
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

Genetic Algorithms Applied to the Searching of the
Optimal Path in Image-based Robotic Navigation

Environments

Fernando Martı́nez Santa, Fredy H. Martı́nez Sarmiento, Holman Montiel Ariza
Universidad Distrital Francisco José de Caldas
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Abstract—This paper describes an optimal-path finding strat-
egy based on Genetic Algorithms, applied to mobile robots in
static navigation environments. This strategy starts from an image
or plan of the environment and is supported by some different
image processing algorithms, mainly the image skeletonization.
Three different strategies were tested, changing the domain of
the optimization target function for the Genetic Algorithm, the
first domain was all the points of the environment image less
the obstacles or walls, the second domain was similar but using
an image with the obstacles dilated, and the final domain was
only the points of the skeleton image. The last tested domain
is from 99.4% to 99.6% smaller than the others, that implied
reductions from 95% to 96% in the overall execution time of the
strategy. Likewise, three skeletonization algorithms were tested
in order to use the one with less execution time in this proposal.
Finally, the proposed path planning strategy was tested on the
same environment changing the initial and final points giving as
result a valid and optimized path for the mobile robot in all the
tested cases, and an overall average optimization time less than 2
minutes. This last, validates this proposal for robotic navigation
applications with static obstacles.
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I. INTRODUCTION

Although robotics has been one of the areas with the most
ongoing research over the years, today, it continues to expand
its fields of application due to the incorporation of automation
in daily life. One example of this is mobile robots, which are
now looking to help people in daily tasks; this situation implies
that mobile robots must be capable of a path in different
environmental conditions or grounds. Hence, navigation has
become an important robotics process, allowing a mobile robot
to know its location and plan and follow a path, preventing
collision with obstacles.

According to recent studies [1], there are some approaches
to the solution of the navigation problem in robotics based on
deterministic and non-deterministic algorithms, which focus
on optimal path planning [2] and collision prevention [3].
When reviewing from the path planning point of view, where
a route is planned in a given environment reducing the total
cost associated with the trajectory, it is necessary to consider
whether local path planning [4] or global path planning [5],
[6] is being performed. Thus, different methods have been
developed, classified into classical approaches and heuristic [1]
or reactive approaches [7]. In recent years, heuristic or reactive
approaches have been the most used due to their robustness

to handle the uncertainty present in the environment and real-
time navigation problems. Some heuristic or reactive methods
that have been used are Genetic Algorithm (GA) [8], [9],
Ant Colony Optimization (ACO) [10], [11], Particle Swarm
Optimization (PSO) [12], [13], [14], [15], Neural Networks
(NN) [16], Fuzzy Logic (FL) [17], Dijkstra algorithm [18],
A* algorithm [19], among others.

Genetic algorithms (GAs) are part of evolutionary comput-
ing, one of Artificial Intelligence techniques that exist today.
GA is a meta-heuristic method for solving searching and
optimization problems, where a new population is generated
from the fitness value of the previous generation. It is based
on the phenomenon of natural selection and genetic operations
such as mutation and crossover [20]. Some studies have shown
that GA is a robust search method that requires little informa-
tion about the environment to achieve reducing path length
and producing smoother path for robot navigation, with some
limitations in convergence rate and time-consuming process
[21], [22].

Therefore, the aim of this research is to propose a path
planning strategy for mobile robots based on digital image
processing and Genetic Algorithms. The main idea is exploring
the GA as selection and optimization tool for searching a valid
and optimized path for a mobile robot in its environment,
starting from an image or plan of that environment.

The remainder of this paper is organized as follows. In
Section II, a brief description of the robot environment is
given, likewise the description of the data flow (pipeline) of
the proposed strategy; the pre-processing image operations for
the environment image are presented in Sections II-A, II-B
and II-C; Section II-D gives the first process of the path
planning, the computing of the skeleton of the image. Section
II-F describes the application of a GA for finding an optimal
path. Section III shows the experiments and results and the
Section IV gives our final conclusions.

II. METHODOLOGY

The path planning proposal for mobile robots shown in
this document, is supported by digital image processing [23],
[24] and it is based on an initial image of the navigation
environment, which can be a plan of the room or a photo taken
from above. For the scope of this article the initial images
are as the one shown in Fig. 1 which represents a plan of a
building floor where the mobile robot has to navigate. In that
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initial image the floor walls are shown in black and the free-
navigable space are shown in white, likewise the ps represents
the initial or starting point of the robot and pe the final or
ending point.

Fig. 1. Navigation Environment for the Mobile Robot.

The proposed path planning strategy is composed of the
following steps: first, a resizing process is applied to the
environment image in order to reduce and standardize the
input. Second, the resized image is turned into binary to be
compatible with the next steps of the process. After, two
images are calculated, the first one is an image with the walls
expanded (as wide as the radius of the robot), this image will
be used to determine possible collisions in the next steps. The
other image is the skeleton [25], [26] (medial axis) of the
free-navigable space, this one is used for calculating the final
path as far as possible to the obstacles (walls). Then, based
on the skeleton of the environment image, the array of all
the possible navigable points is stored. Finally, a short path is
found using a Genetic Algorithm (GA) as optimizing and/or
searching algorithm. The GA uses both the image skeleton and
the walls dilated image to find the optimal path. The complete
pipeline of proposed strategy is shown in the diagram of the
Fig. 2. The overall path planning strategy was implemented by
using Python 3 programming language and mainly the Scikit
Image module for the digital image processing operations.
Next subsections show a detailed explanation of each of these
steps.

A. Image scaling

In order to reduce the computing time of the overall path
planning strategy, the images to work with have to be the small
as possible, due to that, the resolution of the input image and
therefore all the generated and used images is limited to 700k
pixel, specifically images of 1000x700 pixels. This last is very
important mainly for the GA, due to some image processing
operations are part of the fitness function or target function,
that implies it has to be iterated very much times until reach the
convergence value. The exponential increasing of the execution
time in image processing algorithms where the resolution of
the input image increases, will imply a very high execution
time for the overall strategy, for that reason is very important
to limit the input image resolution. In the scaling or resizing
operation that was applied to the input image, no anti-aliasing

Fig. 2. Pipeline of the Proposed Path Planning Strategy.

method was used in order to not affect the original shape of
the border objects in the environment.

B. Image Binarization

Once scaled, the image is normalized and binarized, this
is achieved first by turning all the pixel values (bytes) of
the image into normalized values from 0 to 1, by means
of a simple product. After that, a threshold operation is
performed following the eq. 1, where I and J are the maximum
dimensions of the normalized image A and the output binary
image B, likewise Th is the threshold defined as 0.5. At the
end of this process, the image B has the obstacles in black
(False) and the navigable space in white (True), as shown in
Fig. 3.

∀i ∈ I, j ∈ J :

{
Aij > Th → Bij = True

Aij ≤ Th → Bij = False
(1)

C. Obstacle Dilation

In order to keep the robot to a safe distance from the ob-
stacles or walls of the environment, that distance is calculated
from to the maximum radius (measure from the center to the
maximum distance to this one) of the robot following the eq. 2,
where rd is the dilation radius, rm is the robot maximum radius
and ∆r is a radius tolerance defined as 10%. The resultant rd
is represented in pixel units and it is rounded to the floor.
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Fig. 3. Resized and Binarized Image of the Environment.

rd = ⌊rm +∆r⌋ (2)

In a binary image, the dilation process is achieved over
the white objects, so it is necessary to invert the image to
obtain the desired white obstacles. At the end, the obtained
image is inverted again to obtain an image with the dilated
black obstacles. After inverting the obstacles binary image, a
morphology dilation operation is performed by means of using
a 2D convolution between that image and a disk shape a radius
equivalent to rd. After that, the image is inverted back, and
the result is shown in Fig. 4, where the area of the obstacles
or walls are expanded because of the dilation operation. All of
this, pretends to avoid collisions between the robot with the
walls due to the maximum radius of the robot rm was taken
into account.

Fig. 4. Dilated Obstacles Image.

D. Skeletonization Algorithm

The image skeletonization algorithms pretend to find a
medial axis of the shapes on a binary image applying an
iterated and controlled image erosion operation until obtained
a thin line [27]. This obtained line represents the medial axis
of each object in the image. There are some different proposed

algorithms about such as the one proposed by Zhang et al. [28],
the Lee’s proposal (et al.) [29], and other medial axis operation.
For the scope of this paper, three different skeletonization
algorithms were tested: the standard skeletonization (Zhang),
the Lee’s skeletonization and a standard medial axis obtaining
algorithm. The main aim is to recognize which of them is the
fastest in order to be applied in this proposal. The Fig. 5 shows
the resultant execution times of the tested skeletonization
algorithms. The tests was applied over an 1000x700 image that
contains a possible navigation environment for a mobile robot.
A total of 5 tests were done and the average execution time
of each algorithm is the shown in Fig. 5. Then, according to
those results, for this proposal only the Zhang skeletonization
algorithm is applied for obtaining the medial axis points of the
environment image, as reference for the navigation.

Fig. 5. Skeletonization Algorithms Execution Times.

The Zhang’s skeletonization operation is applied to the
resized environment image in order to obtain a thin line in
the middle distance between obstacle or walls [30]. The Fig.
6 shows the resultant skeleton (in white) of the environment
image, likewise the Fig. 7 shows original environment image
plus the inverted skeleton image. This last image was obtained
by means of applying logical not and logical and operations.
As shown in the Fig. 7, the skeleton corresponds to the middle
distance (medial axis) between halls walls and rooms walls,
so it is a good reference for a free-collision navigation of the
mobile robot.

E. Navigable Points

Once the environment image skeleton is obtained, all the
points of the medial axis Eij are stored in a bi-dimensional
array P where each point Pk(x,y) is a possible point of the
final path. The storage operation of the skeleton set E starts
from the skeleton image (see Fig. 6) and looks for the pixels
in white (True), as the eq. 3 summarizes.

∀k, i ∈ I, j ∈ J : Eij = True → Pk = (i, j) (3)

F. Genetic Algorithm

For calculating and optimizing the path from the navi-
gable points array, Genetic Algorithms (GAs) are used as

www.ijacsa.thesai.org 804 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

Fig. 6. Skeleton of the Environment Image.

Fig. 7. Image of the Navigation Environment Plus its Skeleton.

optimization/searching tool [20] in order to find the shortest
path using as reference the navigable points array obtained
from the environment skeleton image, and at the same time
avoiding collisions with obstacles and walls using the dilated
obstacles image previously mentioned.

1) Collision Avoidance: The avoidance of possible colli-
sions between each segment of the final path and the obstacles
or walls is achieved applying some binary image operations,
specifically a binary exclusive disjunction XOR between the
dilated walls image and the same image with the specific
segment drawn in white as shown in Fig. 8, where p1 and p2
are the points of the path segment. When there is a collision,
a white segment line will be down over an obstacle or wall,
producing that the two images are different. The eq. 4 has to
be accomplished by all the pixels of both images for validating
the non-collision condition. Where again, I and J are the valid
set of indices in the dilated obstacles image D and the copy
of the same image plus the drawn line L.

∀i ∈ I, j ∈ J : Dij ↮ Lij = False (4)

2) Fitness Function: For starting the searching and opti-
mization process, the starting point ps and the ending point pe

Fig. 8. Drawn Line for Testing the Collision with the Obstacles (walls).

are appended to the navigable points array P . Once completed
the navigable points array, it is necessary to define the fitness
function or target function to optimize f(X), which depends
on the solution set X shown in eq. 5.

X = {x0, x1, x2 . . . xn} (5)

where each x represents a reading index of the navigable
points set P which is based on the skeleton of the environment
image. Then, the fitness function depends on the summation
of the distances of each segment pip(i+1) from ps to pe, that
also accomplishes the eq. 4, the complete definition is shown
in eq. 6.

f(X) =

n∑
i=0

|−−−−−−→pxi
p(xi+1)| + dc (6)

Listing 1: fitness function Implementation on Python 3.

def o b j f u n c t i o n (X ) :

d = 0

r o u t e x ,
r o u t e y = b u i l d r o u t e ( X,

s t a r t p ,
end p )

f o r i in range ( l e n ( r o u t e x ) − 1 ) :

dx = r o u t e x [ i ] − r o u t e x [ i +1]
dy = r o u t e y [ i ] − r o u t e y [ i +1]
d += np . s q r t ( dx **2 + dy **2 )

imt = ( imd == True )
r r , cc = l i n e ( r o u t e y [ i ] ,

r o u t e x [ i ] ,
r o u t e y [ i +1 ] ,
r o u t e x [ i +1] )

imt [ r r , cc ] = True

imc = imt == imd
i f sum ( sum ( imc ) ) != imd . s i z e :

d += ( max i + max j )
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re turn d

In the eq. 6, |−−−−−−→pxi
p(xi+1)| is the distance of a segment

between two nearby navigable points, and dc is a penalty
distance which is added to the total distance if the current
segment produces a collision according to the eq. 4. This
penalty distance dc corresponds to the summation of the image
dimension maximum values Axmax

+Aymax
.

The implementation of the GA fitness function in Python
3 is shown in the listing 1, where the function build route
appends the starting ans ending points to the rest of points of
the path.

3) Implementation: The implementation of the GA in this
proposal, follows the parameter shown in Table I, where it
is important to highlight that the mutation probability was
increased to 0.2 in order to accelerate the convergence.

TABLE I. GENETIC ALGORITHM PARAMETERS

Parameter value
maximum iteration number None

population size 100
mutation probability 0.2

elitism ratio 0.01
crossover probability 0.5

parents portion 0.3
crossover type uniform
mutation type uniform by center
selection type roulette

max. iteration without improvement 10
dimension 8

variable type integer
function timeout 5s

The genome of the GA is simply defined as the complete
set X , taking into account that ∀i ∈ {0, 1, 2 . . . n} : xi ∈ E,
where each gene corresponds to each xi variable, it means
gen0 = x0, gen1 = x1 etc, being each gene an integer
variable.

All the tests of the proposed path planning strategy were
done on a simple laptop with the following features: CPU
AMD Athlon Gold 3150U @ 2.400GHz with 2 hardware
cores, GPU AMD ATI Picasso, RAM 12 GB and main drive
SSD. These test were run on the GNU/Linux distribution
Ubuntu 20.04.3 LTS x86 64 and Python 3.8.10.

III. RESULTS

As described in the section II-D, three different skeletoniza-
tion algorithms were tested: the standard one in Scikit Image
(Zhang’s), the Lee’s version and the standard Scikit Image
medial-axis detection algorithm. The Zhang’s version showed
to take only the 24.6% of the time that the Lee’s version took
and 80.5% of the time that the medial-axis detection took, as
shown in Fig. 5.

The first tested approach applied the GA to search the
optimal path directly on the binary image of the plan of the
environment, that means that all the pixels of the white area
in the Fig. 3 (around 617 · 103 points for a 1000x700 image)
compose the fitness function domain for the GA. This first
approach took around 46 minutes to execute. In the second test,
the GA was applied to the obstacles dilated image, reducing

the white area therefore the fitness function domain to 465·103
points, likewise the execution time was reduced to around 35
minutes. None of those approaches had acceptable execution
times, then a third approach was proposed using the skeleton
of the image instead of all the possible navigable area. This
last approach reduced the domain to just 2.5 · 103 points and
the execution time to around 1 minute 46 seconds.

As previously said, the overall algorithm took around 1
minute 46 seconds finding an optimal path with the parameters
given to the GA. This time is the median of 10 test done with
the same conditions, where only the starting and the ending
points were changed.

Four different results are shown in Figures from 9 to 12,
where for all the cases the starting point is the same, but
the final point was changed to the different rooms in the
environment plan. As shown in Fig. 11 it is specifically difficult
for the GA to find valid and short paths when the starting and
the ending points are near. Fig. 11 shows how the path took
king of wrong direction and came back to the correct path, and
also taking around 4 minutes to reach the convergence. This
strange behaviour probably happens due to the fixed number of
points (always 8) configured in the GA, which did not present
problems for larger paths because in those there are more space
between points.

Fig. 9. Resultant Optimized Image.

IV. CONCLUSION

The speed of Zhang skeletonization algorithm makes it
feasible to be applied on environments with moving obstacles,
due to the GA would not take very much time recalculating
the new image skeleton when any of the obstacles moves.

The execution times of the proposed strategy were reduced
from 95% to 96%, reducing the fitness function domain by
means of using the image skeleton instead of the original image
or even the image with the obstacles and walls dilated. This
significantly reduction makes this proposal a hundred percent
applicable for static obstacles environments and gets close to
real time applications.

As a technical recommendation, the execution time is able
to be reduced changing the input parameters of the GA in order
to accelerate its convergence, but having the risk to obtain a
local minimum (not exactly the ”best” as shown in Fig. 11).
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Fig. 10. Resultant Optimized Image, Case 2.

Fig. 11. Resultant Optimized Image, Case 3.

Fig. 12. Resultant Optimized Image, Case 4.

As future work, an adaptable and automatic change of the
total number of points of the path is proposed in order improve
the convergence times and the optimal result when the starting
and ending points are close as the example shown in Fig. 11.
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