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Abstract—Advances in the field of Neural Networks, especially
Graph Neural Networks (GNNs) has helped in many fields,
mainly in the areas of Chemistry and Biology where recognizing
and utilising hidden patterns is of much importance. In Graph
Neural Networks, the input graph structures are exploited by
using the dependencies formed by the nodes. The data can also
be transformed in the form of graphs which can then be used
in such models. In this paper, a method is proposed to make
appropriate transformations and then to use the structure to
predict diseases. Current models in disease prediction do not fully
use the temporal features that are associated with diseases, such
as the order of the occurrence of symptoms and their significance.
In the proposed work, the presented model takes into account
the temporal features of a disease and represents it in terms of
a graph to fully utilize the power of Graph Neural Networks
and Spatial-Temporal models which take into consideration of
the underlying structure that change over time. The model can
be efficiently used to predict the most likely disease given a set of
symptoms as input. The model exhibits the best algorithm based
on its accuracy. The accuracy of the algorithm is determined
by the performance on the given dataset. The proposed model
is compared with the existing baseline models and proves to be
outstanding and more promising in the disease prediction.

Keywords—Spatial temporal graph convolution network; disease
prediction; graph neural network; graph convolutional network;
deep learning; knowledge graph

I. INTRODUCTION

In recent times, Machine Learning has become very popu-
lar in the field of Medical Sciences, especially when it comes to
detecting patterns that are associated with health and diseases.
Disease prediction is one of the most sought after applications
here, and the reason for that is the patterns that are associated
with each disease, be it physical illness or mental well-being.
Diseases are often associated and known for the symptoms
that occur when a person is infected, therefore a study of
the underlying structure of the symptoms, their behaviour, etc.
is important for predicting them. These underlying structures
usually have a temporal nature to them as the symptoms don’t
occur all at once, but they do in more or less sequential order.

It is common to see the use of ML models such as Naive-
Bayes, Decision Trees and other classifiers to be used in these
scenarios. The most common source for obtaining information
about symptoms is by referring to Electronic Health Records
(EHRs). Often these are used to extract features for input.
In [1], the authors make a heart disease prediction model
using ML techniques. They utilize features such as Age, Sex,

Pain levels, etc of patients as input. In [2], it was found
that most people tackled this problem using Support Vector
Machines (SVM) and Naive-Bayes models. However, this did
not prove to be efficient when dealing with huge volumes of
Electronic Medical Records (EMRs) data without processing
it and simply feeding it to these models, nor can these models
take advantage of the temporal structure of the symptoms.
To overcome these many researchers have started utilising
Deep Learning, as a neural network can detect and represent
the hidden and latent features more efficiently. In [3], the
authors proposed a graph convolution network with mutual
attention networks, to learn from EMR’s directly and diagnose
the patient. The author obtained an accuracy of 63.46% from
the MIMIC-III dataset [4], which was better compared to
all the other models in the paper like Convolutional Neural
Networks (CNN), Graph Convolutional Network(GCN), etc.
The authors in [5] use an Artificial Neural Network (ANN)
to develop a model for Parkinson’s disease and boast almost
perfect accuracy. A method proposed in [6] uses Cascading
Neural Networks in order to detect Melanoma, a form of
skin cancer. In [7], the authors have developed a model
called InceptionGCN for disease prediction and tested it out
on various datasets. Thus it can be concluded that neural
networks, especially Graph Neural Networks play an important
role in the new and upcoming models of disease predictions.

However, most of the above-mentioned papers fail to utilise
the temporal features of the symptoms that are associated
with the diseases. Some papers [8],[9] make use of GNNs
tailored for this specific purpose especially in [9],[10] where
the authors use patient data to first construct a dependency of
the patient with symptoms on each visit and a final diagnosis
and then model a graph from which is fed to the network
proposed by them. This model could achieve an accuracy of a
little over 85% at the most favourable conditions.

So while the use of spatial-temporal networks is not new
to this problem, a new architecture that models symptoms of
a patient into a graph is quite novel. This paper proposes a
method to model the input data by changing the underlying
structure of the graph at each timestep, so as to utilise the
temporal features of the input. Knowledge graph for diseases
by [11] is utilized for proposed architecture. In this, the authors
employ probabilistic models such as logistic regression, naive
Bayes classifier, to derive features of various diseases from
many EHRs. The authors feature a knowledge graph built on
these features and so in the presented work a knowledge graph
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based Spatial-Temporal GCN is proposed.

The major contributions of the paper are:

• A temporal approach to predicting diseases in order
to make the models more robust and potentially ex-
ploiting such dependencies to enhance the quality of
the proposed model.

• Graph Convolutional Network(GCN) model is pro-
posed which exploits the spatial dependencies of the
input first then uses these to explore the temporal
dependencies of the input. This will help to un-
derstand how the symptoms relate to each other at
each timestep and how that underlying relationship
changes. The model will exploit this to predict and
classify diseases.

• A graph model of the input data in the form of diseases
and the symptoms that occur alongside proposed as
well. Each symptom is associated with a probability
which indicates how likely the symptom is to occur (as
compared to all other symptoms for the same disease).
Data is convert into a graph.

II. RELATED WORKS

Disease prediction has been difficult with a lack of patient
history and noisy data. The work tries to overcome the
difficulties and improve efficiency by using knowledge graphs
obtained from medical ontology. Further, mechanism is also
discussed to predict diseases using symptoms via a spatial-
temporal Graph Convolutional Network.

Xuedong Li et al. [12] takes an innovative approach
to overcome the lack of medical history by using medical
knowledge. The lack of medical history of patients owing to
the nature of rare medical diseases makes it a challenging
process even for machine learning approaches to recognize the
diseases. They have developed a text classification algorithm
to create a bag of knowledge terms from the medical ontology
to develop a knowledge graph that can be leveraged for
the disease classification task. It works efficiently even if
the knowledge graph of medical history is incomplete. The
limitation of this approach is that the dataset being used is
extremely imbalanced.

Rotmensch, M., Halpern, Y. et al. [9] has directed a
review observational investigation utilizing recently gathered
information from Electronic Medical Records (EMR) in order
to develop a knowledge graph that relates indications to
sicknesses and assessed competitor knowledge graphs against
physically curated knowledge graph given by (Google well
being knowledge graph, or GHKG) and also the expert opinion
of physicians. However, the purpose of the knowledge graph
was to test how efficiently a given algorithm could recover
unknown causal relationships between the diseases and their
symptoms. A drawback is that any approach that infers causal
relations from observational data has major limitations inher-
ently. The algorithms should be seen as a method of providing
casual relations between the entities.

Zhenchao Sun, Hongzhi Yin et al. have introduced an
innovative model [13] using GNNs for disease prediction. It
uses multiple knowledge bases in order to obtain sufficient

EMR data to learn highly representative node embeddings of
medical concepts graph and the patient record graph (which
include entities such as, the patients, diseases and symptoms),
and are thus constructed from the medical knowledge base
and EMRs. This results in accurate disease prediction for new
patients under sparse data in an inductive manner.

Li, Y., Qian, B et al. have proposed GNDP, a disease
prediction model which is based on a graph convolutional
network. It exploits the spatial structure of the EHR data
and the temporal dependencies of the entities to predict the
patient’s future diagnosis which is similar to [8,10]. Sun, Z.,
Dong, W. et al. propose a Reinforcement Learning mechanism
that would take random walks over the knowledge graph
with respect to the patient’s symptoms and then propose the
most likely disease. The authors have manually constructed
the knowledge graph using the Mimic-III PLAGH dataset. A
single knowledge graph has been made for all diseases. It is
limited in terms of accuracy, as accuracy could be improved
by using efficient methods. GNN models can be considered as
the structure of the data is a graph and the performance can
be improved using GNN algorithms.

Yuan, Q., Chen, J., et al. have constructed an elaborate
GCN model [3] in which they have extracted symptoms from
a given diagnosis in the form of a string. Then they embed
the diseases first in the D-D GCN layer and attach symptoms
(features) to the diseases in the next D-F GCN layer. Less
important features have been pruned from the knowledge
graph in this model. Finally, these features are given to a
convolutional network modelled using attention, so that the
most important disease corresponding to the symptoms is
obtained. The accuracy obtained is only 63%. The limitation is
that the model is not interpretable and complex to understand.
Potential change or simplification of algorithms can lead to
better accuracy. It only considers the features extracted from
diagnosis and not the temporal relations between the features.

III. METHODOLOGY

In this section, the proposed architecture of spatial-
temporal graph convolutional networks(STGCN) in elaborately
discussed. STGCN is made up of spatial-temporal convolu-
tional blocks that are arranged in a “sequential” structure
with one sequential convolution layer and one spatial graph
convolution layer, as shown in Fig. 1. The following sections
go over the specifics of each module.

A. Data Collection and Preparation

One authentic medical dataset is experimented on to eval-
uate the proposed model. knowledge graph from electronic
medical records [3], a public accessible benchmark dataset
for diseases knowledge graphs with high-quality knowledge
bases linking diseases and symptoms derived from the EMRs.
These electronic records represent medical concepts collected
from over 270,000 patient visits to the Emergency Department
at Beth Israel Deaconess Medical Center (BIDMC), thus
the knowledge graphs was automatically constructed using
maximum likelihood estimation of three probabilistic models.

From the learned parameters, a graph of disease-symptom
connections was elicited, and the developed knowledge graphs
were assessed and approved, with consent, against Google’s
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Fig. 1. Example of the Anemia Disease Dynamic Knowledge Graph that Generated in Preprocessing of the Dataset. a) Knowledge Graph at T = 0 b)
Knowledge Graph at T = 3 c) Knowledge Graph at T = n, where n is Length of Disease Trajectory

manually built knowledge graph and master doctor supposi-
tions. The graph records all 156 diseases and 491 symptoms,
all edges between diseases and symptoms, and the significance
scores given to each edge.

Temporal patterns in patient disease trajectories are either
disregarded or only taken into account by assessing the tem-
poral directionality of identified co-morbidity pairs [14], [15],
[16], Which concludes naturally patients undergo different
symptoms at different time instances on disease trajectories
(stages of the disease). In this experiment, the temporal pattern
for each disease as the preliminary basis of a disease prediction
model is utilized.

Provided in Table I are the sample dataset values which
includes a given disease and its symptoms along with the prob-
ability of a given symptom occurring. In Table II, important
statistics of the dataset itself are given.

TABLE I. SAMPLE DATASET

Diseases Symptoms
abscess pain(0.318), fever(0.119), ..
anemia lethargy(0.096), weakness(0.087), ..

common cold chills(0.083), sorethroat(0.075), ..

Before applying the STGCN model to knowledge graphs
extracted from electronic medical records [11], the existing
knowledge graph must go through a series of steps to create
a dynamic graph structure by leveraging temporal features for
each disease knowledge graph.

As the dataset is not available with time element related
with disease symptoms, a suitable time feature is created for
the knowledge graph collected from electronic medical records
[11]. This was done by generating all possible permutations
of order symptoms that will occur in the patient’s disease
trajectories.

Then using the importance scores associated with each
edge of symptoms, the top ten symptoms were selected with
the highest probability of occurrence inpatient disease trajecto-
ries for all possible permutations. Since the disease prediction

is a multi-class classification task, more than one data point is
needed on each class but dataset have only one data point on
each class. To overcome this top k permutations were selected
with the highest importance scores associated with each edge
of symptoms.

Time

....

....

d t

d t + 1

d t + n

Fig. 2. Graph-Structured Disease Data. Each dt Indicates a Frame of
Current Disease Trajectory at Time Step t, which is Recorded in a Graph

Structured Data Matrix.

To generate different graphs for each time instance with
available data, by introducing a new initial node with the label
as patient and linking new edges between each symptom node
and patient node for each disease trajectory growth as shown
in the figure.

This results in T unique graphs with the temporal patterns
for each disease, where T represents the length of the disease
trajectory. Nodal features of each node as initialized with a
unique label code of symptoms and each edge weight of each
edge assigned based on the importance score of symptoms
associated with it.

After preprocessing the knowledge graph extracted from
electronic medical records [11], ‘n’ disease classes of ‘k’
top permutations were generated with the highest importance
scores associated with each edge of symptoms and each
permutation contains ‘T’ unique dynamic graphs with the
temporal patterns for each disease. The dimension of each
dynamic graph data will be [Number of disease classes ‘x’
number to permutations ‘x’ length of disease trajectory].

STGCN disease prediction was a spatial-temporal graph

www.ijacsa.thesai.org 952 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

classification task, hence the final dataset will contain, Adja-
cency matrix with the shape of (length of disease trajectory x
number of nodes x number of nodes), Nodal features (length
of disease trajectory x number of nodes), graph label (1 x 1).

TABLE II. IMPORTANT STATISTICS OF THE FINAL DATASET

Features
Size of the Dataset 2000

Unique Diseases 100
Features per Disease 10
Unique Symptoms 308

IV. PROPOSED MODEL

In this section, the proposed architecture of Spatial-
Temporal Graph Convolutional Networks (STGCN) is dis-
cussed in more detail. STGCN is made up of spatial-temporal
convolutional blocks that are arranged in a “sequential” struc-
ture with one sequential convolution layer and one spatial
graph convolution layer, as illustrated in Fig. 2. Each module’s
specifics are as follows.

Fig. 1 depicts an overview of knowledge-based STGCN
and Fig. 2 depicts the convolution process. When importing
disease data into STGCN in temporal graph format. Two
convolution layers comprise the STGCN unit shown below.
By broadcasting the features of each node along with the
graph edge via the property of graph convolution, the first
layer performs spatial graph convolutional operation parallelly
on each dynamic graph of a different time instance, then node
features vectors containing the aggregation label information of
their neighbours can be extracted [17]. The next layer employs
the temporal layer to capture the temporal relations of the
resultant feature vectors of each entity in the graph.

The entire architecture of the model is depicted via Fig.
3 and Fig. 4. In the former it can be observed how samples
of different timestamps are given as input to the network and
how they are processed in the spatial layer, while in the latter
the input obtained is processed by the temporal layer and the
fully connected layer to lastly obtain the output.

A global attention pooling layer [18] is used after the
STGCN unit and the output is reshaped in order to achieve
proper feature dimension before the output is given to the
Fully Connected unit. This unit consists of two linear layers.
The first linear layer has an input channel of 55 and an
out channel size of 128. The output of the first linear layer
was passed through the batch normalization layer, activation
function and dropout layer (p=0.3). The following second
linear layer has an input channel of 128 and an output channel
of n, where n is the number of diseases. Finally, a Softmax
layer is applied to predict the final output which is then used
for classification. This model is capable of being trained in an
end-to-end scenario and the configuration is unified.

A. Spatial Graph Convolution Layer

The spatial graph convolution layer performs the first
convolution operation on incoming data. Using the adjacency
matrix A and the nodes feature vector F as inputs, the following

function defined by [17] can perform an effective and effective
convolution operation. Adjacency matrix A was converted into
Edge Index Ei and Edge weight Ew for simplicity.

X ′ = (D′−1/2A′D′−1/2) ·X (1)

Where A’ = A + I denoted the adjacency matrix with
inserted self-loop and D′ii =

∑
A′ij its diagonal degree

matrix. The adjacency matrix can include other values than 1
representing edge weights via optional edge weight Ew tensor.

Its nodes wise formulation is given by:

X ′i =
∑

j∈N(v)
⋃
i

(
ei,j√
d′j · d′i

·Xj

)
(2)

with d′i = 1+
∑
j∈N(i) ei,j denoted the edge weight from

the source node j to target node i.

In this experiment, the temporal patterns for each disease
knowledge graph simulate changing nodal features and ad-
jacency matrix for each time instance by creating dynamic
graph data for each disease. To perform spatial convolution
operations for each time instance. The knowledge graph data
is passed to T parallel spatial convolution layers, where T
represents the length of disease trajectory (the number of time
instances recorded in the disease knowledge graph).

A tensor of (Nf , Ei, Ew) can be used to represent the
input feature of a spatial graph convolutional layer, where
Nf represents node features (symptom labels) of the dynamic
disease knowledge graph, Ei represents the edge index of the
dynamic graph data, and Ew represents the edge weight of the
dynamic graph data. A new tensor with the shape of (output
Channel, Number of nodes, dimension of node features) is
generated by using the Conv2D layer which is the standard
2D convolution layer. This is implemented using [1,1] kernel
size and (4,4) stride as features on the input tensor, which is
obtained by multiplying the input matrix with learnable weight
matrix W and adding the bias b. The graph convolution is the
result of the product of the normalised adjacency matrix A’
and the new tensor’s 2nd dimension. Finally, a tensor with the
dimensions (output Channel, Number of Nodes, Node Features
Dimension) can be created.

Fspatial = GCN(Fin) = A′ × F ′in (3)

F ′in =
∑

Fin ·W + b (4)

B. Temporal Convolutional Layer

The dynamic disease graph’s temporal aspect is created
by stacking the output of the spatial convolutional layer and
generating a feature matrix. The temporal axis is well-ordered,
with the duration of the disease trajectory limitation, allowing
for a straightforward convolutional process to extract temporal
information.

The input feature matrix Fspatial is implemented as a
tensor with the dimensions (T, Number of nodes, spatial Output
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Fig. 4. The Fspatial Denotes the Output Features of Spatial Convolutional Layer in Time Order, Ftemporal Denotes the Output Features of Temporal
Convolutional Layer, Y’ Denotes the Predicted Disease Class.

channel), where T is the length of the illness trajectory. The
temporal kernel size is a parameter that controls how many
timestamps are included in the disease graph sequence. The
temporal convolutional layer’s output channel dimension was
determined by parameter γ [19].

Output channel = (Input Channel − y) + 1 (5)

Thus, inspired by [20], [21], the temporal convolution
operation can be defined as

Ftemporal = TCN(Fspatial) =

γ−1∑
i=0

Fspatial ·W + b (6)

V. RESULT

A. Objective Function

Cross-entropy loss is used as the objective function because
disease prediction is a multi-class classification task. Using
cross-entropy loss, the loss is quantified between the ground
truth class d and the model output y’, represented by the
following formula:

loss(y′, d) =
1

n

∑
dT · log(y′) + (1− d)T · log(1− y′) (7)

where n is the total number of category classes.

B. Implementation Details

All the mentioned approaches are implemented using Py-
Torch 1.9.0, PyTorch-Geometric, PyTorch Geometric Tempo-
ral. All training processes are refined through Nvidia T4 GPU
of 8.1 TFLOPS Performance and CUDA 11.1 with Intel(R)
Xeon(R) processor. The dataset is then divided into various
proportions to assess the performance of the model. It is
haphazardly separated into training, validation, testing set in a
0.70 : 0.15: 0.15.

C. Baseline Methods

A comparison is established with the models given below in
Table 3, but since the other models work on different datasets a
direct comparison cannot be made. However their performance
is highlighted with respect to the proposed model in terms of
their accuracy, precision, recall, etc.. These models are:

• Graph Neural Disease Prediction model is proposed in
[9] which also implements STGCN blocks on patient
data for prediction.
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Fig. 5. Validation Accuracy and Test Accuracy Score for each Epoch

TABLE III. COMPARISON WITH OTHER DISEASE PREDICTION MODELS (CONSIDER METRIC AS ACCURACY IF NOT MENTIONED OTHERWISE)

Sr No. Model Dataset used Number of Classes Performance Metrics
1 Proposed EMR [11] 100 98.00%

2 DP-GNN [13] Proprietary EMR 71 Recall - 75.70%
Precision - 22.40%

3 Inception GCN [7] TADPOLE [22] 1 83.40%
2*4 2*RPL [23] PLAGH [24] 2*65 AUC - 74.30%

MIMIC [4] AUC - 63.9%
2*5 2*GNDP [9] MIMIC [4] 171 86.29%

EHR Database 154 87.49%
2*6 2*LPNL [25] TADPOLE [22] 2*1 91.85%

UKBB 63.91%
7 HRP [26] NHANES [27] 13 85.50%

8 GMAN [3] MIMIC [4] 50 Recall - 62.13%
Precision - 63.46%

• This is a GNN model for disease prediction proposed
in [13] (DP-GNN). The authors map a graph of
symptoms linked to the diseases and then use Graph
Neural Networks to test their model.

• The model InceptionGCN is proposed in [7]. The
author’s utilise GCN layers in their model, however
it is used to predict only one class of brain disease.

• The model proposed in [23] utilises Reinforcement
Path Learning (RPL) over knowledge graph to predict
diseases.

• This model, [25] makes use of simple Multilayer
Perceptrons and Latent patient Network (LPNL) in
order to predict diseases.

• The model given in [26] describes a method for rep-
resenting symptoms in the form of knowledge graphs
for health risk prediction (HRP).

• Graph Mutual Attention Network (GMAN) - This
model [3] makes use of attention layers over graph
convolution layers for disease prediction.

D. Evaluation Results

The model is trained to differentiate among 100 unique
diseases by using 308 unique symptoms. Using LabelEncoder
each disease is given a unique label id from 1-100, similarly the
symptoms are labelled. For batching, 10 dynamic knowledge
graphs are used per batch, and the spatialγ and temporalγ is
set to 6. Thus, the channel size and the temporal size will be
5.

After preprocessing, the data set is stratified based on
diseases label, and then passed to the Spatial layer. The input
here is of the size [10x10x11x5] (which is [batchsize x features
x nodes x channel size]), the output of which is passed to
the Temporal Layer which is of the size [10x10x11x5], where
LeakyReLU is used as the threshold function (with a negative
slope of 0.01). This is then passed through Global Pooling
Layer where the output dimensions are [10x5x11x1] (which
is [batch size x temporal size of features x nodes x new
aggregated channel size]) and is then concatenated to shape
[10x55].

The completely linked layer receives the output from here.
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The first layer, which is a Linear layer, has an input of
[10x55] and an output of [10x128]. This is normalised using
the received output via a BatchNorm1D layer and then ReLU
is used as the threshold function. Then a dropout layer is
initialised, with a probability of 0.3, before passing it to the
final Linear Layer which has an input of [10x128] and output
of [10x100]. Then finally, ReLU is used as the threshold
function so that whichever node has the highest value will
be the predicted label, and hence the predicted disease.

The model was trained for 10 epochs, in which the vali-
dation accuracy obtained is 98.00%, and the test accuracy is
98.66% for γ = 6.

This accuracy indicates that there is a lot of merit in using
temporal dependencies for disease prediction, especially by
using the proposed method. This model can be also used
practically in clinical sciences as a robust healthcare artificial
intelligence system.

In Fig. 5, the validation accuracy and the test accuracy is
plotted with respect to each epoch. It can be observed that there
is an increasing trend and the model achieves high accuracy
in a few epochs only.

E. Comparison with Baseline Models

A comparison is established with the given models in Table
III, and their features are highlighted, namely the dataset they
use, number of classes that were utilised and the accuracy (or
the precision, recall, Area Under the Curve [AUC]) of their
models.

The GNDP model [9] has been tested on the MIMIC-III
dataset [4], so a direct comparison cannot be made, but the
paper also makes use of Spatial Temporal Blocks to construct
their architecture. In their network, they implement 5 STGCN
units, pool the outputs at specific blocks, and then finally
pass the output to the fully connected layer. Compared to
that, the model only makes use of one STGCN unit before
passing the output to the fully connected layer. It is also
important to mention here that in GNDP, the input is processed
differently from how the model processes the input, and hence
the simplicity. GNDP model achieves a maximum accuracy of
86.29% on MIMIC.

VI. CONCLUSION

This paper proposes a novel deep learning framework
STGCN for disease prediction, integrating graph convolution
through Spatio-temporal convolutional blocks. GNDP solves
the constraints of earlier techniques by using GNNs to learn
spatial and temporal patterns from patients’ sequential graph
data, in which medical ontology knowledge and EMR in-
formation travel down distinct channels at different levels.
The proposed model beats other state-of-the-art methods on
datasets, demonstrating that it has a lot of potential in spatial-
temporal structures.

These features are quite promising and practical for schol-
arly development. Moreover, the proposed framework can be
applied to more general Spatio-temporal structured sequence
prediction scenarios, such as evolving drug linkage, and pref-
erence prediction in diagnosis systems, etc.

VII. FUTURE WORK

In this paper, a template and a model is proposed that
works well on that template, however the major challenge that
was encountered was the absence of medical datasets in the
structured format that is proposed. More work can be done to
devise a model which converts EMR or EHR reports into a
graph structure that [11] utilises and thus the temporal nature
associated can be better exploited.

There is also a need of further structured data for disease
prediction uses. The model can be better trained and would
definitely give us more accuracy if the temporal as well as
the sequential dependencies of the symptoms could be better
utilised. For example, a fever is associated with a cold, which
is associated with cough. These semantics and dependencies
give the symptoms a structure which can be then utilised by
the STGCN model directly.

Furthermore, methods could be devised to convert popular
EMR databases such as [4] can be converted to the format
that is proposed in order to establish better comparisons. This
is challenging due to varied nature of each database to store
information, and the diverse nature of writing reports.
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Furlong, “Identifying temporal patterns in patient disease trajectories
using dynamic time warping: A population-based study,” Scientific
reports, vol. 8, no. 1, pp. 1–14, 2018.

[15] A. B. Jensen, P. Moseley, T. Oprea, S. Ellesøe, R. Eriksson, H. Schmock,
P. Jensen, L. Jensen, and S. Brunak, “Temporal disease trajectories
condensed from population-wide registry data covering 6.2 million
patients,” Nature communications, vol. 5, p. 4022, 06 2014.

[16] T. Ploner, S. Heß, M. Grum, P. Drewe-Boss, and J. Walker, “Using
gradient boosting with stability selection on health insurance claims
data to identify disease trajectories in chronic obstructive pulmonary
disease,” Statistical Methods in Medical Research, vol. 29, 07 2020.

[17] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[18] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” CoRR, vol. abs/1511.05493, 2016.

[19] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” in IJCAI,
07 2018, pp. 3634–3640.

[20] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[21] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 922–929, 07 2019.

[22] R. V. Marinescu, N. P. Oxtoby, A. L. Young, Bron et al., “Tadpole chal-
lenge: Accurate alzheimer’s disease prediction through crowdsourced
forecasting of future data,” in International Workshop on PRedictive
Intelligence In MEdicine. Springer, 2019, pp. 1–10.

[23] Z. Sun, W. Dong, J. Shi, and Z. Huang, “Interpretable disease prediction
based on reinforcement path reasoning over knowledge graphs,” arXiv
preprint arXiv:2010.08300, 10 2020.

[24] P. Li, C. Xie, T. Pollard, Johnson et al., “Promoting secondary analysis
of electronic medical records in china: summary of the plagh-mit critical
data conference and health datathon,” JMIR medical informatics, vol. 5,
no. 4, p. e43, 2017.

[25] L. Cosmo, A. Kazi, S.-A. Ahmadi, N. Navab, and M. Bronstein,
“Latent patient network learning for automatic diagnosis,” Medical
Image Computing and Computer Assisted Intervention – MICCAI 2020.

[26] X. Tao, T. Pham, J. Zhang, J. Yong, W. P. Goh, W. Zhang, and Y. Cai,
“Mining health knowledge graph for health risk prediction,” World Wide
Web, vol. 23, no. 4, pp. 2341–2362, 2020.

[27] S. Kranz, L. J. Mahood, and D. A. Wagstaff, “Diagnostic criteria
patterns of us children with metabolic syndrome: Nhanes 1999–2002,”
Nutrition Journal, vol. 6, no. 1, pp. 1–9, 2007.

www.ijacsa.thesai.org 957 | P a g e


