
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

Revisiting Polyglot Persistence: From Principles to
Practice

Omar Lajam, Salahadin Mohammed
Information and Computer Science Department
King Fahd University of Petroleum and Minerals

Dhahran, Saudi Arabia

Abstract—To cope with the rapid advancements in information
technologies, many database systems have been developed in the
last decade to satisfy various data storage requirements, such
as NoSQL databases. In many cases, using a single database
system cannot be an option because of the limitations posed
on the functionalities of the software application. Therefore,
applications may use multiple distributed storage databases that
complement each other to satisfy the conflicting requirements.
Such applications that are called polyglot persistent applications.
However, the practical implementation of polyglot persistence
and its complexities have not been studied enough. In this
paper, the most recent studies related to polyglot persistence are
reviewed. Database systems are classified based on their data
storage model, and their use cases are discussed. The principles
of polyglot persistence and its challenges are expounded. The
implementation architectures of polyglot persistence applications
are categorized into Application-coordinated Polyglot Persistence,
Service-oriented Polyglot Persistence, Polyglot- Persistence-as-a-
Service, and Multi-models Databases. An analysis of the issues
related to each architecture is presented. In light of the study
findings, a practical polyglot persistence implantation strategy
is proposed. The outcomes of this work can help design future
polyglot persistence applications and influence future research
on how to resolve the complexity involved in polyglot persistence
solutions.

Keywords—Database system; database architecture; relational
database; NoSQL; distributed storage; multi-model database; re-
view; classification

I. INTRODUCTION

Data stores have been an integral component of software
applications since the emergence of information technology
systems, including shopping, accounting, medicine, and games
applications. There is a wide range of database systems that
are available for storing data, such as MySQL, MongoDB,
and Cassandra, to name a few. These database systems are
usually classified based on how they model and store the
data. Nevertheless, relational databases are the most popular
databases used in the industry [1], and they are the default
option for typical applications.

Despite their popularity, relational databases have some
limitations, such as expensive queries and vertical scalability,
that make the selection of non-relational databases vital. As
the application gets popular and the database gets burdened
with millions of records, there becomes a need for using
more flexible databases, such as NoSQL databases, to support
features not supported by relational databases. At the same
time, the complete abandonment of relational databases cannot
be an option in many cases because they also support important

features not supported by other databases, like data consistency
and transactions atomicity. To avoid sacrificing any of the
different database features, the need for using more than one
database system within an application to fulfill the conflicting
requirements raises.

When an application uses more than one database system,
it is called a polyglot persistence application. Taking this
decision of having a polyglot persistence environment is not
straightforward because it increases programming complexity
and requires developers’ knowledge of different database sys-
tems. However, successful implementation of polyglot persis-
tence has the great advantage of having the different database
systems complement each other and satisfying the conflicting
requirements.

In order to ease the development of polyglot persistence
applications, several architectures are proposed in the literature
on how to design and implement them. Nevertheless, the
following problems are identified by this study on those
proposals: 1) There is no clear distinction or categorization
for the different proposed architectures, which make them
irrelevant to each other and difficult to be compared. 2) There
is no detailed discussion on the challenges introduced by
polyglot persistence architectures, while the focus is mostly
on their advantages. 3) Most of the proposed architectures
are not abstract in the sense that they cannot be applied
on any application domain, and they are mostly targeting
specific domains (e.g., e-commerce and healthcare), which
makes them, in many cases, lack generalizability.

This review study aims to address these problems and build
new knowledge based on the literature findings. The main
contributions of this work can be highlighted as follows:

• Review for the most recent studies related to polyglot
persistence.

• Classification for database systems with a detailed
discussion on their characteristics.

• Description of polyglot persistence and its principles.

• Categorization for the architectures in which polyglot
persistence applications can be implemented.

• Analysis of the problems associated with each poly-
glot persistence architecture.

• A practical strategy for polyglot persistence imple-
mentation.

www.ijacsa.thesai.org 872 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

To the best of our knowledge, this is the first work that
expounds polyglot persistence comprehensively, from princi-
ples to practice. This work opens new opportunities for future
research to address polyglot persistence challenges. It guides
future polyglot persistence research towards more mindful
solutions that consider the theoretical and practical aspects
of polyglot persistence. This work can also help practitioners
make wiser design decisions when building polyglot persis-
tence applications. In addition, it may serve as a reference for
understanding database systems concepts and challenges.

The rest of the paper is organized as follows. Section II
discusses the related work. The methodology of this work is
explained in Section III. Section IV presents database sys-
tems classification. In Section V, an explanation for polyglot
persistence principles is given. Section VI describes polyglot
persistence architectures and challenges. Section VII outlines
the proposed polyglot persistence implementation strategy.
And finally, Section VIII concludes the paper.

II. RELATED WORK

Few studies have discussed polyglot persistence concepts,
architectures, and challenges. Gessert and Ritter [2] were the
first who classified polyglot persistence based on research and
industry into three patterns: application-coordinated polyglot
persistence, microservices, and polyglot database services. The
authors then described them again in [3], where they gave brief
details about each pattern without mentioning issues related to
each of them.

Another attempt to classify polyglot persistence is given by
Khine and Wang [4] based on the polyglot persistence solution
orientation. They classify the polyglot persistence solutions
into three types: domain-oriented solution, query language-
based solution, and other solutions (e.g., frameworks, middle-
ware, and multi-model databases). A main observation on their
classification is that it lacks disjointedness and holism.

Wiese [5] discussed polyglot databases architectures and
challenges. Three architectures are described: polyglot persis-
tence, lambda architecture, and multi-model databases. How-
ever, the lambda architecture is part of polyglot processing,
not polyglot databases, as presented in [6].

Jaroslav [7] demonstrated some possible strategies for
building an infrastructure that operates on integrated SQL and
NoSQL databases. The study provides some approaches to
construct such integrated database architectures, mainly by
using multi-model databases and multi-level modeling, where
interactions occur within and between at least two levels of
connected databases.

Clearly, polyglot persistence is not studied enough. In
this work, we try to study polyglot persistence principles,
architectures, challenges, and implementation, based on the
literature findings, as comprehensively as possible.

III. METHODOLOGY

The main objectives of this study are to explore how
polyglot persistence applications can be architected and to
understand polyglot persistence advantages and challenges.
The following methodology is used in order to accomplish
the study objectives.

A. Literature Review

This work is mainly a review that surveys the literature to
gain knowledge on the topic. Four databases were searched to
extract the related studies: IEEEXplore, ACM Digital Library,
Web of Science, and Google Scholar. These four databases
were chosen because they can capture most related studies. The
search string used was ’polyglot persistence’. The inclusion
criterion was to include any study that proposes a polyglot
persistence architecture, model, or framework. The resulted
studies were inspected, and 18 relevant studies were included.
The selected studies were then downloaded and fully read.
Each study was summarized, and all results were aggregated
into an Excel file in a tabular format.

B. Problem Identification

At this stage, several problems were identified in the re-
viewed studies. First, many different architectures lack a clear
distinction or categorization, making them unrelated to each
other and difficult to compare. Second, there is no compre-
hensive treatment of the issues posed by polyglot persistence
architectures, with the emphasis being placed mostly on their
benefits. Third, most proposed architectures were specific to
a few application domains, e.g., e-commerce and healthcare,
which make them difficult to be generalized for other domains.
In other words, many proposed architectures were developed
with specific database requirements in mind.

These three problems are consistent with what Khine and
Wang have found [4], where they stated that it has not yet been
determined which architectures are best suited for different
kinds of applications and how polyglot persistence can be
implemented. Additionally, they observed that the benefits and
limitations of polyglot persistence are still open research topics
for academics and professionals.

C. Classification and Analysis

After identifying the problems, an intensive investigation
was carried on to identify polyglot persistence principles, ar-
chitectures, challenges, and implementation. Search databases
were searched again with the same string. The relevant studies
were analyzed, and more information was gathered from the
literature to build knowledge that addresses the identified
problems.

IV. DATABASES CLASSIFICATION

There are different options for storing application data,
ranging from simply being stored in a file to being stored
in a sophisticated data storage system, depending on the
degree of complexity of the application requirements. Database
Management Systems (DBMSs) are database systems that
manage data storage and retrieval. The implementation of a
DBMS specifies how the data will be structured and stored
into the disk, how the queries will be processed, how access
will be granted, and many other functions. What distinguishes
one DBMS from another is its functions and features. DBMSs
can be categorized into relational (RDBMS), referred to as
SQL databases, and non-relational or NoSQL (Not only SQL)
databases.

www.ijacsa.thesai.org 873 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

A. Relational Databases

Relational databases use the relational data model to store
the data. It is the most popular model for storing structured
data. It was first introduced by E. F. Codd in 1970 [8][9].
It is very mature, stable, trusted, and well researched. In this
model, the data is organized as tables, and these tables can have
relationships with each other. Examples of relational databases
include MySQL, PostgreSQL, and Oracle.

Relational databases support transactions that obey ACID
properties (Atomicity, Consistency, Isolation, and Durability)
[10]. The atomicity property ensures that all instructions of
a transaction will be executed at once, i.e., a transaction
is an atomic unit of processing. The consistency property
guarantees that the database state is always consistent, and the
correct execution of a transaction takes the database from one
consistent state to another. The isolation property makes each
transaction completely isolated from others, and its effect on
the database does not become visible until it is committed. This
noninterference transaction execution can be achieved using
concurrency control techniques [11]. The durability property,
also referred to as permanency, ensures that changes made
by a successful transaction will not be lost by subsequent
unsuccessful transactions [12].

Relational databases have fixed database schema. They
enforce data consistency and integrity. They store the data
efficiently with minimal redundancy and maximal space uti-
lization [13]. They have powerful query language. And lastly,
they have a great community that provides support and help.

Relational databases manifest some drawbacks under some
situations, especially when the number of database users
dramatically increases and when the data volume becomes too
huge. That is mainly due to the nontrivial processing required
for user queries and the difficulty of operating on a distributed
architecture. With massive amount of data, the relational
database requires powerful machine to operate efficiently. The
only option to scale the database system up is to upgrade the
machine to a more powerful one. In other words, relational
databases are only vertically scalable. Because they usually run
on one machine, relational databases are prone to the single
point of failure threat.

Relational databases are not suitable for unstructured, semi-
structured, and graph data. They are not suitable for applica-
tions that store schema-less or schema-free data. They incur
a high cost for complex query processing due to the table
joins and constraints checking involved. They are less suitable
for high-velocity ingestion due to the schema constraints
validations. The relational database infrastructure (i.e., server
machine) cost is expensive due to the powerful processing and
storage space resources it needs, especially when the number
of simultaneous users and/or the data volume becomes huge
[14].

B. NoSQL Databases

The term ”NoSQL” can be interpreted as ”not using SQL
query language”, or can be interpreted as ”Not only SQL”,
where the latter implies either the support of a database system
for a query language that is similar to SQL or implies the
co-existing of a non-SQL database with a SQL database in a

common polyglot persistence environment. There is no agreed-
upon definition of what ”NoSQL” is stand for [15].

The main characteristic of NoSQL databases is their ability
to operate in a distributed architecture, running on a cluster of
commodity hardware. In NoSQL databases, there is almost no
referential integrity constraint among data objects. Therefore,
processing data residing in many different machines is feasible,
and horizontal scalability is enabled by simply adding new
processing and storage resources without replacing old ones. In
addition, distributed storage architecture enables the migration
of processes to data and data to processes, which facilitates
big data analysis tasks.

An important problem with SQL databases solved by
NoSQL databases is the data structure impedance mismatch
[16]. The in-memory data can be kept in complex structure
(e.g., nested lists), while with SQL databases, the data is
always in a simple tabular format. This difference between the
two stores (in-memory and database) causes the impedance
mismatch and requires translation work upon data writing and
reading to and from the database. For object-oriented program-
ming language, it would be more favorable to replicate the data
objects stored in memory directly into the database. For SQL
databases, this problem is mitigated by the Object-Relational
Mappers (ORMs) [17], where they take the responsibility to
map data objects to their corresponding underlying database
structure. With most NoSQL databases, the in-memory data
structure can be stored as-is into the database, and this feature
reduces programming overhead and enhances the performance.

NoSQL databases are schema-less, and they do not enforce
data integrity constraints. That makes NoSQL databases more
efficient because constraints checking and integrity valida-
tion upon data insertion are eliminated [18]. The distribution
architecture of NoSQL databases makes them fault-tolerant
because they are not prone to the single point of failure
threat. Data replication across distributed storage nodes in
NoSQL databases is easy because there is no obligation to
the ACID properties. Alternatively, NoSQL databases adhere
to the BASE properties (Basic Availability, Soft state, Eventual
consistency) [12]. The basic availability property ensures that
every request will get a response. However, consistency among
responses is not guaranteed, and multiple users requesting the
same data object can get different versions. The soft state prop-
erty allows the database system to remain inconsistent after
query execution. The eventual consistency property promises
to propagate the changes to storage nodes until eventually
the entire distributed database system becomes on a global
consistent state [19].

NoSQL databases are considered ”non-relational”
databases because their models are divergent from the
traditional relational data model and implemented differently.
NoSQL data models are categorized into Key-value,
Document, Column Family, and Graph data models [20]. The
next discussion for each model is mostly inspired from [15]
[20], [21], and [22].

1) Key-Value Model: This is the simplest data model,
where the data object is stored as a pair consisting of a key
and a value. The key is a unique alpha-numeric identifier for
the value. The value can be a string or complex lists and sets,
with no constrains on its content structure. The structure of this

www.ijacsa.thesai.org 874 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

model is very similar to hash tables and dictionaries. In this
model, the data can only be searched by key, i.e., the value is
not searchable. Examples of key-value databases include Redis
and Memcached.

The simplicity of this model makes it scalable and suit-
able for application that requires fast access to self-contained
schema-less data. Examples of these data are user profiles,
web sessions, shopping carts, and products information. On the
other hand, the key-value model is not suitable if relationships
exist between data objects, data is queried by its value,
values are updated frequently, or for operating on multi-key
transactions.

2) Document Model: This model can be considered an
expansion to the key-value model, where the value contains
semi-structured data and can be fully searched and indexed.
Each data object is stored in a document that contains one
or more keys. Groups of logically related documents are
called collections, which are equivalent to tables in relational
databases. To get the flexibility in accessing the data by its
value, the database may store metadata that describes the
allowable value structure and types. The database can retrieve
part of the document based on the user query. The document
can be formatted in a standard data exchange format such as
XML, YAML, JSON, or BSON (Binary JSON). Examples of
document databases include MongoDB and Couchbase.

The design of this model is inspired by a business software
called Lotus Notes [23], a document database that enables
sharing data across a local network [24]. Document databases
use cases include storing and managing large-size collections
of text files, such as literal documents, email messages, and
XML files. Also, aggregated data objects such as products
information or user profiles which are accessed at once to-
gether, are another use case for document databases. In general,
document databases are best used for searchable data that
has no fixed schema and which may add many nulls in an
equivalent relational database. Document databases are not the
best option for complex application queries or for transactions
that require accessing multiple documents at once.

3) Column Family Model: Column family (or wide-
column) model stores data objects in key-value pairs, where
the value points to a second-level of key-value pairs. These
second-level keys are called columns, and a subset of them
forms a column family. The values can be accessed by any
key in the first or second level.

One of the first column databases is BigTable [25], where
it was designed to handle big data on a petabyte-scale. Another
example of a column-family database is Cassandra [26], with
a slightly different design philosophy that supports nested
columns.

Column family databases may be the best choice with
structured data when the distributed architecture is used, with
data batch processing on a large scale, or real-time distributed
big-data analysis tools such as MapReduce [27].

4) Graph Model: The graph model stores the data object as
a graph consisting of nodes and connection edges. The nodes
represent data objects while the edges represent relationships
between them. Relationships are associated with properties,
and two nodes can have one or more relationships. This model

is schema-less, and nodes and edges can be inserted with
any content. Examples of graph databases include Neo4j and
JanusGraph.

This model is the only NoSQL model that supports rela-
tionships and ACID transactions. In fact, this model is closer
to the relational model but categorized as NoSQL because
of its dissimilarity with the relational model in how the data
is structured and queried [28]. A key difference between the
graph model and the relational model is in the query cost,
where the navigation along the graph network to explore
information is cheaper with graph database due to the absence
of the expensive join operations. Another obvious difference
is that the SQL query language is not supported in graph
databases [28].

The graph representation of the data helps extract infor-
mation that is hard to get with other models. The data of
real-world problems that have interconnected entities, such as
social networking, maps, products recommendations, pattern
detection, network topologies, or any problem that can be
represented as a graph, is a good candidate to be stored in
a graph database. Nevertheless, graph databases are not good
in horizontal scalability and big data processing.

V. POLYGLOT PERSISTENCE PRINCIPLES

Due to the availability of many heterogeneous database
systems, the decision of which database system should be used
for a given application can be embarrassing. The concepts
of polyglot persistence can be utilized in such cases. This
section explains the meaning of polyglot persistence and spot
the situations in which it is really needed.

A. What is Polyglot Persistence?

The term polyglot persistence was first coined in an online
blog by Scott Leberknight in 2008 [29], and it then became
famous after the book [15]. Leberknight explained the meaning
of polyglot persistence by ”like polyglot programming, is all
about choosing the right persistence option for the task at
hand”. The term ’polyglot’ implies the ability to talk to more
than one database system. Polyglot persistence can be defined
as a situation in which different parts of data are stored in
the most persistent database system that satisfies the storage
requirements.

Traditionally, relational databases were the default accept-
able persistent option for data storage. However, the appear-
ance of non-relational databases has changed the norm since
there can be non-relational databases that are more persistent in
some cases. The determination of the most persistent database
system is totally dependent on the application’s storage re-
quirements.

A common example to illustrate the meaning of polyglot
persistence is with an e-commerce application. In a typical
e-commerce application, queries about clients’ shopping data
can be easily answered using a key-value NoSQL database.
However, if the interest is on what the client’s friends have
purchased, the problem becomes entirely different. To answer
this question, a graph database should be used [15]. Fig. 1
shows an example of a possible implementation for polyglot
persistence in an e-commerce application.

www.ijacsa.thesai.org 875 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

Fig. 1. Example of implementation for Polyglot Persistence in E-Commerce
Application

Large and well-known applications are found to be em-
ploying polyglot persistence. Examples of these applications
are Google, Facebook, Amazon, and Twitter. The practical
aspects of polyglot persistence are not new for the industry,
but they are not studied enough by the research community.
There is a shortage of addressing the problems associated
with polyglot persistence in the literature, especially with
designing, implementing, and maintaining polyglot persistence
architectures [3].

B. Why is Polyglot Persistence?

As shown in Section IV, each of SQL and NoSQL
databases have their own characteristics and advantages. Poly-
glot persistence is employed to get the optimal benefits of each
different database system. A usual concern is with database
scalability, schema flexibility, data consistency, system avail-
ability, and performance [3].

In general, polyglot persistence is adopted to resolve con-
flicting requirements [3] [5]. These conflicts exist due to the
limitations of the database systems, where no one database
system can satisfy all requirements. With polyglot persistence,
all requirements can be satisfied by using as many databases
as needed. If there was a one-size-fits-all solution, as promised
by NewSQL [30], then polyglot persistence can be overlooked.

Next, examples of three types of conflicting requirements:
functional, non-functional, and data requirements, are dis-
cussed.

1) Conflicting Functional Requirements: The boundaries of
database system functions can be determined by the available
commands supported by its query language. Examples of these
commands in SQL are SELECT and INSERT. The database
functional requirements of an application can be determined by
listing the commands it needs to perform on its data storage. A
conflict in the functional requirements occurs when no single
database system supports the entire set of query commands
required by an application.

For example, consider a key-value database that only
supports GET and PUT commands used by a simple web blog
application. If the application added new features that require
more complex queries, such as user authentication and online
course registration features, then either the database system
will be changed, or a new database system will be added

beside the existing one. The latter polyglot persistence solution
eliminates the need for a complex data migration process from
the legacy database into the new one [31]. Note that the conflict
in functional requirements can also be related to the database
system security commands, such as the commands related to
user authentication and access control [32].

2) Conflicting Non-Functional Requirements: The CAP
theorem states that three demanding non-functional require-
ments cannot be satisfied at the same time when designing an
application on a distributed architecture: Availability, Consis-
tency, and Partition tolerance [33] [34] [35]. Therefore, there
must be a trade-off for these requirements when selecting the
database system for a given application. To resolve the conflict,
different parts of application data can be stored in different
databases.

Many non-functional requirements are subject to the ability
of the database system to operate in a distributed architec-
ture on commodity hardware. This ability reduces hardware
resource costs, increases fault tolerance and availability, raises
processing power, enables data replication, and eases big
data analysis [36]. Since NoSQL databases can be deployed
in a distributed architecture, they can be used to satisfy
the mentioned requirements. On the other hand, other non-
functional requirements cannot be accomplished unless the
database system runs on a single server. Examples of these
requirements are data consistency and integrity.

3) Conflicting Data Requirements: The data requirements
for an application can also encourage the decision of using
more than one database system. For example, a customer
profile data (e.g., name, age, job, etc.) may not be designed in
a fixed schema since many details can be null-able, and they
may be frequently changed along the lifetime of the applica-
tion development cycle. In addition, it might be impossible
sometimes to design a fixed schema because the shape of the
data is unknown in advance, as with the case when the data
is inserted based on the user preferences. An example of such
data object is salary, which contains many data items like basic
salary, insurance allowance, transportation allowance, etc. In
these cases, the usage of a schema-less non-relational database
is recommended.

On the other hand, there are cases where using a relational
database is the only possible option. An example of such a
case is with money balance data that is used, for example, to
purchase products or services within a web application. In this
case, ACID transactions must be used to ensure data integrity
and avoid race conditions [37].

Another example to illustrate the conflicting data require-
ments is the speed of data write or read operations. Some data
have higher priority for reading speed over writing speed, such
as product information, while other data might have higher
priority for writing speed over reading speed, such as viewers
counter for a product. To satisfy these conflicting requirements,
different database systems might be selected for each part of
the data.

VI. POLYGLOT PERSISTENCE ARCHITECTURES

To implement polyglot persistence in an application,
one can consider more than one architecture. According

www.ijacsa.thesai.org 876 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

to 18 reviewed studies that implement polyglot persistence,
these architectures can be categorized into four categories:
Application-coordinated Polyglot Persistence, Service-oriented
Polyglot Persistence, Polyglot-Persistence-as-a-Service, and
Multi-models Databases. Table I shows the four categories,
the number of studies implemented each of them, and their
references. A description for each of the categories is given in
this section.

TABLE I. CATEGORIES OF POLYGLOT PERSISTENCE ARCHITECTURES

Category Count Reference
Application-coordinated Polyglot Per-
sistence

6 [38], [21], [39],
[40], [41], [42]

Service-oriented Polyglot Persistence 9 [22], [43], [44],
[45], [46], [47],
[48], [49], [50]

Polyglot-Persistence-as-a-Service 2 [51], [52]
Multi-models Databases 1 [53]

A. Application-Coordinated Polyglot Persistence

With this architecture, the application itself coordinates the
polyglot persistence. This coordination requires the application
to control the mapping of the data to databases, i.e., to have
explicit knowledge about where each part of the data is stored.
Typically, if the application is not small, it would be divided
into modules [54] (aka packages or components). Each module
is responsible for part of the application and has its own logic
and functions. If the data managed by a module is specific
to it (not shared by any other module), managing polyglot
persistence would be simple because each module can have
a different exclusive database system. However, usually, data
application is shared by more than one module. In this case,
many challenges to support polyglot persistence arise. Also, in
some cases, a single module may have conflicting requirements
that have to be satisfied using more than one database system.

To distinguish between these different cases and ease the
discussion of the challenges of each of them, we classify
the relationships between modules and databases within an
application as follows:

• One-to-One: A module has a connection with one
exclusive database.

• One-to-Many: A module has connections with more
than one exclusive databases.

• Many-to-One: More than one module have connec-
tions with one mutual database.

• Many-to-Many: More than one module have connec-
tions with more than one mutual databases.

An application can have a combination of these relation-
ships. The four relationships are shown in Figure 2, where
’M’ stands for module and ’D’ for database. The assumption
is that different databases in the figure are of different storage
models. Next, each of these relationships is discussed.

1) One-to-One Relationship: This is the simplest rela-
tionship. The module controls everything related to its data
in one sole database. One query language can be used to
manipulate the data. Thus, programmers need to learn only
one query language. The application development will also

Fig. 2. Polyglot Relationships: (a) One-to-One, (b) One-to-Many, (c)
Many-to-One, and (d) Many-to-Many

be easier because different programmers can work separately
on different modules with knowledge about only one database
system. A failure of one database will affect only part of the
application and will not be propagated. Database configura-
tions and security are taken care of by one module. A main
concern here is with the design decision that will decide which
database system is the best to satisfy the requirements for a
given module. However, the approach proposed by [55] can
ease the problem, where the functional, non-functional, and
data requirements can be analyzed systemically to determine
the most persistent database system.

2) One-to-Many Relationship: In this relationship, one
module controls data stored by more than one database system,
and that can cause several problems.

First, there will be a need to use more than one query
language, one for each database system, which requires wider
knowledge and longer training for developers. In addition, that
may make the programming task more confusing. Possible
mitigation to this problem can be by using a uniform query
language for heterogeneous database systems [56], by a query
mediator [57], or by translating SQL queries into NoSQL
queries [58].

Second, cross-database consistency of dependent data ob-
jects stored in different databases needs to be managed by
the module because there are no global referential integrity
constraints enforced on the different databases. Consider Fig.
2(b). If dependency exists between a data object X on D1 and
another data object Y on D2, then module M1 should maintain
consistency across databases D1 and D2 by reflecting changes
of X on Y and vice versa.

Third, running a query across different databases is not
straightforward since data need to be processed and integrated

www.ijacsa.thesai.org 877 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

at the module, not at the database system, which may increase
the query cost and require complicated data processing logic
[59]. For example, a read query for a data object that is
scattered on multiple databases may require several different
sub-queries, one for each database, and the results of these
sub-queries should be integrated and structured by the module.
Data integration from different sources is studied in [60].

Forth, data redundancy might be a problem when different
parts of the same data object are stored at different databases
because common parts of the data object can be unnecessarily
duplicated.

Fifth, in case of a failure of one database, this failure might
be logically cascaded to other databases that are used by the
same module in case a dependency exists between data objects.

3) Many-to-One Relationship: In this relationship, two or
more modules use one mutual database. A main issue with
this relationship is that the database configurations and security
depend on more than one module, which may violate the Least
Common Mechanism security design principle [61]. More on
database security can be found in [62].

If all modules of the application are using the same
database, then the polyglot persistence concepts are not ap-
plied. If this is not the case, then one can think of the modules
that share the same database as one logical module, and the
relationship becomes as if it were a one-to-one relationship.
To simplify the control of a single database, a data manager
(e.g., ORM) can be used as an intermediate layer between
the modules and the database. It should control the database
queries and configurations and mitigate security threats.

4) Many-to-Many Relationship: This relationship is the
most complex, where each module uses at least two mutual
databases. From the modules side, one can think of this
relationship as a one-to-many. On the other hand, from the
database side, one can think of this relationship as a many-
to-one. Therefore, the same discussion of the two previous
relationships can be said again here. However, the consistency
problem is expended here because there will be a need to
maintain cross-modules consistency for the data objects that
are dependent on each other and stored in different databases,
and are used by different modules. For example, in Fig. 2 (d),
if a data object X on D1 is dependent on another data object
Y on D2, and another data object Z on D3 is dependent on the
same data object Y on D2, then we need to ensure consistency
across modules M1 and M3 because they both share a common
data object Y at D2.

A summary of the four relationships and their issues is
given in Table II, where ’m’ in the table header stands for
’many’. Note that the discussion here was at the module level,
but it can be generalized to a larger programming unit, such as
an entire application or even a set of applications, or smaller
programming units, such as classes or methods.

B. Service-Oriented Polyglot Persistence

If the database is being used by more than one module
or application, then the database can be decoupled from the
application to reduce the complexity. In this case, only one
mediator will be able to access and control the database. This
mediator is an independent module or a small application that

TABLE II. ISSUES OF POLYGLOT PERSISTENCE RELATIONSHIPS

Issue 1-1 1-m m-1 m-m
More than one query language might be needed No Yes No Yes
The module(s) need(s) to control cross-database
consistency

No Yes No Yes

Data integration might be required at the applica-
tion side

No Yes No Yes

The application should control cross-modules con-
sistency

No No No Yes

Data might be unnecessarily redundant No Yes No Yes
Database failure will be logically cascaded No Yes No Yes
Database configurations & security are dependent
on more than one module

No No Yes Yes

Fig. 3. Service-Oriented Architecture with (a) Microservices and (b)
Modular Mediators

offers an API for external users. The degree of decoupling
this mediator can have different levels. In one extreme, the
mediator will completely be independent from the application
and can be deployed in a different machine, and it can even
be programmed with a different programming language. The
API in this case will be network calls (e.g., REST API [63]).
In this extreme, the mediator is part of what is called a
microservice [64]. In the other extreme, the mediator is part of
the application, and it offers an API as public function calls
to other modules, or even other applications.

Regardless of the detailed structure of this architecture, it
can be seen as service-oriented architecture [65], where the
database is wrapped with a software controller (which is called
inhere a mediator). Illustrative examples of this architecture
are shown in Figure 3, where ’M’ stands for module, ’Me’
for mediator, and ’D’ for database. In Fig. 3(a), the network
cloud implies the possibility for the entire microservice to be
remotely accessed.

www.ijacsa.thesai.org 878 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

Fig. 4. An Illustrative Example for PoPaaS Architecture

A main advantage of this architecture is that different
databases are accessed using similar APIs. The application
is completely unaware about the underlying query languages
of the databases. However, this architecture puts the load of
managing consistency and cross-queries on the application
modules. In case the relationships between the application
and the databases are many-to-one or many-to-many, the same
issues discussed in Section VI-A can be considered here.

Several strategies are proposed in the literature to manage
polyglot persistence queries with microservices, and they are
presented in [48].

C. Polyglot-Persistence-as-a-Service

In this architecture, the burden of managing polyglot per-
sistence is conveyed to a completely different location, the
cloud. The application here only provides the data require-
ments, and then these requirements should be satisfied by
the Polyglot-Persistence-as-a-Service (PoPaaS) provider. The
provider should automatically specify the appropriate database
system for each segment of the data, based on its requirements,
and then provide an API for data access. Such an API design
strategy is proposed by [51].

The problem with this architecture is how the client can
formulate the requirements in a standard format? Another
problem is the selection of the appropriate database system
for the given requirements, which should be automated based
on quantifiable metrics [3]. A possible solution is to use
an automated rule-based data model selection technique, as
proposed by [52]. In reality, we do not know an example of
such a service. An illustrative example of this architecture is
shown in Fig. 4.

D. Multi-Model Databases

Instead of dealing with the complexity of managing mul-
tiple databases, one possible solution is to use a database that
supports multiple data models, which is called a multi-model
database. In this case, the application will manage a single
database that fulfills its requirements. Multi-model database

engines can be designed to manage a combined data model
that has the features of several data models. OrientDB and
ArangoDB are two examples of such databases [66]. They
support document, graph, and key-value data models in one
database instance. OrientDB has a query language that is very
similar to SQL, while ArangoDB has a new language called
ArangoDB Query Language (AQL), which is similar to an
extent to SQL.

A new paradigm to support more than one model is with
the Flexible Schema Data Management (FSDM) [67]. This
paradigm integrates the JSON data model into SQL databases.
The stored JSON data is storable, indexable, and queryable,
without the need for upfront schema definition. This support
will reduce the use cases where polyglot persistence is needed
because there will be no need to use NoSQL databases to
store schema-less data. PostgreSQL and Oracle databases are
examples of such database systems that support this feature
[68].

Despite the support for multiple data models in those
databases, they do not eliminate the demand for polyglot
persistence because there are still non-functional requirements
that are not satisfied, such as scalability and performance [69].
This emphasizes the fact that satisfying all polyglot persistence
requirements in one database system is an engineering chal-
lenge [3], and apparently, having a one-size-fits-all solution is
not yet feasible.

VII. POLYGLOT PERSISTENCE IMPLEMENTATION
STRATEGY

In this section, we propose an implementation strategy that
can aid the development of polyglot persistence applications.

A. Step 1: Database Requirements

The first thing to start with is the requirements. The
correctness of the requirements should be ensured because the
following steps will be dependent on them. Database require-
ments must be consistent with the application requirements,
and they should include functional, non-functional, and data
requirements. Database functional requirements should include
the queries that will be used to manage application data.
Examples of non-functional requirements include consistency,
integrity, and availability. One of the most important parts of
data requirements is the conceptual data model, which should
be created at this step using Unified Modeling Language
(UML) [70] or Entity-Relationship (ER) [71] diagrams, for
example.

B. Step 2: Database Selection

Based on the gathered requirements, the database system
should be selected. At this step, conflicts between database
requirements should be identified and resolved by using as
many database systems as needed. If there was no conflict,
the implementation will normally proceed using one database
system without considering polyglot persistence. Otherwise,
different database systems should be selected carefully, con-
sidering the most persistent database system for each part of
application data. A clear mapping between each part of the data
and the selected database systems should be preserved. Note
that steps 1 and 2 can be accomplished using the systematic
approach proposed in [55].

www.ijacsa.thesai.org 879 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

C. Step 3: Database-Specific Data Models

Conceptual data models for each database system should
be derived from the general conceptual data model identified
in step 1, considering the process proposed by [72]. Since
different database systems use different storage models, each
of them may require a specific data model to determine
database schema. At this step, using a database-independent
schema declaration language can be helpful [73].

D. Step 4: Polyglot Persistence Architecture

In this step, the architecture in which the application
will be implemented should be designed. The architecture
determines how the application will be talking to the different
selected databases. The architecture design should consider
implementation cost, time, and resources. The discussion on
polyglot persistence architectures given in Section VI can
guide this step.

E. Step 5: Issues Identification

After selecting the architecture, polyglot persistence issues
associated with the selected architecture should be identified.
After identifying the architecture issues, a clear plan on how
they will be resolved should be made. This plan should include
the technical details on how each issue will be addressed.
Again, the issues and their resolutions can be inspired by the
discussion in Section VI.

F. Step 6: Application Development

This is the last step in which the actual implementation for
the application and its infrastructure should start based on the
results of the previous steps.

VIII. CONCLUSION

Large applications may require more than one database
system to satisfy their requirements. This environment that
operates on multiple databases is called a polyglot persistence
environment. The polyglot persistence environment is fraught
with many challenges and problems. This paper presented clas-
sification of database systems with details about their features.
Polyglot persistence principles, its possible architectures, and
the issues related to each architecture are identified. A polyglot
persistence implementation strategy is proposed in light of the
study outcomes.

The authors believe that this work has clarified most of the
concepts related to polyglot persistence. This work can be a
helpful reference for solving polyglot persistence problems.

Future research can further propose solutions to issues in-
troduced by polyglot persistence. A protocol for inter-database
negotiations might be devised to support interoperability be-
tween different database systems as a means to address issues
related to polyglot persistence. Furthermore, future research
can study how database functional, non-functional, and data
requirements can be reported standardly. In addition, it can
study the possibility of having an approach for representing
and analyzing database requirements that can automatically
determine the needed database systems.

ACKNOWLEDGMENT

The authors would like to thank King Fahd University of
Petroleum and Minerals for the support and facilities provided
to perform this research.

REFERENCES

[1] (2022) Db-engines ranking. Https://db-engines.com/en/ranking (ac-
cessed: 2022-03-02).

[2] F. Gessert and N. Ritter, “Scalable data management: Nosql data stores
in research and practice,” in 2016 IEEE 32nd International Conference
on Data Engineering (ICDE). IEEE, 2016, pp. 1420–1423.

[3] F. Gessert, W. Wingerath, and N. Ritter, “Polyglot persistence in data
management,” in Fast and Scalable Cloud Data Management. Springer,
2020, pp. 149–174.

[4] P. P. Khine and Z. Wang, “A review of polyglot persistence in the big
data world,” Information, vol. 10, no. 4, p. 141, 2019.

[5] L. Wiese, “Polyglot database architectures= polyglot challenges.” in
LWA, 2015, pp. 422–426.

[6] M. K. Bavirisetty. (2015) Polyglot processing - an introduction
1.0. Https://www.slideshare.net/MohanBavirisetty/polyglot-processing-
an-introduction-10 (accessed: 2022-03-02).

[7] J. Pokornỳ, “Integration of relational and nosql databases,” Vietnam
Journal of Computer Science, vol. 6, no. 04, pp. 389–405, 2019.

[8] E. Codd, “A relational model of data for large relational databases,”
Communications of the ACM, vol. 13, no. 6, pp. 77–87, 1970.

[9] E. F. Codd, The relational model for database management: version 2.
Addison-Wesley Longman Publishing Co., Inc., 1990.

[10] T. Haerder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM computing surveys (CSUR), vol. 15, no. 4, pp. 287–317,
1983.

[11] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. Addison-wesley Reading, 1987,
vol. 370.

[12] N. Banothu, S. Bhukya, and K. V. Sharma, “Big-data: Acid versus
base for database transactions,” in 2016 International Conference on
Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE,
2016, pp. 3704–3709.

[13] J. L. Harrington, Relational database design and implementation.
Morgan Kaufmann, 2016.

[14] C. A. Győrödi, D. V. Dumşe-Burescu, D. R. Zmaranda, R. Ş. Győrödi,
G. A. Gabor, and G. D. Pecherle, “Performance analysis of nosql and
relational databases with couchdb and mysql for application’s data
storage,” Applied Sciences, vol. 10, no. 23, p. 8524, 2020.

[15] P. J. Sadalage and M. Fowler, NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. Pearson Education, 2013.

[16] S. Ambler, Agile database techniques: Effective strategies for the agile
software developer. John Wiley & Sons, 2012.

[17] J. M. Barnes, “Object-relational mapping as a persistence mechanism
for object-oriented applications,” 2007.

[18] B. Jose and S. Abraham, “Performance analysis of nosql and relational
databases with mongodb and mysql,” Materials today: PROCEEDINGS,
vol. 24, pp. 2036–2043, 2020.

[19] M. Diogo, B. Cabral, and J. Bernardino, “Consistency models of nosql
databases,” Future Internet, vol. 11, no. 2, p. 43, 2019.

[20] A. Moniruzzaman and S. A. Hossain, “Nosql database: New era of
databases for big data analytics-classification, characteristics and com-
parison,” International Journal of Database Theory and Application,
vol. 6, no. 4, 2013.

[21] K. Srivastava and N. Shekokar, “A polyglot persistence approach for
e-commerce business model,” in 2016 International Conference on
Information Science (ICIS). IEEE, 2016, pp. 7–11.

[22] C. Shah, K. Srivastava, and N. Shekokar, “A novel polyglot data mapper
for an e-commerce business model,” in 2016 IEEE Conference on e-
Learning, e-Management and e-Services (IC3e). IEEE, 2016, pp. 40–
45.

[23] K. Moore, “The lotus notes storage system,” ACM SIGMOD Record,
vol. 24, no. 2, pp. 427–428, 1995.

www.ijacsa.thesai.org 880 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

[24] L. Kawell Jr, S. Beckhardt, T. Halvorsen, R. Ozzie, and I. Greif,
“Replicated document management in a group communication system,”
in Proceedings of the 1988 ACM conference on Computer-supported
cooperative work, 1988, p. 395.

[25] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions on
Computer Systems (TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[26] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[27] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[28] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,
“A comparison of a graph database and a relational database: a data
provenance perspective,” in Proceedings of the 48th annual Southeast
regional conference, 2010, pp. 1–6.

[29] S. Leberknight. (2008) Polyglot persistence.
Http://www.sleberknight.com/blog/sleberkn/entry/polyglot persistence
(accessed: 2022-03-02).

[30] A. Pavlo and M. Aslett, “What’s really new with newsql?” ACM Sigmod
Record, vol. 45, no. 2, pp. 45–55, 2016.

[31] S. Velimeneti, “Data migration from legacy systems to modern
database,” 2016.

[32] G. D. Samaraweera and J. M. Chang, “Security and privacy implications
on database systems in big data era: a survey,” IEEE Transactions on
Knowledge and Data Engineering, vol. 33, no. 1, pp. 239–258, 2019.

[33] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” Acm Sigact News,
vol. 33, no. 2, pp. 51–59, 2002.

[34] E. Brewer, “A certain freedom: thoughts on the cap theorem,” in Pro-
ceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles
of distributed computing, 2010, pp. 335–335.

[35] S. Gilbert and N. Lynch, “Perspectives on the cap theorem,” Computer,
vol. 45, no. 2, pp. 30–36, 2012.

[36] S. Venkatraman, K. Fahd, S. Kaspi, and R. Venkatraman, “Sql versus
nosql movement with big data analytics,” Int. J. Inform. Technol.
Comput. Sci, vol. 8, pp. 59–66, 2016.

[37] R. Paleari, D. Marrone, D. Bruschi, and M. Monga, “On race vulnera-
bilities in web applications,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer,
2008, pp. 126–142.

[38] C. Zdepski, T. A. Bini, S. N. Matos, and S. Hammoudi, “An approach
for modeling polyglot persistence,” in ICEIS (1), 2018, pp. 120–126.

[39] S. Prasad and M. N. Sha, “Nextgen data persistence pattern in health-
care: polyglot persistence,” in 2013 Fourth International Conference on
Computing, Communications and Networking Technologies (ICCCNT).
IEEE, 2013, pp. 1–8.

[40] A. M. C. de Araújo, V. C. Times, and M. U. da Silva, “Polyehr: A
framework for polyglot persistence of the electronic health record,” in
Proceedings on the International Conference on Internet Computing
(ICOMP). The Steering Committee of The World Congress in
Computer Science, Computer . . . , 2016, p. 71.

[41] S. Prasad and S. Avinash, “Application of polyglot persistence to
enhance performance of the energy data management systems,” in 2014
International Conference on Advances in Electronics Computers and
Communications. IEEE, 2014, pp. 1–6.

[42] S. Nadkarni, A. Kadakia, and K. Shrivastava, “Providing scalability to
data layer using a novel polyglot persistence approach,” in 2018 Fourth
International Conference on Computing Communication Control and
Automation (ICCUBEA). IEEE, 2018, pp. 1–5.

[43] K. Trivedi, S. Shah, and K. Srivastava, “An efficient e-commerce design
by implementing a novel data mapper for polyglot persistence,” in
Advanced Computing Technologies and Applications. Springer, 2020,
pp. 149–156.

[44] L. H. Z. Santana and R. dos Santos Mello, “A middleware for polyglot
persistence of rdf data into nosql databases,” in 2019 IEEE 20th

International Conference on Information Reuse and Integration for
Data Science (IRI). IEEE, 2019, pp. 237–244.

[45] K. Kaur and R. Rani, “A smart polyglot solution for big data in
healthcare,” IT Professional, vol. 17, no. 6, pp. 48–55, 2015.

[46] ——, “Managing data in healthcare information systems: many models,
one solution,” Computer, vol. 48, no. 3, pp. 52–59, 2015.

[47] R. Jiménez-Peris, M. Patiño-Martinez, I. Brondino, and V. Vianello,
“Transactional processing for polyglot persistence,” in 2016 30th
International Conference on Advanced Information Networking and
Applications Workshops (WAINA). IEEE, 2016, pp. 150–152.

[48] L. H. Villaça, L. G. Azevedo, and F. Baião, “Query strategies on
polyglot persistence in microservices,” in Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, 2018, pp. 1725–1732.

[49] H. Singhal, A. Saxena, N. Mittal, C. Dabas, and P. Kaur, “Polyglot
persistence for microservices-based applications,” International Journal
of Information Technologies and Systems Approach (IJITSA), vol. 14,
no. 1, pp. 17–32, 2021.

[50] L. G. Azevedo, R. d. S. Ferreira, V. T. d. Silva, M. de Bayser,
E. F. d. S. Soares, and R. M. Thiago, “Geological data access on a
polyglot database using a service architecture,” in Proceedings of the
XIII Brazilian Symposium on Software Components, Architectures, and
Reuse, 2019, pp. 103–112.

[51] F. Gessert, S. Friedrich, W. Wingerath, M. Schaarschmidt, and N. Ritter,
“Towards a scalable and unified rest api for cloud data stores,” in GI-
Jahrestagung, 2014, pp. 723–734.

[52] M. Schaarschmidt, F. Gessert, and N. Ritter, “Towards automated
polyglot persistence,” Datenbanksysteme für Business, Technologie und
Web (BTW 2015), 2015.

[53] I. Košmerl, K. Rabuzin, and M. Šestak, “Multi-model databases-
introducing polyglot persistence in the big data world,” in 2020 43rd In-
ternational Convention on Information, Communication and Electronic
Technology (MIPRO). IEEE, 2020, pp. 1724–1729.

[54] J. B. Dennis, “Modularity,” in Software Engineering. Springer, 1975,
pp. 128–182.

[55] N. Roy-Hubara, P. Shoval, and A. Sturm, “Selecting databases for
polyglot persistence applications,” Data & Knowledge Engineering, vol.
137, p. 101950, 2022.

[56] B. Kolev, P. Valduriez, C. Bondiombouy, R. Jiménez-Peris, R. Pau, and
J. Pereira, “Cloudmdsql: querying heterogeneous cloud data stores with
a common language,” Distributed and parallel databases, vol. 34, no. 4,
pp. 463–503, 2016.

[57] R. Sellami and B. Defude, “Complex queries optimization and evalua-
tion over relational and nosql data stores in cloud environments,” IEEE
transactions on big data, vol. 4, no. 2, pp. 217–230, 2017.

[58] J. Rith, P. S. Lehmayr, and K. Meyer-Wegener, “Speaking in tongues:
Sql access to nosql systems,” in Proceedings of the 29th Annual ACM
Symposium on Applied Computing, 2014, pp. 855–857.

[59] G. C. Deka, “Nosql polyglot persistence,” in Advances in Computers.
Elsevier, 2018, vol. 109, pp. 357–390.

[60] M. Lenzerini, “Data integration: A theoretical perspective,” in Proceed-
ings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, 2002, pp. 233–246.

[61] T. V. Benzel, C. E. Irvine, T. E. Levin, G. Bhaskara, T. D. Nguyen, and
P. C. Clark, “Design principles for security,” NAVAL POSTGRADU-
ATE SCHOOL MONTEREY CA DEPT OF COMPUTER SCIENCE,
Tech. Rep., 2005.

[62] N. Ron Ben, Implementing Database Security and Auditing. Elsevier,
2005.

[63] V. Surwase, “Rest api modeling languages-a developer’s perspective,”
Int. J. Sci. Technol. Eng, vol. 2, no. 10, pp. 634–637, 2016.

[64] S. Newman, Building microservices: designing fine-grained systems. ”
O’Reilly Media, Inc.”, 2015.

[65] R. Dörbecker and T. Böhmann, “The concept and effects of service
modularity–a literature review,” in 2013 46th Hawaii International
Conference on System Sciences. IEEE, 2013, pp. 1357–1366.

[66] E. Płuciennik and K. Zgorzałek, “The multi-model databases - a
review,” in International Conference: Beyond Databases, Architectures
and Structures. Springer, 2017, pp. 141–152.

www.ijacsa.thesai.org 881 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

[67] Z. H. Liu, B. Hammerschmidt, D. McMahon, Y. Liu, and H. J. Chang,
“Closing the functional and performance gap between sql and nosql,”
in Proceedings of the 2016 International Conference on Management
of Data, 2016, pp. 227–238.

[68] D. Petković, “Json integration in relational database systems,” Int J
Comput Appl, vol. 168, no. 5, pp. 14–19, 2017.

[69] F. R. Oliveira and L. del Val Cura, “Performance evaluation of
nosql multi-model data stores in polyglot persistence applications,”
in Proceedings of the 20th International Database Engineering &
Applications Symposium, 2016, pp. 230–235.

[70] E. Naiburg, E. J. Naiburg, and R. A. Maksimchuck, UML for database

design. Addison-Wesley Professional, 2001.
[71] T. J. Teorey, Database modeling and design: The entity-relationship

approach. Morgan Kaufmann Publishers Inc., 1990.
[72] M. Kolonko and S. Müllenbach, “Polyglot persistence in conceptual

modeling for information analysis,” in 2020 10th International Confer-
ence on Advanced Computer Information Technologies (ACIT). IEEE,
2020, pp. 590–594.

[73] A. H. Chillón, D. S. Ruiz, and J. G. Molina, “Athena: A database-
independent schema definition language,” in International Conference
on Conceptual Modeling. Springer, 2021, pp. 33–42.

www.ijacsa.thesai.org 882 | P a g e


