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Abstract—The high level of usability achieved by voice biomet-
rics compared to other biometric authentication modalities has
promoted the widespread use of automatic speaker verification
(ASV) systems as authentication tools for several services in
various domains. Despite their satisfactory performance, ASV
systems are vulnerable to malicious voice spoofing attacks.
Hence, voice spoofing countermeasures have emerged as essential
solutions to stop such harmful attacks and protect ASV systems
as well as users’ confidentiality. Typically, these countermeasures
classify utterances into genuine and spoofing categories. In this
research, we propose two voice spoofing countermeasures that
mainly aim to improve the generalization of supervised learning
models. This goal is achieved through the adaptive handling of the
high variance of both utterance classes, i.e., genuine and spoofing
classes. The proposed spoofing countermeasure addresses the
poor generalization problem by identifying the hidden structure
of each utterance category prior to the classification task. Specif-
ically, fuzzy clustering algorithms were deployed to mine the
hidden partitions of utterance classes. The conducted experiments
showed that the proposed approach outperforms the state-of-the-
art approaches in the ASVspoof 2017 dataset, with a testing EER
equal to 1.07%.

Keywords—Voice spoofing; spoofing countermeasure; classifi-
cation; clustering

I. INTRODUCTION

At present, biometric authentication along with other iden-
tification features is widely deployed to manage, administrate
and control systems’ accessibility in order to secure the ap-
plications and stored data [43]. In particular, the widespread
use of biometric recognition systems has prompted research
efforts to consider various modalities such as retinal, facial and
speech data. Speaker verification (SV) has been introduced as
a biometric recognition paradigm that uses human voiceprints
to identify individuals every time they access a given ser-
vice or system. SV-based identification is typically meant to
compare the speaker’s voice with the voiceprints previously
recorded, then grant access to the identified persons only. The
advent of voice assistant and smart home devices boosted the
interest in automatic speaker verification (ASV) systems as
promising alternatives to ensure the security of various smart

home applications, smart devices, online payment processes
and phone banking [30]. However, these ASV systems have
proven to be vulnerable to voice spoofing attacks [41]. In fact,
such attacks have been defined as presentation attacks (PA)
according to the International Organization for Standardiza-
tion (ISO) and the International Electrotechnical Commission
(IEC) [15]. In fact, spoofing attacks occur when a fraudster
falsifies another identity to access some personal or secured
resources [26]. For instance, they can be achieved through
replay attacks which consist of collecting voice samples of
a particular person, manipulating them to produce a spoofing
voice, and replaying the resulting spoofing voice to mislead
an automatic speaker verification (ASV) system. This kind
of voice manipulation can be performed using data voice
conversion or speech synthesis algorithms [41, 48]. Obviously,
in order to prevent these spoofing attacks, audio anti-spoofing
countermeasures are required. A voice spoofing countermea-
sure is a classification system that can automatically categorize
voice records into two predefined categories: genuine and
spoofing. Typically, it comprises two main components: (i) an
audio feature extractor, and (ii) a supervised learning model.
In this context, various audio features have been investigated
for designing highly discriminative descriptors. Namely, the
constant Q cepstral coefficients (CQCC) [45] and the linear fre-
quency cepstral coefficient (LFCC) [42] were proposed to bet-
ter discriminate between spoofing and genuine voice records.
Similarly, diverse classifiers, such as the Gaussian mixture
models (GMMs) [39] and deep neural networks (DNNs) [36]
have been extensively used to build models that can accurately
map unseen voice records into the two predefined classes.
Although different deep learning architectures, such as the
residual neural networks (ResNets) [22] and the recurrent
neural networks (RNNs) [9] have been adapted and used for
anti-spoofing, GMM-based solutions overtake the state-of-the-
art anti-spoofing recognition systems [41]. Nevertheless, one of
the major unsolved issues affecting the reliability and accuracy
of anti-spoofing recognition systems is the poor generalization
of the learned models [41]. In other words, the learned model
failed to predict unseen data instances. Generalization char-
acterizes the model’s ability to predict unseen data instances.
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This limitation can be attributed to the high variance in both
the genuine and the spoofed utterances. Specifically, genuine
speech instances exhibit high interspeaker variance, owing to
the discrepancies between speaker voices, as well as an intra-
speaker variance because of the inconsistency in the human
voice that can be affected by aspects such as the emotional
state [1, 29]. These two types of variations also apply to
spoofed speeches. Moreover, spoofing utterances witnessed
other types of variations caused by the recording devices used
to collect the original voice records and the algorithms used to
manipulate them [1, 2, 9, 15, 22, 26, 29, 36, 39, 41, 42, 45, 48].
Hence, better handling of the high variance of the genuine
and spoofed classes would improve the generalization of
the spoofing countermeasures and, consequently, enhance the
detection performance. In this paper, we propose to improve
the recognition of voice spoofing utterances by tackling the
problem of intraclass variation for two categories: genuine and
spoofed. More specifically, we propose learning the underlying
structure of each category (genuine/spoof) by clustering them
into homogeneous sub-categories. The rest of the paper is
organized as follows: In Section II, existing voice-spoofing
countermeasures are surveyed. In Section III, background
knowledge on clustering techniques is provided. The proposed
approach is presented in Section IV. The experiments con-
ducted are described in Section V along with the reported
results and their analysis.

II. LITERATURE REVIEW

Recently, several spoofing countermeasures have been pro-
posed. The development of these systems was boosted by
contests in 2015 and 2017 [30, 43], which provided chal-
lenging data for anti-spoofing systems. More specifically, the
training set contains five types of spoofing attack algorithms,
referred to as known attacks, whereas the evaluation set, used
for testing, contains the known attacks and five more types of
attacks called unknown attacks. The proposed system amounts
to classification systems for genuine and spoofed utterances.
They aimed to discriminate spoofing utterances from genuine
utterances. One of the main aspects that has been exploited
is the presence of noise in the spoofing records [23]. During
the playback and re-recording phases used by the replay attack,
different types of noise are generated. These types of noise are
mainly from the recording environment and recording device.
They can potentially allow for differentiation between spoofed
and genuine signals. In this context, both conventional and
deep learning approaches have been reported.

A. Conventional Countermeasures

Typically, conventional spoofing/genuine recording classifi-
cation comprises a feature extraction component followed by a
classification component. The system proposed in [23] extracts
the cepstral coefficient (CQCCs) [7] feature. A GMM [5]
classifier was employed for the classification task. This system
has been considered a baseline approach for recently pro-
posed research for evaluating anti-spoofing systems [30, 43].
Alternatively, the system reported in [39] combines cochlear
filter cepstral coefficients (CFCC) [33] and the instantaneous
frequency (IF) [40]. The combined feature aims to capture
the speech synthesis and voice conversion, thus characterizing
spoofing utterances. It was then fed to the GMM classifier.

TABLE I. SUMMARY OF CONVENTIONAL APPROACHES FOR SPOOFING /
GENUINE CLASSIFICATION

Reference Feature Classifier Dataset Training
EERor
rate (%)

Testing
EERor
rate (%)

[45] CQCCs GMM ASVspoof 2015 [49] 0.048 0.462
[27] CQCCs GMM ASVspoof 2017 [27] 10.35 24.77
[39] MFCC CFC-

CIF
GMM ASVspoof 2015 [49] 0.408 2.013

[42] LFCC GMM,
SVM

ASVspoof 2015 [49] 0.11 1.67

[37] MFCC,
MFPC,
CosPhasePCs

SVM
with
i-vectors

ASVspoof 2015 [49] 0.008 3.922

Similarly, the work in [42] focused on segregating spoofing
records generated by voice conversion or speech synthesis
algorithms. For this purpose, the authors in [42] conducted an
empirical comparison of 19 different features to determine the
most appropriate one for classifying spoofing versus genuine
records. These features are then conveyed to both GMM [5]
and SVM [6] classifiers. The experimental results reported
in [42] showed that the system comprising the LFCC [53]
feature extraction component and GMM classifier component
outperformed all other considered systems. On the other
hand, the work in [37] used SVM as a classifier [6] for
different extracted features. In addition, the i-vector was used
for each feature and then integrated into a one-centered i-
vector with a normalized length. The experimental results
in [37] showed that the MFCC [11], Mel-frequency principal
coefficients (MFPC) [14], and CosPhase principal coefficients
(CosPhasePC) [47] fed into the SVM classifier had better
classification performance. Table I presents a brief summary
of conventional approaches for spoofing/genuine classification.
All of these systems have experimented on the ASVspoof 2015
dataset [49].

B. Deep Learning based Countermeasures

The successful achievement of deep neural networks
(DNN) in classification tasks has motivated the application of
such approaches for anti-spoofing. Recently, deep learning ap-
proaches have been proposed for voice spoofing classification.
In particular, the residual network model (ResNet) found recent
success in the works of [8, 30, 36]. Moreover, as voice spoofing
data can be considered as a sequence classification task,
recurrent neural networks (RNNs) [35] were also investigated
in the works [9, 19, 31, 51, 52]. Furthermore, while raw audio
data were considered as inputs to the DNN model in some
studies [9, 19, 30], engineered features were considered in
others [8, 31, 36, 52].

1) Residual Network based Approaches: The proposed
system in [30] employs a dilated residual network (DRN) deep-
learning architecture [21]. The latter is based on the ResNet
model, and an attention-filtering mechanism. More precisely,
the DRN uses convolution layers instead of fully connected
layers, and alters the residual units by adding a dilation
factor. The attention component aims to select important parts
while ignoring unrelated ones, such as the background noise
segments [50]. Similarly, the system proposed in [8] employed
the ResNet [21] deep-learning model. However, the proposed
approach applies a deep-learning architecture in conjunction
with two low-level cepstral features. In fact, the input conveyed
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TABLE II. SUMMARY OF DEEP LEARNING APPROACHES FOR SPOOFING /
GENUINE CLASSIFICATION

Reference Feature Classifier Dataset Training
EERor
rate (%)

Testing
EERor
rate (%)

[30] Signal
Logspec
via FFT

ResNet ASVspoof 2017[27] 6.09 8.54

[8] CQCC and
MFCC

GMM,
ResNet

ASVspoof 2017[27] 2.58 13.30

[36] Fusion of
HFCC and
CQCC

DNN,
SVM

ASVspoof 2017[27] 7.6 11.5

[9] MFCC,
Fbank

LSTM
and
GRU
RNN

ASVspoof 2017[27] 6.32 9.81

[31] CQT and FFT LCNN,
SVM,
CNN +
RNN

ASVspoof 2017[27] 3.95 6.73

[19] Fbank CNN +
RNN
(GRU)

ASVspoof 2015 [49] 0.03 1.97

[52] Spectrogram
features

CNN +
RNN

ASVspoof 2015 [49] 0.40 3.33

to the network is not raw audio data but features extracted by
MFCCs [11] and CQCCs [45]. Moreover, a GMM classifier
is used at the back end of the network. The work in [36]
uses a similar model, but it exploits high-frequency cepstral
coefficients (HFCCs) instead of MFCCs [11] at the input of
the network.

2) Recurrent Neural Network based Approaches: The au-
thors of [9] used recurrent neural networks (RNN) [35]
for spoofing/genuine record classification. More specifi-
cally, the proposed system employs long short-term memory
(LSTM) [24] and a gated recurrent unit (GRU) [10]. LSTM
has also been used in [44], where the proposed architecture
consists of multiple dense layers followed by one or more
LSTM layers. Similarly, the works in [19, 52] exploited the
RNN [35] deep-learning model. However, an RNN is used with
a convolutional neural network (CNN) [20]. More precisely,
CNN is used as a feature extractor and RNN is used for
processing long dependencies. The work in [19] crops the input
records and trains the two models separately and uses a linear
discriminant analysis (LDA) [25] as a back-end classifier.
However, the work in [52] uses an end-to-end model. It uses
a context window for input, and trains both models simultane-
ously by conjointly optimizing them through backpropagation.
The combination of CNNs and RNNs was also exploited
in [31]. Specifically, it fuses three approaches: the i-vector [12]
approach, light convolutional neural network (LCNN) [46]
approach, and CNN+RNN approach. Three inputs were con-
sidered separately in the first convolution layer yielding three
variants of the LCNN-based model. More precisely, the first
input consists of truncated normalized fast Fourier transform
(FFT) spectrograms [34], the second is constant Q transform
(CQT) [7], and the third is FFT with a sliding window. Table II
provides a brief summary of deep learning approaches for
spoofing/genuine classification.

C. Discussion

Previous studies tackled the generalization problem by
mainly investigating various feature selection and fusion ap-

proaches [31, 36, 37], studying feature representations and
diverse classification approaches [30, 39, 42, 45], and applying
diverse deep learning architectures such as ResNet [8, 30, 36]
and RNN [9, 19, 31, 51, 52]. Furthermore, for deep learning
approaches both raw audio data [9, 19, 30], and engineered
features [8, 31, 36, 52] are considered. Nevertheless, nei-
ther the engineered features nor those learned automatically
by deep learning succeeded in alleviating the generalization
problem. In fact, there was a discrepancy between the training
and testing performances; they improve the prediction for seen
utterances, but they are not able to generalize to unseen ones.
Nevertheless, the baseline approach [45], which is based on
extracting the CQCC feature and GMM-based classification
approach, outperforms the other state-of-the-art approaches in
terms of generalization on the ASVspoof 2015 dataset but
failed on the ASVspoof 2017 dataset. On the latter dataset,
the approach proposed in [31] is the best reported approach
with a testing EERor rate of 6.73%.

III. CLUSTERING

Clustering is an unsupervised learning approach that groups
unlabeled instances into homogeneous clusters based on cer-
tain criteria or similar functions. This allowed the exploration
and analysis of the data. There are three main approaches
to clustering: (i) hierarchical clustering, (ii) partitioning, and
(iii) density-based clustering approaches [5]. Hierarchical clus-
tering [17] creates a hierarchy of clusters following either a
top–down (divisive) or a bottom–up (agglomerative) strategy.
Alternatively, partitioning or centroid-based clustering [32],
is characterized by learning a representative of each cluster
such as the cluster centers. Accordingly, data instances were
assigned to the cluster corresponding to the closest represen-
tative. For this purpose, the distance to the representatives
is calculated using distance metrics such as the Euclidean
distance or Manhattan distance. On the other hand, density-
based clustering approaches [28] consider the density rather
than distance to assign an instance to a cluster. Clustering is
performed in such a way that dense instances form clusters,
whereas sparse instances are considered noise and outliers.
Density-based approaches are characterized by the arbitrary
shapes of the clusters. Clustering approaches can also be cate-
gorized as crisp or fuzzy. Although crisp clustering approaches
assign an instance exclusively to one cluster, fuzzy clustering
can assign an instance to more than one cluster using a mem-
bership degree. The latter can be perceived as an instance’s
probability of belonging to a given cluster. In this way, fuzzy
approaches can deal with real-world applications in which
clusters exhibit overlapping boundaries [5]. In the following
section, we describe three fuzzy clustering approaches that
will be investigated to uncover the underlying structure of
voice-spoofing data. Specifically, we consider fuzzy c-means
(FCM) clustering [4], simultaneous clustering and attribute
discrimination (SCAD) [18], and competitive agglomeration
CA [17] algorithms.

A. Fuzzy C-Means

Fuzzy c-means (FCM) [4] clustering performs a fuzzy
partitioning of the unlabeled data by minimizing the intra-
cluster distances. More precisely, for a set of instances, xj , it
simultaneously learns the cluster representatives (centers), ci,
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and the fuzzy memberships, (uij), by minimizing the objective
function:

J(B,U;X ) =

C∑
i=1

N∑
j=1

(uij)
m ∥ xj − ci ∥2 (1)

subject to

uij ∈ [0, 1]& ∀i, j and

C∑
i=1

uij = 1& ∀j (2)

In Equation (1), xj and ci ∈ Rd where d is the dimension
of the vectors, m is a fuzzier that controls the membership
fuzziness, C is the number of clusters and N is the number
of instances.

B. Simultaneous Clustering and Attribute Discrimination

Simultaneous clustering and attribute discrimination
(SCAD) [18] is an extension of FCM that addresses the
problems of feature selection and aggregation. It learns the rel-
evance feature weights, ν = [νik]i=1...c,j=1...d with respect to
each cluster. In addition to the centers, C = [cik]i=1...c,j=1...d,
and fuzzy membership, U = [uik]i=1...c,j=1...N . This is
achieved by minimizing the objective function, as follows:

J(C,U,V;X ) =

C∑
i=1

N∑
j=1

(uij)
m

d∑
K=1

vik(xjk − cik)
2 (3)

subject to

uij ∈ [0, 1]& ∀i, j and

C∑
i=1

uij = 1& ∀j (4)

and

vik ∈ [0, 1]& ∀i, k and

d∑
i=1

vik = 1& ∀i (5)

where C is the number of clusters, N is the number of
instances and d is the feature size, and vik, cik and uij ∈ Rd

where d is the dimension of the vectors.

C. Competitive Agglomeration

Competitive agglomeration (CA) [17] is another extension
of FCM that addresses the problem of estimating the number
of clusters in an unsupervised manner. In fact, it learns the
number of clusters while learning the cluster representatives
and the fuzzy memberships. It combines hierarchical and
partitioning clustering approaches, and thus benefits from their
advantages. Specifically, CA applies the competitive agglom-
eration in order to select the best number of clusters. It
begins by dividing the instances into small clusters. During
the optimization process, the clusters compete over instances,
and the empty clusters disappear gradually. The CA optimizes
the following objective function:

J(B,U;X ) =

C∑
i=1

N∑
j=1

(uij)
2.d2ij(xj , βi)− α

C∑
i=1

[

N∑
j=1

uij ]
2

(6)

where B = (1, . . . , c) are the cluster representatives,
dij2(xj, βi) is the distance between feature vectors xj and
prototype βi, and uij is the fuzzy membership of instance
j with respect to cluster i. As can be seen, the objective
function in (6) incorporates two terms: the first one is inherited
from the FCM objective function (1). On the other hand, the
second term in (6) is the competitive term that allows cluster
competition to enclose data instances.

IV. PROPOSED APPROACH

Owing to the high intra-class variance of the spoofing and
genuine categories, the sub-groups of these two categories are
scattered. Moreover, spoofing subgroups overlap with genuine
subgroups, and vice versa. This renders the classification prob-
lem even more challenging. In fact, the learned classification
model is too complex and may result in the overfitting of
the training dataset. This reflects the low generalization of
the supervised learning model. Therefore, we propose splitting
each category into homogeneous groups, and then classifying
unknown instances by considering the closest sub-group. The
proposed spoofing countermeasure based on homogeneous
subcategories is illustrated in Fig. 1. As one can see, it starts
by extracting audio features from the genuine and spoofing
utterances. Then, the genuine instances are clustered separately
to determine the representatives of the genuine sub-categories
in an unsupervised manner. Similarly, spoofing instances were
clustered in order to obtain the spoofing representatives. The
learned sub-category representatives are then used to clas-
sify unknown instances. Specifically, for the clustering task,
we propose employing prototype-based fuzzy clustering ap-
proaches. This choice is motivated by the need to learn cluster
representatives, and the fact that fuzzy memberships are better
at handling the overlapping boundaries of clusters. In other
words, we intend to investigate several prototype-based fuzzy
clustering approaches such as FCM [4] and SCAD[17, 18]. In
fact, FCM-based clustering approaches learn the cluster centers
which is not the case for other types of clustering approaches
such as density or hierarchical-based clustering algorithms.
Moreover, SCAD learns the relevance feature weights while
clustering the data. This allows for the automatic selection
and aggregation of the features. Similarly, CA automatically
estimated the number of clusters while clustering the data. The
three clustering algorithms under consideration are optimized
iteratively by alternating the update of the centers, the fuzzy
memberships, and eventually the relevance feature weights
and the number of clusters through the use of closed-form
update equations. Furthermore, we plan to explore the number
of clusters that generate the optimal subcategories for the
spoofing and the genuine classes. In fact, estimating the
number of clusters allows the correct structure of the data to
be uncovered. Therefore, it yields a better local classification
which helps to lessen the generalization issue for unseen
instances. An illustrative example of the proposed spoofing
countermeasure based on homogeneous subcategories is shown
in Fig. 2. As it can be seen, the spoofing utterances are
clustered into six clusters (S1, S2, S3, S4, S5, and S6), while
genuine utterances are clustered into four clusters (G1, G2, G3,
and G4). Then, the blue unseen instance was compared to the
ten learned representatives before assigning it to one of the
clusters. Because G1, one of the representatives of the genuine
category, is the closest to the blue unseen instance, the latter
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Fig. 1. General Overview of the Proposed Approach.

is classified as genuine.

Fig. 2. Illustrative Example the Proposed Spoofing Countermeasure based on
Homogenous Sub-Categories.

V. EXPERIMENTS

The dataset used for the experiments was ASVspoof 2017
version 2.0 [13]. The dataset contained audio files with a
sampling rate of 16 kHz and a 16-bit resolution, which were
divided into three subsets: a training set containing 3016 files,
a development set containing 1710 files, and an evaluation
set with 13,306 files. The training set had 1507 genuine and
1507 replay files, the development set had 760 genuine and
950 replay files, and the evaluation set had 1298 genuine and
12,008 replay files [13]. The Mel-frequency cepstral coeffi-
cients’ (MFCCs) [11] and the constant Q cepstral coefficients’
(CQCCs) [45] features are extracted from the audio files.
MFCC is computed by applying the discrete cosine transform
(DCT) type 2 on a 20 ms audio frame. This generates an audio
spectrum that reflects energy in different frequency bands.
After spectrum computation, a bank of triangular filters was
employed to warp the spectrum into the Mel-scale. Finally,
the results of a Mel-scale filter bank are logarithmized and
decorrelated by applying the DCT. Alternatively, CQCC is
based on a constant Q transform (CQT). The latter is a
time-frequency analysis tool for short-time Fourier transform
(STFT) [7]. The number of bins per octave was set to 12, and
the sampling frequency was set to 44,000 Hz. The CQCCs’
spectrum was derived by first performing CQT transform
on the audio frame. Next, the logarithm non-linearity and
linearization of the CQT’s geometric scale were applied. Then,
the final 167 CQCC cepstral coefficients were obtained by

applying the DCT [45]. Similar to the approaches described
in Section III, the performance of the proposed approach
is evaluated using an equal error rate (EER) [38]. It was
calculated using a receiver operating characteristic (ROC)
curve. More specifically, the EER is defined as the operating
point where the false acceptance rate (FAR) and false rejection
rate (FRR) are equal [16, 38].

A. Experiment 1: Discovering the Underlining Structure using
Fuzzy C-Means

In this experiment, we clustered the genuine and the spoof
classes from the training subset separately, using fuzzy c-
means [4]. The same number of clusters was used for both
classes, and it was tuned from 2 to 16 with a step of 2. The
learned sub-category representatives were then used for the
classification of unknown instances from the testing subset,
using the K-nearest neighbor classifier KNN [3] with K = 1.
The experiment was conducted on the CQCC, MFCC, and a
concatenation of the CQCC and MFCC independently. The
EER with respect to the number of clusters on the considered
features is shown in Fig. 3.

Fig. 3. EER with respect to the Number of Clusters when using Fuzzy
C-Means [20] on CQCC, MFCC and the Concatenation of CQCC and

MFCC.

As shown in Fig. 3, the EER varies with respect to the
number of clusters and features considered. The best result is
obtained when using a number of clusters equal to 2 for both
classes on the CQCC feature. It reached an EER of 4.46%.

B. Experiment 2: Discovering the Underlining Structure using
the Competitive Agglomeration

In this experiment, the underlining structure was learned
using the competitive agglomeration (CA) [17] clustering
algorithm in order to simultaneously cluster the training data
and learn the optimal number of clusters. The same number
of clusters was initially set to 100 for both classes (genuine
and spoofed). Similar to Experiment 1, the learned cluster
representatives are used for the classification of unknown
instances from the testing subset, using the K-nearest neighbor
classifier KNN [3] with K = 1. Moreover, an experiment was
conducted on the CQCC, MFCC, and concatenation of the
CQCC and MFCC independently. Table III reports the obtained
EER, and the learned number of clusters with respect to the
considered features.

As shown in Table III, the CQCC exhibited the lowest
EER of 2.46%. Moreover, the optimal cluster learned by CA
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TABLE III. EER AND THE LEARNED NUMBER OF CLUSTERS WHEN
USING COMPETITIVE AGGLOMERATION (CA) [17] ON CQCC, MFCC,

AND THE CONCATENATION OF CQCC AND MFCC

CQCC MFCC CQCC+MFCC
EER 2.46% 14.86% 9.24%
No of genuine clusters 2 3 3
No of spoof clusters 2 2 3

TABLE IV. LEARNED FEATURE WEIGHTS WITH RESPECT TO EACH
CLUSTER

CQCC MFCC
Cluster 1 (genuine) 0.92 0.08
Cluster 2 (genuine) 0.92 0.08
Cluster 1 (spoof) 0.91 0.09
Cluster 2 (spoof) 0.91 0.09

when using CQCC is two clusters for the genuine class and
two clusters for the spoof class. This is similar to the result
obtained in the first experiment using fuzzy c-means by tuning
the number of clusters. We can then conclude that the CA
clustering approach can learn the underlying structure of both
the genuine and spoof classes while learning the optimal
number of clusters.

C. Experiment 3: Discovering the Underlining Structure using
Simultaneous Clustering and Attribute Discrimination

In this experiment, partitions of the genuine and spoof
classes are mined using simultaneous clustering and attribute
discrimination (SCAD) [18]. It aims to discover the underlying
partitions while learning the optimal relevance feature weights
of CQCC and MFCC audio features. In fact, the weights of
each of these two considered features are learned with respect
to each class. The number of clusters was set to two for
the genuine class and two for the spoof class according to
the results obtained in Experiment 2. The obtained partitions
were then used for the classification task using the K-nearest
neighbor classifier KNN [3] with K = 1. Table IV presents the
obtained EER, and the learned number of clusters with respect
to the considered features.

As reported in Table IV, the feature weights with the largest
relevance were learned for the CQCC. This is in concordance
with the results obtained in the previous experiments, which
showed that the CQCC is more relevant for the classification of
genuine/spoof utterances. To further investigate the CQCC fea-
ture, we applied SCAD to its 167 CQCC cepstral coefficients.
In other words, each dimension of the CQCC is considered as
a single feature. A feature relevance weight was then learned
for each dimension. For Experiment 1, the number of clusters
was tuned from 2 to 16 in steps of 2.

As shown in Fig. 4, when using the same number of
clusters, the lowest EER, equal to 1.07, was obtained for the
number of clusters equal to two. We can conclude then that
performing SCAD on the CQCC yields better results. This
is because it deals with the high dimension of CQCC by
performing an optimal weighted sum of the coefficients. Fig. 5
shows the relevance feature weights for each cluster.

Fig. 4. EER with respect to the Number of Clusters when using SCAD [18]
on CQCC Dimensions.

(a) (b)

(c) (d)

Fig. 5. Relevance Feature Weights with respect to (a) Cluster 1 (Genuine),
(b) Cluster 2 (Genuine), (c) Cluster 1(Spoof), (d) Cluster 2 (Spoof).

D. Experiment 4: Performance Comparison with the State-of-
the-Art Approaches

In this experiment, the performance of the proposed ap-
proach was compared to that of the state-of-the-art approach
in the ASVspoof 2017. More specifically, the best results ob-
tained using the considered clustering algorithms are compared
to the conventional KNN [3] approach and to the countermea-
sures reported in the literature [8, 9, 27, 30, 31, 36]. To com-
pare the proposed approach to KNN, we classified ASVspoof
2017 using KNN while tuning the neighboring parameter from
3 to 9. The experiment was conducted on MFCCs, CQCCs,
features, and their corresponding concatenation. As shown in
Fig. 6, the lowest EER (EER=3.62%) was obtained when using
CQCC with K equal to 9.

Table V reports the training EER and the testing EER of the
state-of-the-art approaches, the best KNN result, and the best
results of the proposed approach with respect to the different
clustering approaches under consideration.

As shown in Table V, the proposed approach outperforms
the KNN classifier and the methods reported in the literature,
regardless of the considered clustering algorithm. Moreover, it
solves the generalization problem by reducing the performance
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TABLE V. PERFORMANCE COMPARISON IN TERMS OF EER BETWEEN THE PROPOSED APPROACHES AND THE STATE-OF-THE-ART APPROACHES

Countermeasures Training EER % Testing EER%
Reported work in [30] (Featurs: Signal Logspec via FFT, Model: ResNet) 6.09 8.54
Reported work in [8] (Features: CQCC and MFCC, Model:GMM + ResNet ) 2.58 13.30
Reported work in [36](Features: Fusion of HFCC and CQCC, Model:DNN + SVM) 7.6 11.5
Reported work in [9](Features: MFCC, Fbank, Model: LSTM + GRU RNN) 6.32 9.81
Reported work in [31](Features: CQT and FFT, Model: LCNN, SVM, CNN + RNN) 3.95 6.73
Reported work in [27](Feature: CQCC, Model: GMM) 10.35 24.77
KNN ( K=9, Feature: CQCC) 1.05 3.62
Proposed approach based on Fuzzy C-Means (No of genuine clusters= 2, No of spoof clusters=2, Feature: CQCC ) 3.15 4.46
Proposed approach based on CA (feature: CQCC) 2.67 2.46
Proposed approach based on SCAD No of genuine clusters= 2, No of spoof clusters=2, Features: coefficient of CQCC) 0.13 1.07

Fig. 6. EER with respect to the Number of Neighbor Parameter K when
using KNN [3] on CQCC, MFCC, and the Concatenation of CQCC and

MFCC.

gap between the training EER and the testing EER. This is
achieved by mining the underlying structure of both genuine
and spoof utterances. Furthermore, the lowest EER is obtained
when using SCAD with a number of genuine clusters equal
to 2, and a number of spoof clusters equal to 2 on CQCC
coefficients. The achieved EER was 1.07%. This improved the
result by a ratio of 5.66% compared with the best reported
work [31], which achieved an EER of 6.73%.

VI. CONCLUSION

Voice spoofing is a prominent security risk that requires
effective countermeasures to protect the user’s information
when using ASV systems. These countermeasures amount to
the classification of the utterances into genuine or spoofing
categories. However, this classification problem is challenging
because of high class variance. In fact, genuine utterances are
subject to variability due to the differences in speakers’ voices
and the discrepancies within the human voice due to emotions
or other effects. Similarly, spoofing utterances are subjected
to the same variability, in addition to the variability caused
by the recording devices employed. Moreover, the diversity in
the methods that produce spoofing utterances, such as voice
manipulation and synthesis, contributes significantly to the
variance in the spoofing class. This high variance in utterances
drastically affects the performance of the spoofing classifica-
tion task. Specifically, it limits the model’s generalization and
yields a less accurate system. Recently, considerable attempts
have been made to address the low generalization of spoofing
countermeasures. The reported works focused mainly on inves-
tigating various feature selection and fusion approaches, study-
ing feature representations, and applying diverse deep learning
architectures. However, neither handcrafted features nor deep
learning-based descriptors have succeeded in alleviating the

generalization problem. In fact, although they have shown
slight improvements in the prediction performance of the mod-
els, they fail to generalize to unseen utterances. In fact, they are
prone to overfitting, as indicated by the discrepancy between
the training and testing performances. In this study, we de-
vised a new countermeasure to address the low-generalization
problem. Specifically, the proposed approaches mined the
understructure of the genuine and spoofing utterances. This
was achieved by integrating the clustering component into
the classification process. The experimental results showed
that mining hidden partitions of voice utterances using fuzzy
clustering yielded a better generalization of the voice-spoofing
countermeasure. In fact, the proposed approach outperformed
the state-of-the-art approaches. Specifically, when using the
CA clustering approach, the training and testing EERs were
similar. Moreover, when using SCAD on the CQCC feature
for a number of genuine clusters equals to 2, and a number
of spoof clusters equal to 2, the performance is drastically
improved with an EER of 1.07%. In future work, we suggest
investigating additional audio features. Moreover, we intend
to use CA as the first step in order to learn the number of
clusters and the initial fuzzy memberships. Then, SCAD would
be performed using the obtained results.
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[41] Md Sahidullah, Héctor Delgado, Massimiliano Todisco, Tomi Kinnunen,
Nicholas Evans, Junichi Yamagishi, and Kong Aik Lee. Introduction to
voice presentation attack detection and recent advances. In Handbook
of biometric anti-spoofing, pages 321–361. Springer, 2019.

[42] Md Sahidullah, Tomi Kinnunen, and Cemal Hanilçi. A comparison of
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