(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

An E2ED-based Approach to Custom Robot
Navigation and Localization

Andrés Moreno, Daniel Pdez, Fredy Martinez
Universidad Distrital
Francisco José de Caldas
Bogotd D.C., Colombia

Abstract—Simultaneous mapping and localization or SLAM
is a basic strategy used with robots and autonomous vehicles to
identify unknown environments. It is of great attention in robotics
due to its importance in the development of motion planning
schemes in unknown and dynamic environments, which are close
to the real cases of application of a robot. This is why, in parallel
with research, they are also important in specialized training
processes in robotics. However, access to robotic platforms and
laboratories is often complex and costly, with high demands
on time and resources, particularly for small research centers.
A more efficient and affordable approach to working with
autonomous algorithms and motion planning schemes is often the
use of the ROS-Gazebo simulator, which allows high integration
with customized non-commercial robots, and the possibility of an
end-to-end design (E2ED) solution. This research addresses this
approach as a training and research strategy with our ARMOS
TurtleBot robotic platform, creating an environment for working
with navigation algorithms, in localization, mapping, and path
planning tasks. This paper shows the integration of ROS into the
ARMOS TurtleBot project, and the design of several subsystems
based on ROS to improve the interaction in the development of
service robot tasks. The project’s source code is available to the
research community.

Keywords—End-to-End design; localization; navigation; path
planning; robotics; SLAM

I. INTRODUCTION

Robotics is a field of research in constant growth, the need
for support, cost reduction, safety, and reliability drives the
development and study of problems related to its application
in real tasks. There are major unsolved problems that hinder
its wide use in applications such as service robotics (the area
closest to our research), in general, related to interaction,
autonomy, safety, and reliability [1]]. Many research centers
around the world are actively working in these niches, but
in many cases, access to robotic platforms and specialized
laboratories is restricted for reasons of cost, availability, and
resources related to this activity. A working scheme of good
acceptance in the scientific community is the use of high-
performance simulators, which can replicate very faithfully the
behavior of a robot, one of the most popular platforms today
in this regard is ROS OS (Robotic Operating System).

The operating system has more than 10 years of growth and
interaction in robotic programming, and its particular details
such as interoperability and open source generation provide
services comparable to those of an operating system, such as
hardware abstraction, low-level device control, inter-process
message passing and packet management [2]. Though is not

an operating system, it provides the same services to its users
as an operating system does.

In today’s social development, the implementation of mo-
bile robots for problem-solving in industrial and non-industrial
environments is of great relevance [3]]. Applications in rural or
agricultural areas, as well as those involving direct interaction
with humans [4], [S], are of great current interest. In this
respect, mobile robotic platforms have been proposed that
can be used in a greenhouse to transport vegetables [6], [7],
in some cases with safe interaction systems with humans.
Another study proposes the control and tracking of trajectories
based on simulations and experiments in real-time on the ROS
platform, where the objective is to validate the effectiveness of
the proposed control algorithm and compare it with a modified
hybrid PID dynamic controller with feedback [8]. In these
cases, ROS was fundamental in the design and performance
evaluation stages. As for the concrete problem of mapping and
navigation, whether in the land, water, or air vehicles, ROS
allows SLAM simulation in the working environment, thus
reconstructing the map and dynamically planning a trajectory
to the target destination [9]], [10].

The use of this type of software tool becomes essential
when control schemes integrate a large variety of sensors
[L1]. Not only does it facilitate the preliminary performance
evaluation of the scheme (reducing costs and implementation
time), but it also speeds up the overall implementation time
of the schemes. In assistive robotics, this is key, as new
interaction schemes and control algorithms are continually
being developed and need to be evaluated quickly [[12]]. These
applications involve both the interaction problem and the
navigation problem, which in many cases involve complex
control algorithms, whose performance and coordination must
be evaluated before implementation on real platforms [13],
[14]. The emulation under ideal conditions, therefore, allows
having an additional design tool that guarantees time and
design reduction throughout the whole process [15].

Our research project is part of a macro project aimed
at the development of robotic solutions for assistance tasks,
particularly in applications related to the care of people (elderly
and children). In previous years, we have developed a modular
mobile platform with load capacity for integration with a
manipulator robot (industrial application) and/or an anthro-
pomorphic robot for services [16], [17]]. Previous prototypes
of this robot had been integrated with ROS to provide ease
of handling and simulation of behaviors [18]], [19]. At the
time, the use of the platform with ROS in structured motion
planning applications was justified due to the simplification

www.ijacsa.thesai.org

910 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

in the integration of navigation algorithms. This project seeks
the same benefit in a more complex robot, which additionally
requires greater availability of access for members of the
research group. However, the application of ROS in more
complex robot also opened the door to new problems [20].

Similar projects to the one proposed in this research have
been previously developed on other platforms [21]. ROS is
commonly used to facilitate the design, analysis, and tuning
of control algorithms by taking advantage of its modularity and
master-slave scheme of work. Our work differs from some of
them, such as [22]], [23], in the sense that it prefers coding in an
open environment with Python support, unlike MatLab, which
conforms to a closed platform with expensive licensing. Still,
as in its previous uses, it allows the easy use of simulators such
as Gazebo. We did not solve all the issues mentioned above,
but we did accomplish our goal: We programmed robots using
the ROS framework.

II. PROBLEM STATEMENT

The ARMOS TurtleBot robot is a robotic platform designed
and implemented by the ARMOS research group to develop
assistance tasks and human support (service robot) (Fig. [I).
Although it was conceived as a mobile platform for other
systems, it has load restrictions (maximum value defined as
10 kg), and movement restrictions derived from its structure
and motors. It has four 9 V DC motors with geared motors,
driving a caterpillar on a differential structure. Each of the
motors has a starting torque of 9.5 kg, no-load speed of 150
RPM (revolutions per minute), starting current of 4.5 A, and
nominal working current of 1.2 A (200 mA no-load). These
motors have a Hall sensor for shaft position estimation.

Fig. 1. ARMOS TurtleBot Robot.

The working model of the motors is in pairs, i.e., the same
control signal activates simultaneously the two motors on the
right side, and another signal activates simultaneously the two
motors on the left side. This scheme improves the robot’s total
torque while also simplifying its model and control scheme
without sacrificing displacement capacity.

Vol. 13, No. 6, 2022

The structure is composed of an aluminum base, a material
chosen for its lightweight, which reduces the total weight of the
platform. Object detection is done through sensors around the
robot. The robot has nine SHARP GP2Y0A21YK IR infrared
sensors, which are distributed throughout the robot structure.
Other peripherals included in the robot are:

e Four contact buttons, that function as impact detectors.

e A TCS3200 color sensor located at the bottom of the
robot.

e An inductive sensor LJ12A3-4-Z/BY located in the
lower part of the robot to detect metallic elements.

For the control system, two STM32L432KCU6 microcon-
trollers are used to process sensor and actuator signals, and
a Raspberry Pi 4 card is used as the control unit, which will
also have the ROS OS operating system.

The ARMOS TurtleBot robot was designed with diversity
and a wide variety of peripherals capable of interacting and
communicating with each other through the master-slave level
configuration. In addition, it allows the simple integration of
new peripherals with a LiDAR sensor. The initial tasks of
the robot contemplate navigation problems in dynamic and
unknown environments, the reason why in this project we
intend to implement ROS in the platform and evaluate its
performance in basic navigation tasks that contemplate the use
of these peripherals in a real environment.

III. METHODS

The ARMOS TurtleBot vehicle platform can be analyzed
by separating it into two sections. The first one is composed
of position sensors. These are in charge of identifying bodies
or objects close to the trajectory performed by the robot.
Additionally, the drives of these devices prevent damage to
the robot’s electronic circuits (Fig. [2).

| SR
e)
....'

.
T
€: | &

Fig. 2. Proximity Sensor Connection.

The second section is composed of proximity sensors. The
main purpose of these devices is to specify the characteristics
of the materials that are in the path (floor) and that could

www.ijacsa.thesai.org

911 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

modify their behavior according to the programmed task. There
is the detection of metallic materials, and the characterization
of materials according to their color (Fig. [3).

Fig. 3. Connection of Color and Inductive Sensors.

To integrate ROS into the robotic platform we have sought
to replicate its structure within the software. All the physical
components, considering their specific capabilities, as well
as the communication, signal collection, and handling capa-
bilities, have been programmatically replicated on ROS. The
correct description of the robot requires a correct description of
each peripheral, which was linked to specific laboratory tests.
In this way the robot architecture was developed, starting from
its control unit, the Raspberry Pi 4 board, which is responsible
for managing all the information. Fig. 4] shows the complete
architecture of the main systems and subsystems involved in
the robotic platform.

The first step is to establish serial communication with the
devices or peripherals of the ARMOS TurtleBot platform. To
start the interaction with the ROS OS framework, the following
command is entered in a Raspberry Pi 4 terminal (on the
robot):

$ roscore

In this way, the operating system starts the communication.
The initial part corresponds to the user generated to work
on this terminal (pi@raspberrypi:). Thus, if the connection is
successful, the system responds as shown in Fig. [3

This corresponds to the workspace and communication
verification process of the master node in ROS OS. At this
moment is when the communication or start of the ROS OS
system is successfully obtained. The next step is to continue
with the opening of the workspace defined for the nodes and
commands that are entered, this can be done through the
command line as follows.

$ cd “/catking ws/ &&source devel\setup.bash
$ cd rosrun rosserial_ server serial_node _port:=dev/ttyACMO

The command line corresponding to rosserial is the one that
indicates the communication through language or programs
generated through Arduino IDE 18.2, which is the version
implemented for the project.

Vol. 13, No. 6, 2022

The next step consists of the communication of the pe-
ripherals or sensors, both position, and proximity. For this
mobile application, the programming is done under the C++
language, where it should be noted the confirmation of one
of the main objectives of the ROS OS system, the recycling
of code and interoperability between the various programming
options available at the moment.

For the inductive sensor LJ12A3-4-Z/BY whose function,
as detailed above, is to enable the robot to determine the
existence (detection) of metallic material on the surface on
which the ARMOS TurtleBot robot is moving (floor), the
corresponding command line is as follows:

$ rostopic echo inductive_sensor

The metal detection and the message received by ROS OS
are shown in Fig. [6]

The contact sensor or pushbutton has the objective of
detecting contact with an object, which should produce a
change in the speed and direction of the robot according to the
navigation strategy. The command line to control this sensor
is as follows:

$ rostopic echo switch_limit

The response or communication by ROS OS in case of
contact detection is shown in Fig. [7]

The proximity sensor used is the Sharp GP2Y0A21YK IR.
There are a total of nine of these sensors, which are in charge
of establishing the distances to obstacles or objects around the
robot. Their signal is visualized through a graph generated by
the operating system, the tool is called rqt_plot. The following
are the lines of code and their corresponding response for three
sensors (Fig. [§ and [9).

$ rqt_plot / sensor3/range: /sensord4/range: /sensor5/range

The last sensor coupled to the system is the TC3200
color sensor. The color identification method consists of 64
photodiodes equally distributed in four colors (red, green, blue,
and white). Its operating principle is based on the conversion
of signals (electronic circuit) from current to frequency, where
a specific frequency is assigned to the detected color, thus with
the constant determination of three frequencies (red, green, and
blue) and the determination of the frequency range during the
three readings, the conditions to be programmed in the control
unit are obtained. The frequency ranges are specified in Table[l]

TABLE I. FREQUENCY RANGE FOR COLOR DETERMINATION BY THE

SENSOR
Colors according to frequency range
Red | R<50 | V>90 | A>90
Blue | R>85 | V>80 | A<50
Green | R>90 | V<120 A>58
In the robot, the color sensor is managed by a

STM32L432KCU6 microcontroller. This microcontroller es-
tablishes the communication with ROS OS. To query the

www.ijacsa.thesai.org

912|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

[\ireless Control and Vemnneation (FC) J <:|

sysiem Fower or ARMUS Turtlebot
Robot

GZD [Control Systemn

Hardware Control

Vol. 13, No. 6, 2022

Software Monitering

Arduino

1DE

Raspbeity PiOS

r

(Melodic)

ROS 05 ‘

Ll:es['u'u 0 and Proximity Sensoers]

{ Locometion Mechanisms J

sensors SHARP GP2Y0DAZ1YKIR

D& geared motors with Hall
Efiect sensor

Calor sensing TG

[:
[Coniact Buttons

]
J

IRGHiciive Sensar LA 2By | {
I

Fig. 4. Control Scheme: Hardware and Software.

roscore

pi@raspberrypi:
. logging to /home/pi/.ros/log/dec31f2e-dba®-1lec-90fd-e45f010909f7/roslaunch

-raspberrypi-1238. log

Checking log directory for disk usage. This may take a while.

Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <i1GB.

started roslaunch server http://raspberrypi:45585/
ros_comm version 1.14.11

[SUMMARY

PARAMETERS
* /rosdistro: melodic
* /rosversion: 1.14.11
NODES

auto-starting new master

process[master]: started with pid [1248] v!

Fig. 5. Roscore Start.

reading, a message is sent from ROS similar to the one shown
below.

$ rostopic echo color_sensor

Actuator management is also configured from ROS. The
monitoring and instructions of the DC motors, as well as the
Hall effect sensors coupled to each of them, can also be easily
managed from this environment. These sensors prove to be an
essential tool that allows the feedback of the movement of each
motor, thus reducing errors in autonomous navigation tasks in
real environments. Three basic commands were designed for
its operation: go forward, stop and reverse. These commands
are translated into specific movements performed by each of
the motors, and controller through Hall effect sensors. The
instruction for their execution is as follows:

$ rostopic pub forward std msgs/empty

p y p ey
pi@raspberrypi:- ir rostopic echo Inductive_sensor
data: "Metal Detected!"

data: "Metal Detected!"

data: "Metal Detected!"

Fig. 6. Metal Detection Report from the Inductive Sensor.

IV. RESULTS AND DISCUSSION

To evaluate the performance of the system, a test en-
vironment was built to assess the behavior of each of the
robot’s sensors, as well as its actuators and communication
characteristics. The following is a brief description of this
test environment, as well as the expected interaction with the
ARMOS Turtlebot robot, its displacement parameters, and the
defined trajectory path.

The scenario where the peripheral integration tests are
performed on the ARMOS Turtlebot robot has a flat surface
(Fig. [T0). In the center of the area, there is a box composed
of different materials with characteristics recognizable by the
devices embedded in the robot. The navigation of the robot
was programmed with restrictions on its displacement, to
evaluate the interaction of sensors and actuators in the ROS OS
operating system. The navigation conditions for the execution
of the experiment are detailed below.

The displacement of the robot starts with the control
signal generated from the control unit installed on the robot

www.ijacsa.thesai.org

913 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

pi@raspberrypi:~/catkin_ws $ rostopic echo switch_limit

data: "CRASH!"

data: "CRASH!"

data: "CRASH!"

data: "CRASH!"

data: "CRASH!"

data: "CRASH!"

data: "CRASH!"

data: "CRASH!"

data: "CRASH!"

data: "CRASH!" v

Fig. 7. Impact Report from the Contact Sensor.

pi@raspberrypi:~/catkin_ws $ rqt_plot /sensoril/range: /sensor7/range: sensor9/r
ange
pi@raspberrypi:~/catkin_ws
pi@raspberrypi:~/catkin_ws
pi@raspberrypi:~/catkin_ws
pi@raspberrypi:~/catkin_ws
ange
pi@raspberrypi:~/catkin ws $ rqt_plot /sensor3/range: /sensor4/range: sensor5/r
ange

rqt_plot sensori/range
rqt_plot sensor2/range
rqt_plot sensor3/range
rqt_plot /sensorl/range: /sensor7/range: sensorg/r

»nnn

Fig. 8. IR Sensors Report.

itself. From there, the ROS connection is established with the
peripherals as described above. As soon as the communication
is established and the work folder is opened, the trajectory is
started with the instruction from the corresponding command
line. At this point, the ROS connection has been established
between the control unit and other peripherals.

The specific mechanism to intervene during the whole test
is the caterpillar wheels equipped with geared motors and
coupled to Hall effect sensors. These devices are used to

— sensurdjrange

164 — sensordrange

[sensorijrange

4+

0015 0020 0025 0.030 0.035 0.040 0.045
+1.304e2

Fig. 9. Distance Curves Reported by the IR Sensor

Vol. 13, No. 6, 2022

Fig. 10. Test Environment Setup.

move the robot to carry out the trajectory. The path is defined
on a surface adapted with characteristic colored materials,
recognizable by the TC3200 color sensor. The first zone
corresponds to the blue material, the sensor acquires this
information and transmits it directly to ROS OS, which is in
charge of processing the data and sending a color detection
message. In this case, the text specifying the color of the
detected object is displayed on the terminal.

Sharp GP2Y0A21YK IR infrared proximity sensors have
a maximum detection range of 80 cm. For the proposed test
application, this detection is conditioned to a maximum of
20 to 25 cm, and the control is done graphically in real-time
through the rqt_plot tool of ROS OS, making the recognition
of object or obstacle and its distance. Once this condition is
met, the programmed instruction is the change of direction, and
to perform this action by the robot, a rotation is performed on
its axis (right) which occurs whenever the motors on each side
rotate at the same speed and in opposite directions (one side
of the robot moves forward and the other backward).

Starting up in the new direction, the surface on which it
is running is colored green, which is detected by the TC3200
color sensor. Thereupon the system and its programming will
issue a message on the terminal indicating that the second
green area has been detected. While the vehicle is running, a
green-colored area is detected by the TC3200 color sensor.

www.ijacsa.thesai.org

914 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

When a metallic material is detected, it is time for the
intervention of the inductive sensor LJ12A3-4-Z/BY, which
causes two different interactions in the programming and
control of the robot. The first consists of the ROS instruction
that indicates the detection of metal, performing a change of
direction or rotation on the axis. Additionally, the data of the
metal material is sent so that a message is transmitted to the
terminal indicating the detection of this element.

It changes direction in a 90-degree turn with a new rotation
on its axis in relation to its previous position. The robot is
moving over a third displacement zone, this time in red. As
before, this information is reflected through ROS OS using a
message indicating the detection of a colored area.

The test or experiment ends with the intervention of the
contact sensors that aim to detect the impact of an obstacle on
the robot. These are activated when changing state (bi-valued
sensor), which complements the reading of the distance sensor
formed by the nine infrared sensors IR Sharp GP2Y0A21YK,
or even substitute it when the obstacle is below the line of
sensing of the infrared. The action defined at this point is that
the robot stops immediately.

This navigation circuit was developed by the robot multiple
times to verify the consistency of operation and results. One
of these tests can be seen in the following link (Fig. [TT).

https://youtu.be/uh5Swzhlwibg

Open.Rqt.plot "5 Infrared sensors graph "

=S \itch.Limit =~ °

Fig. 11. ROS-Controlled Robot Performance Test.

Communication between ROS OS and the sensors allows
it to know where they are and allows for these devices to
communicate between them automatically, as a message that
is generated by one device will be transmitted automatically to
all other devices. When running all the peripherals and devices
associated with the robot, it is evident that the communication
between ROS OS and these works correctly because there are
no crashes or failures when all these devices are communicat-
ing at the same time in the system. This feature guarantees
the robustness of the system and allows for validating it for
evaluation tests of more complex navigation algorithms.

The inductive sensor detects the metal correctly, and the
message display transmitted by ROS OS through the terminal
shows the warning message approximately one second after
the sensor detected the metal surface. In the case of the
contact sensor, it was triggered immediately when the robot

Vol. 13, No. 6, 2022

had a collision with the obstacle that was not detected by
the IR ranger sensors located at the front of the robot. The
warning message displayed by the ROS system was almost
instantaneous when the collision occurred (about a 120 ms
delay).

As for the motors, when the command was executed in
ROS OS on the terminal to move the wheels of the robot and
produce forward motion, it was evident in all tests that there
was a delay in the response of the motors of approximately
three seconds after the command was executed. The same
was true for moving the wheels backward or for stopping
the movement of the motors completely. After almost three
seconds of waiting to start or stop the movement, the motors
responded appropriately.

The most important sensor in the reactive control tasks is
the ranger IR sensor. Each sensor in the system was individu-
ally tested for interaction with ROS OS. The object detection
tests were verified in the rqt_plot tool that is integrated in ROS
OS, which allows to view two-dimensional plots. In this tool,
a distance vs. time graph is displayed, where a continuous line
appears referring to the distance in cm, in which the ranger
sensor is detecting an obstacle. The individual tests showed
that the sensors detected the objects acceptably with an error
of approximately one to two centimeters. Back in the test
application, where the sensors were acting in conjunction with
the other devices on the robot, it was found that the reading
accuracy error increased to almost three centimeters for some
sensors. When trying to visualize the nine signals detected
by each of the sensors in the rqt_plot tool, the operating
system of the raspberry pi generated delay in the response
and sometimes even total crash of the system. So to avoid this
problem, it was decided to visualize in the rqt_plot tool only
some of the IR, but to use all of them for mapping tasks. In
the tests, the response of the three ranger sensors located at
the front of the robot is visualized. The ranger sensors were
programmed to detect objects within a range of 0.2 to 0.25
m, and then instantly generate action on the robot’s motors.
Furthermore, when they detected an object in this distance
range, the motors reacted within two to three seconds after the
sensor had detected the object.

The color sensor was evaluated individually with ROS
OS before being incorporated with the other devices and
sensors on the robot. The ROS readings were accurate over
the three colors that the sensor measures. When the sensor
was incorporated into the test task, the color readings began
to differ significantly from the previous ones, resulting in
erroneous readings in the application. The possible interference
of communication delays on the performance of this sensor is
evaluated in this case.

In this study, the results of implementing ROS as a handling
strategy for the ARMOS TurtleBot robot were achieved and
shown. The strategies used can be generalized and further
investigated on this platform as well as on other custom robotic
platforms not initially designed with ROS in mind. This work
can be further enhanced with the use of navigation algorithms
and optimization techniques that reflect the comparative per-
formance of each case. This study shows that ROS can be used
as a suitable programming environment for a robot and should
be the one platform from which further work is don

www.ijacsa.thesai.org

915|Page

https://youtu.be/uh5wzhIwi6g

(IJACSA) International Journal of Advanced Computer Science and Applications,

V. CONCLUSION

The constant innovation in design, programming, and con-
trol in mobile robotics leads to the generation of a wide variety
of algorithms, compromising the understanding and suitability
of robotic applications as a whole. A design methodology
already proven and widely studied is the versatility offered
by the ROS OS operating system in the different stages of
the development of control schemes for robots. This tool
combines the ease of code recycling and the interaction and
communication of different types of programming languages.
This paper presents and explains the integration of the ROS OS
(Melodic) operating system on the ARMOS TurtleBot mobile
robot and its peripherals. The platform is designed to perform
navigation tasks or activities, thus obtaining synchronization,
data transfer, and information management in real-time on
surfaces with suitable characteristics to be detected by the
different devices that make up the robot. The proposed purpose
corresponds to the integration of the devices that make possible
the displacement and recognition of the robot in a given
environment. The systems involved according to the archi-
tecture are Raspberry Pi OS, ROS OS (Melodic), and some
microcontrollers as embedded systems that directly manipulate
sensors and motors, with this architecture the compatibility
and possibility of integration of peripherals are confirmed.
The simultaneous interaction of the proximity peripherals and
position sensors through the ROS OS operating system is
visualized through windows or terminals utilizing messages
or interactively in 2D graphics, confirming the interoperability
and real-time control of the environment surrounding the
robot when it performs navigation tasks. The presence of
windows and graphic interfaces for its control demonstrates
the possibility of remote real-time observation and monitoring,
providing immediate feedback about the robot’s environment.
No communication problems are detected that could prevent
its use as a general strategy in the development of navigation
algorithms. On the contrary, the possibility of integrating
additional peripherals such as a LiDAR sensor or a digital
camera onboard is observed.

ACKNOWLEDGMENT

This work was supported by the Universidad Distrital
Francisco José de Caldas, specifically by the Technological
Faculty. The views expressed in this paper are not necessarily
endorsed by Universidad Distrital. The authors thank all the
students and researchers of the research group ARMOS for
their support in the development of this work.

REFERENCES

[1] B. Liu and C. Liu, “Path planning of mobile robots based on improved
RRT algorithm,” Journal of Physics: Conference Series, vol. 2216,
no. 1, p. 012020, mar 2022.

[2] R. Alonso, A. Bonini, D. R. Recupero, and L. D. Spano, “Exploiting
virtual reality and the robot operating system to remote-control a
humanoid robot,” Multimedia Tools and Applications, vol. 81, no. 11,
pp. 15565-15592, feb 2022.

[3] A. Shahoud, D. Shashev, and S. Shidlovskiy, “Visual navigation and
path tracking using street geometry information for image alignment
and servoing,” Drones, vol. 6, no. 5, p. 107, apr 2022.

[4] M. Quiroz, R. Patifio, J. Diaz-Amado, and Y. Cardinale, “Group emotion

detection based on social robot perception,” Sensors, vol. 22, no. 10, p.
3749, may 2022.

[5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

Vol. 13, No. 6, 2022

P. Wang, R. Ye, J. Zhang, and T. Wang, “An eco-driving controller
based on intelligent connected vehicles for sustainable transportation,”
Applied Sciences, vol. 12, no. 9, p. 4533, apr 2022.

E.-T. Baek and D.-Y. Im, “ROS-based unmanned mobile robot platform
for agriculture,” Applied Sciences, vol. 12, no. 9, p. 4335, apr 2022.

R. Xu and C. Li, “A modular agricultural robotic system (MARS)
for precision farming: Concept and implementation,” Journal of Field
Robotics, vol. 39, no. 4, pp. 387-409, jan 2022.

A. D. Sabiha, M. A. Kamel, E. Said, and W. M. Hussein, “ROS-
based trajectory tracking control for autonomous tracked vehicle us-
ing optimized backstepping and sliding mode control,” Robotics and
Autonomous Systems, vol. 152, p. 104058, jun 2022.

M. Facerias, V. Puig, and E. Alcala, “Zonotopic linear parameter varying
SLAM applied to autonomous vehicles,” Sensors, vol. 22, no. 10, p.
3672, may 2022.

H. M. P. C. Jayaweera and S. Hanoun, “Path planning of unmanned
aerial vehicles (UAVs) in windy environments,” Drones, vol. 6, no. 5,
p- 101, apr 2022.

Y. Guo, X. Fang, Z. Dong, and H. Mi, “Research on multi-sensor
information fusion and intelligent optimization algorithm and related
topics of mobile robots,” EURASIP Journal on Advances in Signal
Processing, vol. 2021, no. 1, nov 2021.

J. A. C. Panceri, E. Freitas, J. C. de Souza, S. da Luz Schreider,
E. Caldeira, and T. F. Bastos, “A new socially assistive robot with inte-
grated serious games for therapies with children with autism spectrum
disorder and down syndrome: A pilot study,” Sensors, vol. 21, no. 24,
p- 8414, dec 2021.

A. A. Umar and J.-S. Kim, “Nonlinear model predictive path-following
for mecanum-wheeled omnidirectional mobile robot,” The transactions
of The Korean Institute of Electrical Engineers, vol. 70, no. 12, pp.
1946-1952, dec 2021.

B. Boroujerdian, R. Ghosal, J. Cruz, B. Plancher, and V. J. Reddi,
“RoboRun: A robot runtime to exploit spatial heterogeneity,” in 2021
58th ACM/IEEE Design Automation Conference (DAC). IEEE, dec
2021.

S. Chen, W. Zhou, A.-S. Yang, H. Chen, B. Li, and C.-Y. Wen, “An
end-to-end UAV simulation platform for visual SLAM and navigation,”
Aerospace, vol. 9, no. 2, p. 48, jan 2022.

C. Penagos, L. Pacheco, and F. Martinez, “Armos turtlebot 1 robotic
platform: Description, kinematics and odometric navigation,” Interna-
tional Journal of Engineering and Technology, vol. 10, no. 5, pp. 1402—
1409, 2018.

C. Herndndez, D. Giral, and F. Martinez, “Kinematic and dynamic
analysis of a differential robotic platform with caterpillar tracks,”
(JATIT) Journal of Theoretical and Applied Information Technology,
vol. 99, no. 24, pp. 5993-6003, 2021.

A. Moreno and D. Péez, “Performance evaluation of ros on the raspberry
pi platform as os for small robots,” Tekhné, vol. 14, no. 1, pp. 61-72,
2017.

F. Martinez, “Turtlebot3 robot operation for navigation applications
using ros,” Tekhné, vol. 18, no. 2, pp. 19-24, 2021.

A. Yilmaz, E. Sumer, and H. Temeltas, “A precise scan matching
based localization method for an autonomously guided vehicle in smart
factories,” Robotics and Computer-Integrated Manufacturing, vol. 75,
p- 102302, jun 2022.

S. Abdul-Rahman, M. S. A. Razak, A. H. B. M. Mushin, R. Hamzah,
N. A. Bakar, and Z. A. Aziz, “Simulation of simultaneous localiza-
tion and mapping using 3d point cloud data,” Indonesian Journal of
Electrical Engineering and Computer Science, vol. 16, no. 2, p. 941,
2019.

Z. Chen, S. Yan, M. Yuan, B. Yao, and J. Hu, “Modular development of
master-slave asymmetric teleoperation systems with a novel workspace
mapping algorithm,” IEEE Access, vol. 6, no. 1, pp. 15356-15364,
2018.

N. Sadeghzadeh-Nokhodberiz, A. Can, R. Stolkin, and A. Montazeri,
“Dynamics-based modified fast simultaneous localization and mapping

for unmanned aerial vehicles with joint inertial sensor bias and drift
estimation,” IEEE Access, vol. 9, no. 1, pp. 120247-120260, 2021.

www.ijacsa.thesai.org

916 |Page

	Introduction
	Problem Statement
	Methods
	Results and Discussion
	Conclusion
	References

