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Abstract—Face Recognition has progressed tremendously
from its initial use of holistic learning models to using hand-
crafted, shallow, and deep learning models. DeepFace, a nine-
layer Deep Convolutional Neural Network (DCNN), reached near-
human performance on unconstrained face recognition for the La-
beled Faces in the Wild (LFW) dataset. These models performed
very well on the benchmark datasets, but their performance
sometimes deteriorated for real-world applications. The problem
arose when there was a domain shift due to different distribution
spaces of the training and testing models. Few researchers looked
at Unsupervised Domain Adaptation (UDA) to find the domain-
invariant feature spaces. They tried to minimize the domain
discrepancy using a static loss of maximum mean discrepancy
(MMD). From MMD, the researchers delved into the higher-order
statistics of maximum covariance discrepancy (MCD). MMD and
MCD were combined to get maximum mean and covariance
discrepancy (MMCD), which captured more information than
MMD alone. We use a Variational Autoencoder (VAE) with
joint mean and covariance discrepancy to offer a solution for
domain adaptation. The proposed MMCD-VAE model uses VAE
to measure the discrepancy in the spread of variance around
the mean value and uses MMCD to measure the directional
discrepancy in the variance. Analysis was done using the TinyFace
benchmark dataset and the Bollywood Celebrities dataset. Three
objective image quality parameters, namely SSIM, pieAPP, and
SIFT feature matching, demonstrate the superiority of MMCD-
VAE over the conventional KL-VAE model. MMCD-VAE shows
an 18 % improvement in SSIM and a remarkable improvement
in the perceptual quality of the image over the conventional KL-
VAE model.

Keywords—Deep learning; domain adaptation; face recogni-
tion; maximum mean covariance discrepancy; transfer learning;
variational autoencoders

I. INTRODUCTION

In the past decade, Face Recognition (FR) research has
achieved high accuracy using Deep Learning (DL) approaches.
It has matched that of the humans and even transcended it.
Advances in DL have facilitated the growth of large training
datasets required to implement DL algorithms effectively.
Presently we have datasets that use large amounts of labeled

data from the internet, consisting of face images in an un-
constrained environment, with a marked diversity of ethnicity,
gender, and age.

At times, in real-world applications, one notices a certain
discrepancy. The target face image dataset is acquired in
different settings compared to the source. There is a difference
in the performance of a learned model on a source dataset
and a target dataset. Also, in some applications, it is not
possible to have large datasets from a particular domain to
train a deep learning model. So can one borrow pre-trained
models from similar domains? This can help to improve the
learning process. However, the caveat is that the performance
is boosted only for trained and tested datasets with identical
data distributions.

It is interesting to understand the learning process between
the deep networks and the human person in this context.
The way that learning happens in deep networks and human
persons is different. Humans learn from a limited set of labeled
data. The other advantage humans possess is that they can
generalize their learning and apply it to new conditions or
situations.

The authors in [1] have shown the theoretical limitations
on the performance by studying the error bounds for different
source and target data distributions. The term “data shift”, as
first used in 2009, in [2], is the change of distribution of
features [3]. The change in the distributions is referred to
as covariate shift in [4]. Even a Deep CNN can experience
domain shift [5]. Domain Adaptation (DA) algorithms attempt
to understand these different shifts in statistical distributions
for adaptation in domains.

The paper is organized as follows. Section II presents a
review of domain adaptation techniques. Section III describes
the metrics for measuring distribution discrepancy. Section IV
focuses on the deep domain adaptation for face recognition.
Section V presents the proposed MMCD-VAE latent feature
extraction model. Section VI elaborates the experimental re-
sults, and finally Section VII provides the conclusion and

www.ijacsa.thesai.org

883 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

future work of this study.

II. A REVIEW OF DOMAIN ADAPTATION
A. Domain Adaptation and Transfer Learning

The authors in their landmark paper [6] gave an overview
of the Transfer Learning (TL) process, where they situated the
DA task in the context of TL. Tasks were Inductive Transfer
Learning, Transductive Transfer Learning or Unsupervised
Transfer Learning based on label availability for the source
and target domain. A summary is shown in Fig. 1 as in [6],
which shows how DA is a subset of TL.
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(Labelled data in D)

Labeled Data Transductive

——>| (Onlyin —> O
. Transfer Learning
Source Domain ;)

Domain Adaptation
(different domains
single task)

Transfer
Learning

No Labeled Data
L—| (In Source Domain D;and —|
Target Domain 7})

Unsupervised
Transfer Learning

Fig. 1. The Relationship of Domain Adaptation to Transfer Learning [10].
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Fig. 2. Types of Transfer Learning.

The authors in [7] define TL in terms of the domains and
the given tasks. They classify TL as being homogenous when
the feature space is the same and heterogeneous when the
feature spaces are different, as shown in Fig. 2. They also
clarify that the domain adaptation process seeks to change a
source domain to match more closely with the target domain.
The terms supervised or unsupervised refer to the source
domain availability of labeled data. And for the target domain,
as informed or uninformed. A word of caution is also given on
Negative transfer when the learned information detrimentally
effects the target domain.

The authors in [8] elaborate on the transfer learning
categories and present about forty representative approaches
to transfer learning along with experimental verification. The
broad categories are shown in Fig. 3.

The notations given in [6] and [7] are used to explain the
concepts of DA.
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Fig. 3. Transfer Learning Categories.

Let the source domain labeled data be given by Dy =
{z2, yf}?il, with ith sample x£, and label y;. The number of
source images is given by M.

Let target domain unlabeled data be given by D, =
{xﬁ}ij\il, with ith sample ch The number of target images
is given by N. The difference in data distributions as shown
in Fig. 4, is given by P (X,,Y;) # P (X, Y}).

Source . New Target

X Learning X .
Domain | Task > Knowledge —»| Learning («— Domain
D, = (x5, v} Vel D = {xf}. 4

Fig. 4. A Simplified Transfer Learning Model for Domain Adaptation.

Many researchers have done surveys on TL [6], [7], [9],
[10] [8] and DL [11], [12], [13], [14] and [15]. Beginning
from Machine learning to Deep learning, the authors have
methodically explained the nuanced terminology and clarified
any inconsistencies in the terms that are used to explain the
concepts of TL and DL.

III. METRICS FOR MEASURING DISTRIBUTION
DISCREPANCY

A. Maximum Mean Discrepancy (MMD)

The distribution variations are found using metrics that
measure distribution discrepancy. The ones often used are
Kullback-Leibler divergence [16], the maximum mean dis-
crepancy (MMD) [17], [18], the Bregman divergence [19], and
the Wasserstein distance [20].

Among the most commonly used is MMD. It finds the
measure between the mean of the two distributions into a
reproducing kernel Hilbert space (RKHS). Maximum Mean
Discrepancy (MMD) [17], [21], [22] is thus a distribution
distance metric. The MMD [23] between two distributions s
and t, is given by

Lu(s,t) = sup B [0 ()] = Exer [0 (][ (1)

lloll2e<1

Sup (“supremum”) is the largest, least upper bound (gener-
alizations of “max”), F is the expectation of the distribution.
¢ maps original data to RKHS. The detailed proofs are given
in [24].
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B. Maximum Covariance Discrepancy (MCD)

The notations for MCD are taken from [24] where one can
find the detailed proofs.

MCD|p, q, H]
= sup Y ai; (cov[e;(x), e;(x)] — cov[ei(y), e;(y)])

lall<1 i,jel

2

where H is RKHS over X and {e; | ¢ € I'} is an orthogonal

basis of H, |ja||= (Zi,jel afj 1/2, with cov given by:
cov [e;(2), ej(2)] = By [ei(x)e;(2)] — By [ei(2)] By [¢(2)).

C. Maximum Mean and Covariance Discrepancy (MMCD)

The authors in [24] have shown that the MMCD-based
domain adaptation achieves better results for image classifi-
cation. MMCD has both the first- and second-order statistical
information in the RKHS. The notations for MMCD are taken
from [24], where one can find detailed proofs.

1/2

3)

MMCDIp, ¢, H] = (lllp] — pldlll3; + BIClp) - Clalfis)

where pu[p] = E,[¢(x)] and S8, used to balance the MCD
term, is a non-negative parameter, and C is a centered covari-
ance operator. They show that MMD and MCD of MMCD
measures the difference between means and covariances of the
distributions with the degree d = 1 of the polynomial kernel.

IV. DEEP DOMAIN ADAPTATION FOR FACE RECOGNITION

The authors in [25], [26], [23] discuss the approaches
and challenges to deep domain adaptation in the context of
face recognition which indeed is a challenging task. In real-
life face recognition applications, there are domain shifts due
to changing conditions, like background, location, change of
pose, occlusion, illumination, and other factors.

In [25], the authors have used the TaoMM dataset created
using face images of Chinese fashion models. They combined
the CASIA-WebFace [27] and VGGFace-Good [28] datasets
and used about 1.3 million images to train their model. They
also trained the model on their TaoMM dataset. These trained
models were then tested on the LFW dataset [29] which has
a different distribution than the TaoMM dataset. The learned
weights of labeled data are transferred to initialize the training
model. They also refine all weights using face verification loss
in an end-to-end framework.

Their system architecture consisted of a modified
inception-v2 [30] model that enhanced training using Stochas-
tic Gradient Descent. They used an NVIDIA GTX TITAN X
GPU and pre-trained for 25 epochs that lasted 89.4 hours with
a learning rate of 0.2 and decay half for every five epochs.
A learning rate of 0.04 and decay half for every ten epochs
was used and performed on two similar GPUs for 20 epochs
that lasted 18.6 hours. The two GPUs were needed as the
model was complex, and the mini-batch size was 360. Their
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results are comparable to the state-of-the-art single models like
DeepFace [31], DeepID [32] and BaiduFace [33].

The authors in [23] use clustering-based domain adaptation
(CDA). They elaborate on how the unsupervised domain
adaptation methods for object classification are not applicable
to face recognition tasks. The reasons are that a larger discrim-
inating power for the classification of faces is required, and the
classes in both domains are non-overlapping. CDA generates
pseudo-labels and uses cosine-similarity to form a cluster. They
also use deep domain confusion network (DDC) [34] and
deep adaptation networks (DAN) [35]. Here MMD estimator is
integrated into the CNN error to minimize domain divergence.
Thus the end classification is done based on features invariant
to domain changes.

They trained the CNN with labeled source data and fine-
tuned it with clustered target pseudo-labeled data, which helps
determine the target data’s discriminative representation. They
evaluated their method on GBU [36], IJB-A/B/C [37], [38],
[39] and RFW [40] datasets. The architectures that they used
were VGGNet [41] and ResNet-34 [42]. Both architectures are
trained on CASIA-WebFace, the former tuned using Softmax
loss and later with Arcface loss [43]. They preprocessed the
images of datasets by resizing, aligning and augmenting them.
A Gaussian kernel is used in the MMD.

Their results outperform LRPCA-face [36], Fusion [44],
VGG [44], Arcface [43] DDC [34] and DAN [35] for the GBU
dataset. They remark that a uniform face-aligned algorithm
can achieve good FR performance. Also, incorporating MMD
helps in minimizing domain discrepancy. Similarly, better
performance is obtained for IJB-A/B/C and RFW datasets.
They also showed the visual representations of the learned
features using t-distributed stochastic neighbor embedding (t-
SNE) [45].

V. PROPOSED MMCD-VAE LATENT FEATURE
EXTRACTION MODEL

A. Architectures

1) Deep Autoencoder (DAE): In a Deep Autoencoder
(DAE) feature selection function is carried out by an encoder.
Later a decoder reconstructs the best image corresponding to
the selected features. Deep CNN models are very powerful
in feature extraction of the images generated from deep CNN
AE. These decoders are noise-free and have competent low-
dimensional feature space representation. However, only CNN-
based generation requires uniform samples from all the cate-
gories.

2) Variational Autoencoder (VAE): Variational Autoen-
coder (VAE), as shown in Fig. 5 is an unsupervised proba-
bilistic deep-neural network model consisting of an encoder-
decoder pair. The encoder carries out dimension reduction and
domain adaptation by having a progressively lesser number
of neuronal units in a feed-forward architecture. The decoder
does the reverse and brings back the compressed domain
representations to their original shape by gradually increasing
the number of neuronal processors. Variational autoencoders
are the fabrication of a CNN Autoencoder with regularized
training to avoid over-fitting. It results in a latent space
favorable for the generative process. VAE is unique in the way
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Fig. 5. Mapping Distribution of a Variational Autoencoder (VAE).

it uses the selected features for latent representation shared
between encoder-decoder pairs.

Latent representation is nothing but the distribution of
collected traits used as the communication protocol between
the encoder-decoder pair. In practice, encoding and decoding
distributions are parametric models. Joint optimization leading
to reliable reconstruction ensures latent features contain the
most salient statistical features and capture variations over
main features.

The Face Recognition task falls under categorical marginal
distribution. Assuming that ¢ and 6 are parameter sets for
encoder and decoder, optimized for minimum reconstruction
loss, then VAE objective function can be written as:

Lvar_ErBO =

=D (g2 (2)lpe(2)) 4)
+ E(x)E(m(zhc) [Ingé‘(w
| )]

where D is any strict divergence and v > 0 is a scaling
coefficient, E is the expectation operator, g4 and py are the
distribution functions of encoder and decoder, respectively. The
selection of divergence can play a crucial role. Traditionally
evidence lower bound (ELBO) criterion is used in VAEs. The
goal of the encoder is to obtain a simplified approximate
distribution ¢ and optimize the variational parameter ¢ such
that g4 be as similar as possible to the true distribution of
inputs. One of the approaches is to minimize Kullback-Leibler
(KL) divergence. It is defined as:

q¢(w | D)

p(w] D)

®)

KL |g(w | D). plw | D)} = [astw! D)

where p(w | D) is the actual distribution of input samples
w. Intractability due to the integration term present in equation
5, is resolved by substituting an approximation for p in
terms of g,. This substitution results in the popular Bayes by
Backprop [46], a tractable objective function. ELBO suffers
from uninformative latent code and variance overestimations
in the feature space. Also, ELBO-VAE tends to over-fit data,
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and as a result of the over-fitting, it learns a g4(z) whose
variance tends to infinity.

3) Proposed MMCD-VAE Model for Domain Adaptation:
The proposed MMCD-VAE Model for Domain Adaptation is
shown in Fig. 6. The encoder generates the same distribution
for all possible variations in a sample’s inputs, which works for
learning good features. Regularization is possible as the input
is encoded to a distribution with some variance instead of a
point. Regularization aims to have continuity and completeness
in the generative process. Distributions are forced to be as close
as to a standard normal distribution.

MMD evaluates the distribution as identical if and only
if all their first moments are the same. Therefore, MMD
divergence is a metric of differential moments of p(z) and
q(z) distributions and is accomplished using the kernel em-
bedding trick [47]. MMD prefers to maximize the mutual
information between an input x and the latent representation
z. Training ELBO on a dataset with complimentary samples
will still try to obtain encoder ¢4 and decoder py as Gaussian
distributions with non-zero variance. For ELBO regularization
term vD(qs(2) || po(2)) is not strong enough as against the
loss function term E(z) Eg¢(2|x)[logpe (2 | 2)]. Complimentary
samples will have class means way apart, and accordingly,
MMD optimization will end up by having two modes of g,
pushed to stay far from each other. This will reduce ambiguity
in reconstruction. In practice, this matters for datasets with
fewer samples.

Unlabeled .
Encoding
samples ’
\ 4

Reconstructed
Test Image

Domain

; q Distribution
Discrepancy

Learning

Decoding
Loss

A
Labeled Encod}f’]g H{,
samples 5o
Loss LD(Q,Q
dl, dL, ¥
— KL/MMD/MCD/MMCD
Y25 do | KL/MMD/ o/ |

Fig. 6. Proposed MMCD-VAE Model for Domain Adaptation

The Loss function (objective function) indicates the degree
to which the test image has been reconstructed and is given
by:

lz(¢7 9) = _EzNé’d)(z\xi) [log P@ (:L'Z‘Z)] (6)
+ MMCD [Q (2[z:) [| Py (2)]

Given two distributions p, q in RHKS

1/2

(N

MMCDIp,q, H] = (|lulp] - ulalllZ + BIC[] - CldlllE)

where u[p] = E.[¢(x)] and 8 is a non-negative parameter.

But Clp] = E [wpw, | — E [wp] E [wp]—r and
C[q] =F [qu;r] -F [Wq] E [Wq}—r
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Algorithm 1: The Proposed MMCD-VAE Algorithm

Data:

Training Dataset = {Xi"}],\;1
Testing Dataset = {Yf}il
Encoder Network = g4
Decoder Network = pg

Batch Size = B

Epochs = S
Learning Rate = «
Result:

Reconstructed Test Image
1 Initialize parameters of the Encoder and Decoder
2 for epochs = i < 1 to S Randomly select batches of
Input images from the Training dataset do

3 | fori<1to N p,(i),0,(i) = gp(z | ;) Draw L
samples from 7 ~ N(j1(i),0(i)) do

4 for j < 1to L pz(i),0:(i) = po(x; | z) do

5 end

6 end

7 Define Objective function (L) using Log
likelihood and MMCD distance

8 Update

9 | ¢=0¢oataxVy ADAM(%);

10 | 0="00q+a*Vy apan(%E)

11 end

12 Return trained encoder = g4 and trained decoder = py

MMCDIp, q] = [|[Ela] - Ely]| +
B{I|E [z2"] - Blal Ela)"

~ (® ] - B

®)

where  ~ p,y ~ q. Given limited X and Y sampled from
p and q respectively there is

9 9 1/2
MMCDIp,q + (Il = ugll; + 8ISy~ Zyll}.)  where

tp = +X is the mean vector and ¥, = X, X" is the
covariance matrix of X.

Substituting Equation (8) in (6) we get:

1:(8,0) = ~Bx_o,clo) g Py (w:l2)] + || la] — Blyl]3 +
BlIE [axT] - Bla] Ela]"

~ (B lw") - BwEm )]

()]

The authors in [24] have experimented with different kernel
and non-kernel based cases. The kernels used were linear,
polynomial, Gaussian, and Exponential. When a linear kernel
is adopted, MMD, MCD, and MMCD measure the difference
between the mean and covariance of the distributions, respec-
tively.
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B. Datasets

1) Bollywood Celebrities Dataset: The Bollywood Celebri-
ties dataset [48] contains the localized face of 100 Bollywood
Celebrities. A class has 80 to 150 samples of size 64 x 64
pixels. These are in wild conditions with different orientations,
illuminations, age transitions. The sample images are shown
in Fig. 7. Experimentation is carried out on 64 x 64 size RGB
images.

S| G SIS Sl (IS |
HESEEHRREPITER
[ RFREENEERER

Fig. 7. Sample Images from Bollywood Celebrities Dataset.

2) TinyFace Dataset: The TinyFace dataset contains 5,139
labeled facial identities given by 169,403 native Low Reso-
lution face images (average 20 x 16 pixels) designed for the
1:N recognition test. The sample images are shown in Fig. 8.
These are from public web data across a large spectrum and
unconstrained environment.

EREEEEET
EEHE R

Fig. 8. Sample Images from TinyFace Dataset.

C. Objective Image Quality Comparison Metrics

The quality of the images needs to be evaluated using
either a subjective or objective method. The former is based
on human judgment, and the latter is by explicit numerical
statistical parameters.

1) SSIM: Traditionally the most popular metric for image
quality assessment was Peak Signal to Noise Ratio (PSNR).
A standard metric is Structural Similarity Index (SSIM) which
measures the similarity between two images. It was developed
by Wang [49], and looked at structural information changes in
the images. SSIM considers three factors, loss of correlation,
luminance distortion, and contrast distortion [50]. For the
SSIM index, a value of 0 means no correlation between
images, and 1 means the two images are the same.

2) PieAPP: PieAPP [51] is a perceptual image-error metric
that robustly predicts visual differences like humans. It uses
pairwise preference as a robust way to create large Image
quality assessment (IQA) datasets and uses a new pairwise-
learning framework to train an error-estimation function. A
reference image and a distorted image are given as input
resulting in a PieAPP value as an output. Lower the value of
the PieAPP error metric better the image perceptual quality.
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3) SIFT Features: Face recognition is challenging com-
pared to many other object recognition tasks as face fea-
tures in the two domains are often non-overlapping. Global
alignment of the source and target samples is not feasible
for unconstrained face images. The goal of the proposed
unsupervised domain adaptation model is to discover novel
domain-invariant representations using scale-invariant features
transform (SIFT) [52], as a parametric evaluation entity for
the domain adaptation. Some authors [53], [54] have worked
using SIFT for face recognition but have not used VAE. The
challenge is to maximize scale-invariant features and thus get
the corresponding match.

Many domain adaptation algorithms match the distribution
without understanding the goodness in preserving key spatial
features. This work analyses domain adaptation by optimizing
encoder and decoder parameters. We use training samples and
utilize unlabeled testing samples.

VI. RESULTS AND DISCUSSION
A. Experimental Setup

The domain adaptation experiments were conducted on
NVIDIA GeForce RTX 2070 SUPER GPU. The PC configura-
tion consists of a Multi-core (8 total) and Hyper-threaded (16
total) 3.80 gigahertz Intel Core i7-10700K. The memory is 32
GB, and the SSD hard drive has a 1TB capacity. The software
used was Python version 3.8.5 (64-bit), libraries NumPy and
Matplotlib, TensorFlow, and Keras.

The Bollywood Celebrities dataset was used for training.
As the images for this dataset are 64 x 64, the target images
were resized to 64 x 64. 300 epochs were used to train the
model.

B. Experimental Results and Discussion

1) Training and Testing on Bollywood Celebrities Dataset:
In [24], the authors used MMCD and compared the classi-
fication performance using two benchmark datasets PIE and
Office-Caltech. Their performance was better than nearest
neighbor, principal component analysis, correlation alignment
transfer component analysis, geodesic flow kernel, and joint
domain adaptation. We have combined MMCD with VAE and
the training and testing details are mentioned below.

The MMCD-VAE model was first trained with the Bol-
lywood Celebrities dataset for 300 epochs and then tested
on different images from that dataset. The generated images
for KL-VAE and MMCD-VAE models with the Training and
Testing on Bollywood Celebrities dataset are shown in Fig. 9.

SSIM and PieAPP error metric comparison is shown in Table
L.

MMCD-VAE performs better than KL-VAE. MMCD-VAE
shows an average of 20 % improvement in SSIM and a
remarkable improvement in perceptual quality of the image,

as seen from the PieAPP error metric, over the conventional
KL-VAE model.

Fig. 10 demonstrates the SIFT features for the Bolly-
wood Celebrities generated images. The proposed MMCD-
VAE method is also applied to face images of the same class,
but varying domains and generated face images are tested for

Vol. 13, No. 6, 2022

Fig. 9. Results for Bollywood Celebrities Dataset Images (a) Original (b)
KL-VAE Generated Image (c) MMCD-VAE Generated Image.

TABLE 1. SSIM AND PIEAPP COMPARISON FOR KL-VAE AND
MMCD-VAE WITH TRAINING AND TESTING ON BOLLYWOOD
CELEBRITIES DATASET

Face Images SSIM PieAPP error metric

(Bollywood ~ Original ~ Original Original ~ Original
Dataset) Vs Vs ' Vs
KL-VAE MMCD-VAE KL-VAE MMCD-VAE

Actor 1 0.719202  0.915040 3.537072  0.377244
Actor 2 0.646112 0.859116 2.928503 0.365942
Actor 3 0.567586 0.811546 3.581390 0.940700
Actor 4 0.571617 0.790679 3.197515 1.132178
Actor 5 0.660647 0.883705 4.058572  1.056081
Actor 6 0.575935  0.808702 3.890267 1.467767
Actor 7 0.596703 0.881254 2.642451 0.065619
Actor 8 0.677114  0.916528 2971156 0.904211
Average 0.626865 0.858321 3.350866 0.788718

inter-class similarity, as shown in Fig. 11. It can be seen that
MMCD-VAE generated images have comparatively more SIFT
key points than conventional KL-VAE generated images. More
scale-invariant features assure that the proposed MMCD-VAE
can capture more information.

The reconstruction loss gives the measure of how well the
test image has been reconstructed and is shown in Fig. 12. We

Fig. 10. SIFT Features for Bollywood Celebrities Dataset Images for Same
Class (a) Original Image 36 SIFT Features (b)KL-VAE Image 27 SIFT
Features (¢c) MMCD-VAE 49 SIFT Feature.
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Fig. 11. Results for Bollywood Celebrities Dataset Images for Same Class
Different Domain(a) Original Image 18 SIFT Matching Features (b)
KL-VAE Image 12 SIFT Matching Features (c) MMCD-VAE 25 SIFT
Matching Features.

— MMCD_reconstruction_loss

= KL_reconstruction_loss

Loss

0 50 100 150 200 250 300
Epoch

Fig. 12. Reconstruction Loss for the Conventional KL-VAE v/s Proposed
MMCD-VAE.

Vol. 13, No. 6, 2022

TABLE II. SSIM AND PIEAPP COMPARISON FOR KL-VAE AND
MMCD-VAE WITH TRAINING ON BOLLYWOOD CELEBRITIES AND
TESTING ON TINYFACE DATASET

Face SSIM PieAPP error metric
Images Original ~ Original Original ~ Original
(TinyFace vs Vs vs Vs

Dataset) KL-VAE MMCD-VAE KL-VAE MMCD-VAE

Face 1 0.472164 0.671485 1.819303 1.429740
Face 2 0.527809  0.668509 3.577199 2.522136
Face 3 0.559499  0.735055 1.111426 1.166033
Face 4 0.477758 0.650393 2297195 1.644578
Face 5 0.529925 0.754939 1.154995 0.967473
Face 6 0.377013 0.618141 4915103 1.919206
Face 7 0.508398 0.664005 1.727580 1.665994
Face 8 0.530098 0.667237 3.178573 1.667042
Average 0.497833 0.678721 2472672 1.622775

observe that the MMCD-VAE model training is stable like the
conventional KL-VAE, and demonstrates that the MMCD-VAE
reconstruction loss is a meaningful metric of progress.

2) Training on Bollywood Celebrities Dataset and Testing
on TinyFace Dataset: In VAE networks, the latent represen-
tations correspond to different levels of abstraction mapped to
multifarious face attributes. Better the hidden representations,
the greater is the adaptation quality. The MMCD-VAE model
trained with Bollywood Celebrities dataset for 300 epochs was
tested on TinyFace data. The total dataset was not tested but
only a sample was used to check the results. The MMCD-VAE
model performs better than the KL-VAE model, as seen from
the subjective quality of the generated face images given in Fig.
13. The TinyFace dataset images are low resolution images.
Even in the case of an original blurry image, the generated
image has clearer features of eyes, nose, and mouth. As seen
in Fig. 14, there are more SIFT key points in MMCD-VAE
than KL-VAE generated images.

SSIM and PieAPP error metric comparison is shown in
Table II. MMCD-VAE performs better than KL.-VAE. MMCD-
VAE shows an average of 18 % improvement in SSIM and
an improvement in perceptual quality of the image over
the conventional KL-VAE model. In this case, the PieAPP
error metric difference between KL-VAE and MMCD-VAE is
smaller than the one observed with the Bollywood Celebrities
dataset images as the TinyFace are low-resolution images.

VII. CONCLUSION AND FUTURE WORK

This study reviewed the literature on domain adaptation,
especially in Face Recognition. It began by looking into the
challenging problem of how models trained on benchmark
datasets, at times, fail in real-world scenarios. One example
is test images collected from the online web. The benchmark
dataset on which a model is trained is often high resolution and
performs poorly for low-resolution target images. This happens
because the source and target domain experience shifts due to
changing conditions. Hence the need for domain adaptation
and the various metrics for determining the distribution dis-
crepancy.
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Fig. 13. Results for TinyFace Dataset (a) Original Image (b) KL-VAE
Generated Image (c) MMCD-VAE Generated Image.

Fig. 14. SIFT Matching Features (a)Original and KL-VAE (b)Original and
MMCD-VAE.

In the experimental part, we compared the performance of
the proposed MMCD-VAE model. Results are compared for
sample images taken from the Bollywood Celebrities dataset
and TinyFace dataset. TinyFace is a challenging dataset, be-
cause it is low-resolution and recognition performance drops
with the decrease in resolution. Quantitative comparisons are
shown for matching SIFT key points and SSIM. The MMCD-
VAE domain adaptation method rendered images with better
Objective Image Quality, as seen in the SSIM, pieApp, and
SIFT key-points metrics.

The future scope is to look at detailed testing of RFW
datasets to better understand how to improve face recognition
across diverse races. The low-resolution surveillance face im-
ages of the QMUL-SurvFace dataset is another area to pursue
further research. An emerging area of research is adversarial
discriminative domain adaptation, which reduces the difference
between the source and target domain distributions using
adversarial learning methods.
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