blue and a single peak in the curve
means the image has been put in the right place without any
errors.

B. Testing the Proposed CNN Model in Real-Time

In this section, we will present and evaluate the results of
our approach. Traffic road signs that appear in video sequences
are often detected. More details on the video sequences are
given in Table VIII. In general, for all performance indicators,
our proposed approach outperforms other object detection
algorithms by achieving up to 100% accuracy. Our CNN
model metric value is often higher than in the results of
previous work. For the video sequences, our algorithm
surpasses the good probability of prediction and classes of
Traffic Road signs by the method. This shows that using a
robust appearance CNN model achieves better results. It can
also be observed that the CNN precision value obtained for the
video sequence is higher than that obtained by the approach
with a difference between 97.56% and 100%.

Fig. 10. GRTSB Test Datasets.

TABLE VIII. TEST OF NEW IMAGES IN REAL-TIME

Traffic Road Signs Recognition Classification
Prediction

(%)

Class Number: [17]

No Entry

97.56%

Class Number: [12]

Priority Road

99.15%

Class Number: [5]

Speed limit (80km/h)

98.4%

Class Number: [14]

STOP
100%

Class Number: [34]

Turn let ahead

Class Number: [33]

Turn right ahead

100%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

722 | P a g e

www.ijacsa.thesai.org

VIII. CONCLUSION

In this paper, we proposed a methodology for the
construction robust CNNs model. We talked about the
problems associated with the detection and recognition of
traffic road signs in real-time. We also demonstrated how using
the right tools and techniques helps us in developing robust
CNN models. These CNNs can guarantee road safety in real-
time. We also try other pre-processing techniques to further
improve the model's accuracy (equalization and normalization
histogram). The step of adding augmentation data improved
the performance of our deep learning CNN model. We are
curious about how much the accuracy can be improved based
on adding such simple transformations. We think these results
could further be used in the development of automotive
systems, such as intelligent transportation systems (ITS). All
this is for the safest roads; we try in the future to get better
performance and optimist. It is also very interesting to note that
the proposed CNN model reaches 98% accuracy using
NVIDIA's GPU processor, which makes them feasible for real-
time traffic sign recognition.

In future work, we plan to study other neural network
architectures that have been shown to be optimistic for traffic
sign detection or classification. In addition, we will attempt to
employ these networks in advanced in-vehicle platforms
applicable to intelligent transportation systems to reveal
valuable information that will help drivers make the right
decisions in the real world.

REFERENCES

[1] X. Xu, J. Jin, S. Zhang, L. Zhang, S. Pu, and Z. Chen, “Smart data
driven traffic sign detection method based on adaptive color threshold
and shape symmetry,” Futur. Gener. Comput. Syst., vol. 94, pp. 381–
391, 2019, doi: 10.1016/j.future.2018.11.027.

[2] S. Kumar, S. D. K, P. Maddula, and N. V. V. Ravipati, “Unified
approach for detecting traffic signs and potholes on Indian roads,” J.
King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2021, doi:
10.1016/j.jksuci.2021.12.006.

[3] D. Sirohi, N. Kumar, and P. Singh, “Convolutional neural networks for
5G-enabled Intelligent Transportation System : A systematic review,”
Comput. Commun., vol. 153, no. January, pp. 459–498, 2020, doi:
10.1016/j.comcom.2020.01.058.

[4] S. L. G. Eliza, “Embedded real-time speed limit sign recognition using
image processing and machine learning techniques,” vol. 28, pp. 573–
584, 2017, doi: 10.1007/s00521-016-2388-3.

[5] A. Zemmouri, M. Alareqi, R. Elgouri, M. Benbrahim, and L. Hlou,
“Integration and implimentation system-on-aprogrammable-chip
(SOPC) in FPGA,” J. Theor. Appl. Inf. Technol., vol. 76, no. 1, pp. 127–
133, 2015.

[6] S. Jagannathan, M. Mody, and M. Mathew, “Optimizing Convolutional
Neural Network on DSP,” pp. 371–372, 2016.

[7] A. Zemmouri, R. Elgouri, M. Alareqi, M. Benbrahim, and L. Hlou,
“Design and implementation of pulse width modulation using
hardware/software microblaze soft-core,” Int. J. Power Electron. Drive
Syst., vol. 8, no. 1, pp. 167–175, 2017, doi: 10.11591/ijpeds.v8i1.pp167-
175.

[8] W. Arman, S. Arefin, A. S. M. Shihavuddin, and M. Abul, “DeepThin :
A novel lightweight CNN architecture for traffic sign recognition
without GPU requirements,” Expert Syst. Appl., vol. 168, no. August
2020, p. 114481, 2021, doi: 10.1016/j.eswa.2020.114481.

[9] A. Zemmouri, R. Elgouri, M. Alareqi, H. Dahou, M. Benbrahim, and L.
Hlou, “A comparison analysis of PWM circuit with arduino and FPGA,”
ARPN J. Eng. Appl. Sci., vol. 12, no. 16, pp. 4679–4683, 2017.

[10] Y. Saadna, “Speed limit sign detection and recognition system using
SVM and MNIST datasets,” Neural Comput. Appl., vol. 0123456789,
2019, doi: 10.1007/s00521-018-03994-w.

[11] A. R. Dubey, N. Shukla, and D. Kumar, “Detection and Classification of
Road Signs Using HOG-SVM Method,” pp. 49–56.

[12] Z. Liu, M. Qi, C. Shen, Y. Fang, and X. Zhao, “Cascade saccade
machine learning network with hierarchical classes for traffic sign
detection,” Sustain. Cities Soc., vol. 67, no. January, p. 102700, 2021,
doi: 10.1016/j.scs.2020.102700.

[13] C. Li, Z. Qu, S. Wang, and L. Liu, “A method of cross-layer fusion
multi-object detection and recognition based on improved faster R-CNN
model in complex traffic,” Pattern Recognit. Lett., vol. 145, pp. 127–
134, 2021, doi: 10.1016/j.patrec.2021.02.003.

[14] H. Li et al., “A defense method based on attention mechanism against
traffic sign adversarial samples,” Inf. Fusion, vol. 76, no. March 2020,
pp. 55–65, 2021, doi: 10.1016/j.inffus.2021.05.005.

[15] H. Kwon et al., “NeuroImage Early cortical signals in visual stimulus
detection,” Neuroimage, vol. 244, no. September, p. 118608, 2021, doi:
10.1016/j.neuroimage.2021.118608.

[16] S. Messaoud, S. Bouaafia, A. Maraoui, and A. Chiheb, “Deep
convolutional neural networks-based Hardware – Software on-chip
system for computer vision application ✩,” Comput. Electr. Eng., vol.
98, no. June 2021, p. 107671, 2022, doi:
10.1016/j.compeleceng.2021.107671.

[17] E. Karaaslan, U. Bagci, and F. N. Catbas, “Attention-guided analysis of
infrastructure damage with semi-supervised deep learning,” Autom.
Constr., vol. 125, no. April 2019, p. 103634, 2021, doi:
10.1016/j.autcon.2021.103634.

[18] K. Nogueira, O. A. B. Penatti, and J. A. dos Santos, “Towards better
exploiting convolutional neural networks for remote sensing scene
classification,” Pattern Recognit., vol. 61, pp. 539–556, 2017, doi:
10.1016/j.patcog.2016.07.001.

[19] Y. Anagun, S. Isik, and E. Seke, “SRLibrary: Comparing different loss
functions for super-resolution over various convolutional architectures,”
J. Vis. Commun. Image Represent., vol. 61, pp. 178–187, 2019, doi:
10.1016/j.jvcir.2019.03.027.

[20] K. Fu, Q. Zhao, I. Yu-Hua Gu, and J. Yang, “Deepside: A general deep
framework for salient object detection,” Neurocomputing, vol. 356, pp.
69–82, 2019, doi: 10.1016/j.neucom.2019.04.062.

[21] Y. Wang, Z. Fang, and H. Hong, “Comparison of convolutional neural
networks for landslide susceptibility mapping in Yanshan County,
China,” Sci. Total Environ., vol. 666, pp. 975–993, 2019, doi:
10.1016/j.scitotenv.2019.02.263.

[22] B. Zhao, X. Li, X. Lu, and Z. Wang, “A CNN–RNN architecture for
multi-label weather recognition,” Neurocomputing, vol. 322, pp. 47–57,
2018, doi: 10.1016/j.neucom.2018.09.048.

[23] J. Du, C. Vong, S. Member, and C. L. P. Chen, “Novel Efficient RNN
and LSTM-Like Architectures : Recurrent and Gated Broad Learning
Systems and Their Applications for Text Classification,” pp. 1–12,
2020.

[24] H. Chen, L. Wu, J. Chen, W. Lu, and J. Ding, “A comparative study of
automated legal text classification using random forests and deep
learning,” Inf. Process. Manag., vol. 59, no. 2, p. 102798, 2022, doi:
10.1016/j.ipm.2021.102798.

[25] Z. Parcheta, G. Sanchis-Trilles, F. Casacuberta, and R. Rendahl,
“Combining Embeddings of Input Data for Text Classification,” Neural
Process. Lett., vol. 53, no. 5, pp. 3123–3151, 2021, doi:
10.1007/s11063-020-10312-w.

[26] X. Li, M. Cui, J. Li, R. Bai, Z. Lu, and U. Aickelin, “A hybrid medical
text classification framework: Integrating attentive rule construction and
neural network,” Neurocomputing, vol. 443, pp. 345–355, 2021, doi:
10.1016/j.neucom.2021.02.069.

[27] M. A. Ibrahim, M. U. Ghani Khan, F. Mehmood, M. N. Asim, and W.
Mahmood, “GHS-NET a generic hybridized shallow neural network for
multi-label biomedical text classification,” J. Biomed. Inform., vol. 116,
no. April 2020, p. 103699, 2021, doi: 10.1016/j.jbi.2021.103699.

[28] F. Nielsen, “Anticipation-RNN : enforcing unary constraints in sequence
generation , with application to interactive music generation,” vol. 4,
2018, doi: 10.1007/s00521-018-3868-4.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

723 | P a g e

www.ijacsa.thesai.org

[29] D. Bisharad, “Music genre recognition using convolutional recurrent
neural network architecture,” no. April, pp. 1–13, 2019, doi:
10.1111/exsy.12429.

[30] A. Onan, “Sentiment analysis on massive open online course
evaluations: A text mining and deep learning approach,” Comput. Appl.
Eng. Educ., vol. 29, no. 3, pp. 572–589, 2021, doi: 10.1002/cae.22253.

[31] J. L. Huan, A. A. Sekh, C. Quek, and D. K. Prasad, “Emotionally
charged text classification with deep learning and sentiment semantic,”
Neural Comput. Appl., vol. 34, no. 3, pp. 2341–2351, 2022, doi:
10.1007/s00521-021-06542-1.

[32] Á. Arcos-García, J. A. Álvarez-García, and L. M. Soria-Morillo, “Deep
neural network for traffic sign recognition systems: An analysis of
spatial transformers and stochastic optimisation methods,” Neural
Networks, vol. 99, pp. 158–165, 2018, doi:
10.1016/j.neunet.2018.01.005.

[33] Á. Arcos-García, M. Soilán, J. A. Álvarez-García, and B. Riveiro,
“Exploiting synergies of mobile mapping sensors and deep learning for
traffic sign recognition systems,” Expert Syst. Appl., vol. 89, pp. 286–
295, 2017, doi: 10.1016/j.eswa.2017.07.042.

[34] J. Li, X. Mei, S. Member, D. Prokhorov, and S. Member, “Deep Neural
Network for Structural Prediction and Lane Detection in Traffic Scene,”
pp. 1–14, 2016.

[35] J. Kim, J. Kim, G. Jang, and M. Lee, “Fast learning method for
convolutional neural networks using extreme learning machine and its
application to lane detection,” Neural Networks, vol. 87, pp. 109–121,
2017, doi: 10.1016/j.neunet.2016.12.002.

[36] J. Tang, S. Li, and P. Liu, “A review of lane detection methods based on
deep learning,” Pattern Recognit., vol. 111, p. 107623, 2021, doi:
10.1016/j.patcog.2020.107623.

[37] A. Shustanov and P. Yakimov, “CNN Design for Real-Time Traffic
Sign Recognition,” Procedia Eng., vol. 201, pp. 718–725, 2017, doi:
10.1016/j.proeng.2017.09.594.

[38] F. Shao, X. Wang, F. Meng, T. Rui, D. Wang, and J. Tang, “Real-Time
Traffic Sign Detection and Recognition Method Based on Simplified
Gabor Wavelets,” 2018, doi: 10.3390/s18103192.

[39] T. Yang, X. Long, A. Kumar, Z. Zheng, and C. Tong, “Deep detection
network for real-life traffic sign in vehicular networks,” vol. 136, pp.
95–104, 2018, doi: 10.1016/j.comnet.2018.02.026.

[40] Á. Arcos-García, J. A. Álvarez-García, and L. M. Soria-Morillo,
“Evaluation of deep neural networks for traffic sign detection systems,”
Neurocomputing, vol. 316, pp. 332–344, 2018, doi:
10.1016/j.neucom.2018.08.009.

[41] A. Barodi, A. Bajit, M. Benbrahim, and A. Tamtaoui, “An Enhanced
Approach in Detecting Object Applied to Automotive Traffic Roads
Signs,” in 6th International Conference on Optimization and
Applications, ICOA 2020 - Proceedings, Apr. 2020, pp. 1–6, doi:
10.1109/ICOA49421.2020.9094457.

[42] U. A. Nnolim, “An adaptive RGB colour enhancement formulation for
logarithmic image processing-based algorithms,” Optik (Stuttg)., vol.
154, pp. 192–215, 2018, doi: 10.1016/j.ijleo.2017.09.102.

[43] A. Barodi, A. Bajit, M. Benbrahim, and A. Tamtaoui, “Applying Real-
Time Object Shapes Detection to Automotive Traffic Roads Signs,”
2020, doi: 10.1109/ISAECT50560.2020.9523673.

[44] N. Ben Romdhane, H. Mliki, R. El Beji, and M. Hammami, “Combined
2d/3d traffic signs recognition and distance estimation,” IEEE Intell.
Veh. Symp. Proc., vol. 2016-Augus, no. Iv, pp. 355–360, 2016, doi:
10.1109/IVS.2016.7535410.

[45] A. Barodi, A. Bajit, A. Tamtaoui, and M. Benbrahim, “An Enhanced
Artificial Intelligence-Based Approach Applied to Vehicular Traffic
Signs Detection and Road Safety Enhancement,” Adv. Sci. Technol.
Eng. Syst. J., vol. 6, no. 1, pp. 672–683, 2021, doi: 10.25046/aj060173.

[46] A. Barodi, A. Bajit, M. Benbrahim, and A. Tamtaoui, “Improving the
transfer learning performances in the classification of the automotive
traffic roads signs,” E3S Web Conf., vol. 234, no. February, 2021, doi:
10.1051/e3sconf/202123400064.

[47] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The German
Traffic Sign Recognition Benchmark for the IJCNN’11 Competition,”
Proc. Int. Jt. Conf. Neural Networks, pp. 1453–1460, 2011, [Online].
Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6033395.

[48] R. Udendhran, M. Balamurugan, A. Suresh, and R. Varatharajan,
“Enhancing image processing architecture using deep learning for
embedded vision systems,” Microprocess. Microsyst., vol. 76, p.
103094, 2020, doi: 10.1016/j.micpro.2020.103094.

[49] B. S. Rao, “Dynamic Histogram Equalization for contrast enhancement
for digital images,” Appl. Soft Comput. J., vol. 89, p. 106114, 2020, doi:
10.1016/j.asoc.2020.106114.

[50] A. Bouti, M. A. Mahraz, J. Riffi, and H. Tairi, “A robust system for road
sign detection and classification using LeNet architecture based on
convolutional neural network,” Soft Comput., vol. 24, no. 9, pp. 6721–
6733, 2020, doi: 10.1007/s00500-019-04307-6.

[51] T. Sercu and V. Goel, “Dense Prediction on Sequences with Time-
Dilated Convolutions for Speech Recognition,” no. Nips, 2016,
[Online]. Available: http://arxiv.org/abs/1611.09288.

[52] H. C. Shin et al., “Deep Convolutional Neural Networks for Computer-
Aided Detection: CNN Architectures, Dataset Characteristics and
Transfer Learning,” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp.
1285–1298, 2016, doi: 10.1109/TMI.2016.2528162.

[53] M. Gao, Q. Zhang, J. Dong, D. Yang, and D. Zhou, “End-to-end speech
emotion recognition based on one-dimensional convolutional neural
network,” ACM Int. Conf. Proceeding Ser., vol. Part F1481, pp. 78–82,
2019, doi: 10.1145/3319921.3319963.

[54] B. Zoph and Q. V Le, “Searching for activation functions,” 6th Int.
Conf. Learn. Represent. ICLR 2018 - Work. Track Proc., pp. 1–13,
2018.

[55] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic
optimization,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track
Proc., pp. 1–15, 2015.

