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Abstract—In a security environment featuring subjects and
objects, we consider an alternative to the classical password
paradigm. In this alternative, a key includes a password, an object
identifier, and an authorization. A master password is associated
with each object. A key is valid if the password in that key
descends from the master password by using a validity relation
expressed in terms of a symmetric-key algorithm. We analyse
a number of security problems. For each problem, a solution
is presented and discussed. In certain cases, extensions to the
original key paradigm are introduced. The problems considered
include the revocation of access authorizations; bounded keys
expressing limitations on the number of iterated utilizations of
the same key to access the corresponding object; repositories,
which are objects aimed at storing keys, possibly organized into
hierarchical structures; and the merging of two keys into a single
key featuring a composite authorization that includes the access
rights in the two keys.

Keywords—Access authorization; key; password; revocation;
security

I. INTRODUCTION

We will refer to the classical security paradigm featuring
active entities, called subjects, that generate access attempts
to passive entities, called objects [15], [16], [20], [24], [29].
A subject can be a process, or the activity generated by the
occurrence of an event, e.g. a hardware interrupt. Objects are
typed. The definition of the type of a given object includes the
specification of a set of values, and a set of operations that
act on these values. For each operation, the type definition
specifies the access authorization, i.e. the set of access rights,
that is necessary to execute this operation successfully.

In an environment featuring subjects and objects, a basic
problem is to allow subjects to certify permission to access
objects, i.e. the subject should possess the corresponding
access authorization [6]. A classical solution is based on the
association of a number of passwords with each object, one
password for each significant access authorization [4], [13]. In
this solution, a subject that holds a password for a given object,
and is aimed at executing a given operation on that object,
presents the password to the object. If the password is valid,
and the access authorization associated with the password
includes the required access rights, then the execution of the
operation is permitted.

Password proliferation is an inherent problem in password
systems. Let us refer to an object type defining four access
rights, for instance. In this type, up to fifteen passwords are
necessary, if all access right combinations are meaningful.
Significant memory requirements follow from the necessity to
store these passwords within the internal representation of each
object. Alternatively, we can associate a password with each

access right. This solution reduces the memory requirements,
but is prone to significant complications of the whole password
management process. For instance, a subject that should be
granted a full access authorization that includes all the access
rights for a given object must possess all the passwords defined
for that object. The arguments of an operation requiring several
access rights must include as many passwords. A subject that
is aimed at passing an access authorization to a recipient
must transmit one password for each access right in the
authorization.

In a different approach, we associate a master password
with each object. This password is generated at random when
the object is created. Master passwords should be large and
sparse, according to the overall security requirements of the
system. A subject certifies its own right to access an object
whose identifier is id by presenting a key K referencing this
object. The key has the form K = (psw, id, au), where au
specifies an access authorization, and psw is a password.
The key is valid if the password is valid, i.e. if psw =
Emp(id || au), where the || symbol denotes a concatenation. In
this validity relation, E denotes a symmetric-key algorithm, the
password cipher, which is universally known. The password is
valid if it is the result of the application of the password cipher
to the concatenation of the identifier and the authorization.
The encryption key is the master password of the object
identified by id. If the password is valid, possession of the
key grants access to the object, to carry out those operations
that are authorized by the access rights in au, according to the
specification of the object type. The au field features one bit
for each access right. If a given bit is asserted, the authorization
includes the corresponding access right. Thus, for instance, an
au field of all 1’s corresponds to a full access authorization
including all the access rights. A subject certifies possession
of a full access authorization for the given object by a single
key, i.e. key (psw, id, 11 . . . 1).

In this approach, a single password, the master password,
needs to be stored into the internal representation of each
object, and a single key is necessary in each operation to certify
possession of the access authorization required by that oper-
ation. A subject that holds an access authorization expressed
in terms of a given key can transmit this authorization to a
recipient by copying the key to the recipient.

The rest of this paper presents the background, first (Sec-
tion II). Afterwards, with reference to a key-based method of
password specification and storage, a collection of significant
problems is analysed, which are connected with password
utilization and management. The problems considered include
the revocation of access authorizations (Section III); bounded
keys aimed at forcing upper limits to the number of successful
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key utilizations (Section IV); key repositories, which are
containers for collections of keys that can be connected to
form a hierarchy (Section V); and a mechanism to merge
two or more keys into a single key including all the access
rights in the respective authorizations (Section VI). For each
problem, we present a solution in terms of the corresponding
password treatment approach. Extensions to the key format are
introduced.

II. BACKGROUND

Password capabilities are a well-known implementation of
the password concept, which was introduced in Section I [5],
[9], [10], [14], [21]. Several computing systems implementing
an object referencing approach based on password capabilities
were designed and actually implemented in the past. Examples
are Annex [19], Walnut [4], Mungi [9], Opal [5], and the
Password Capability System [1]. In a password capability
environment, a set of passwords is associated with each given
object, one password for each significant access authorization.
A password capability is a pair (psw, id) where psw is a pass-
word, and id is an object identifier. A subject that possesses
a given password capability can access the named object to
carry out those operations which are made possible by the
access rights in the authorization associated with the password.
If passwords are sparse, large, and generated at random, it
is virtually impossible for an attacker to generate a valid
password capability from scratch. It follows that password
capabilities can be freely mixed in memory with ordinary
information items. In this respect, password capabilities are
an important improvement over the capability concept [12].
In a classical capability environment, the specification of the
access authorization is part of the capability [7], [17], [22].
Consequently, capabilities should be segregated, into reserved
memory regions [11], or by taking advantage of memory
tagging techniques [2], [3], [18], [28].

Password capabilities suffer from the password prolifera-
tion problem. For a type defining several access rights, many
passwords should be stored into the internal representation
of an object of that type, one password for each meaning-
ful access authorization. Negative effects follow in terms of
complicated password management and high memory costs for
password storage, especially for forms of fine-grained object
access security featuring small-sized objects.

Consider a subject that holds a password capability includ-
ing the password for a given access authorization. The subject
may transfer the authorization to a recipient by passing the
password capability to the recipient. In turn, the recipient can
transmit the authorization further, by new actions of a password
capability copy. Now suppose that the original subject is aimed
at revoking the grant from the recipients. If the subject owns
the object, it can modify the password. This form of revocation
extends automatically to all subjects that hold a password
capability expressed in terms of that password. However, we
cannot reduce the authorization by eliminating a subset of the
access rights associated with the password, and we cannot limit
the revocation to a specific subset of the subjects.

Of course, after changing a password, the object owner can
proceed to a new distribution of password capabilities with
the new password to selected recipients. The whole process is

much more complicated than implied by the desired effect.
This is especially the case for those subjects that received
the password capability through intermediate recipients, which
may well be unwilling, or even unable, to cooperate in the new
distribution. In fact, one of the main advantage of password
capability systems is simplicity in access right transmission
between subject. This simplicity should be also preserved for
revocation.

No bound exists on the transmission ability of a subject
that holds a given password capability. In fact, the subject is
free to pass the password capability to an unlimited number
of recipients. In turn, each recipient can transmit the password
capability further. In the original definition of the password
capability concept, no mechanism is provided to limit this form
of password capability proliferation.

The password capability format does not include an autho-
rization field. It follows that we cannot argue the authorization
granted by a given password capability by inspection of the
password capability itself. In fact, in the original password
capability paradigm, the association between a password for
a given object and the authorization granted by that password
is part of the internal representation of the object. An ad-hoc
operation would be necessary to convert passwords into the
corresponding authorizations.

III. REVOCATION

At the security system level, the key-based approach in-
troduced in Section I is supported by a collection of system
primitives for object and key management (Fig. 1). A first
example is K ← new(T, arg0, arg1, . . . ). In the execution
of this primitive, the constructor of type T is used to create
a new object of this type, according to the specifications of
the type. Arguments arg0, arg1, . . . are transmitted to the
constructor. The primitive returns a key referencing the new
object, with a full access authorization that includes all access
rights. Primitive delete(K) uses the destructor of the type
of the object referenced by key K to delete this object.
The execution terminates correctly only if K specifies an
access authorization that includes access right OWN. Primi-
tive exec(K, op, arg0, arg1, . . . ) executes operation op on the
object referenced by key K. Arguments arg0, arg1, . . . are
transmitted to op. The execution terminates correctly only
is K specifies an access authorization that includes all the
access rights required by op. Finally, let K0 = (psw0, id, au0)
be a key, and msk be a mask having the same size as an
authorization. Primitive K1 ← reduce(K0,msk) returns a key
K1 = (psw1, id, au1) referencing the same object as key K0,
with the reduced authorization au1 that results from relation
au1 = au0 & msk, i.e. the bitwise AND of authorization au0

and mask msk. The execution of this primitive uses the validity
relation and the master password of the object identified by id
to evaluate the new password psw1.

One of the main advantages of a password-based envi-
ronment is simplicity in access right distribution. Consider
a subject that holds the password corresponding to a given
authorization. The subject can grant this authorization to one or
more recipients by simply distributing a copy of the password
to these recipients. In turn, each recipient can grant the
authorization to additional subjects, by further password copy
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K ← new(T, arg0, arg1, . . . )
Uses the constructor of type T to create a new object of this type.
Arguments arg0, arg1, . . . are transmitted to the constructor. Returns
a key referencing the new object, with a full access authorization that
includes all access rights.
delete(K)
Uses the destructor of the type of the object referenced by key K to
delete this object. K should specify access right OWN.
exec(K, op, arg0, arg1, . . . )
Executes operation op on the object referenced by key K. Arguments
arg0, arg1, . . . are transmitted to op. K should specify all the access
rights required by op.
K1 ← reduce(K0,msk)
Returns a key K1 = (psw1, id, au1) referencing the same object
as key K0 = (psw0, id, au0), where au1 = au0 & msk, the &
symbol denotes a bitwise AND, and mask msk has the same size as
an authorization.

Fig. 1. Primitives for Object and Key Management.

actions. We will now consider the case that the original subject
modifies its own intention, and is aimed at revoking the grants
from the recipients. Revocation is especially useful to comply
with the principle of least privilege: at any given time, each
subject should possess only those access privileges that are
necessary at that time for its legitimate purposes [23], [25]–
[27].

Of course, by changing the password associated with
a given authorization we obtain a form of revocation that
includes only this authorization. The revocation involves all
the subjects that received the authorization in the form of that
password. Restricting revocation to a subset of these recipient
subjects is a problem that is hard to solve. We can modify
the password, and then proceed to a distribution of the new
password to the desired recipients. However, consider the case
of a recipient that was reached by means of two or more
distribution steps through intermediate subjects. Collaboration
will be necessary in the new distribution, but these intermediate
subjects may well be unwilling, or even unable, to cooperate.

In our key-based environment, consider a subject that holds
a key for a given object, and distributes a copy of this key to
one or more recipients. A form of total revocation that involves
all access authorizations can be obtained at little effort by a
system primitive having the form K1 ← mpReplace(K). The
execution of this primitive modifies the master password of
the object referenced by key K, whose authorization should
specify all access rights. The primitive returns a key K1

defined in terms of the new master password and including
all access rights. After the execution of this primitive, all keys
generated by using the old master password are revoked; it
will no longer possible to use these keys for successful object
accesses. However, it is impossible to take advantage of an
approach of this type to implement forms of revocation that
involve only a subset of the recipients, or only a subset of the
access rights. We will now introduce more flexible approaches
to the solution of the revocation problem.

A. Instances

A first approach is based on a different form of the access
authorization field. In au, we associate more than a single bit
with each access right. This means that we can have several

Fig. 2. An Access Authorization Field Featuring Four Instances of n Access
Rights.

instances of the same access right. Fig. 2 considers an example
of an access authorization field featuring four instances of n
access rights. For the i-th access right in the authorization,
these instances are named aui,0 to aui,3. If bit aui,j is asserted,
then the access authorization includes instance j of access
right i. The internal representation of each object is modified
to contain an authorization mask, which applies to all keys
referencing that object. The structure of the mask is similar to
that of an authorization field. If maski,j is cleared, then aui,j

is revoked.

When a subject generates an access attempt to a given
object, the key presented by the subject is considered to certify
the access. The access is permitted if, for each access right
required by the access, at least one instance is asserted in the
authorization field of the key, and this instance is not revoked
by the corresponding mask bits. Conversely, the object access
is negated if all instances of one or more of the required
access rights are cleared, or are revoked by the mask. Let eff
denote the effective authorization resulting from the bitwise
AND of the authorization field and the mask; thus we have
eff = au & mask. The i-th access right is granted by the key
if at least one instance of this access right is asserted in eff,
that is, for m instances, effi,0 ∨ effi,1 ∨ · · · ∨ effi,m = 1. In the
mask, the bits corresponding to instance 0 are always asserted
for all access rights. It follows that, in a key, an access right
in instance 0 is never revoked.

The primitives to create and access objects, introduced
previously and illustrated in Fig. 1, should be modified to deal
with effective authorizations. When primitive new is issued to
create a new object, the mask of that object is set to all 1’s,
to validate all access right instances. The key returned by new
features an access authorization that includes all access rights
in all instances. The execution of primitive delete(K) termi-
nates successfully only if the effective authorization granted
by key K includes access right OWN. In the execution of
primitive exec(K, op, arg0, arg1, . . . ), the effective authoriza-
tion should include the access rights required by the operation
specified by argument op.

The mask of a given object can be modified by issuing
primitive mask(K,msk). Argument K is a key referencing
the object, argument msk is the new mask, which should
specify all 1’s for instance 0. The execution accesses the
internal representation of the object to modify the mask. The
operation terminates successfully only if key K specifies all
access rights in instance 0.

B. Categories

In a different approach to access right revocation, we
extend the key format to include the specification of a category.
A key assumes the form K = (psw, id, t, au), where the t field
specifies the category. Each category has a degree. The degree
of a given category expresses a limitation on the access rights
granted by every key in that category.
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changeDegree(K, t, d)
Assigns degree d to category t of the object referenced by key K,
which should specify category 0.
K1 ← changeCategory(K, t)
Returns a new key in category t for the object referenced by key K,
with the same access authorization. K should specify category 0.

Fig. 3. Primitives for Category Management.

Let us refer to an object type featuring n access rights.
As seen in Section I, authorization field au is encoded in n
bits, one bit for each access right. If a given bit is asserted,
the corresponding access right is part of the authorization. The
internal representation of each object is modified to include a
category table featuring an entry for each category. The entry
for a given category contains the degree of that category. A
degree is encoded in n bits. For a given key, the effective
authorization results from the bitwise AND of the au field and
the degree of the category specified by the t field. It follows
that a degree of all 1’s for a given category implies that all the
access rights in the authorization of a key in that category are
effective. Conversely, a degree of all 0’s means that all these
access rights are revoked.

In an extended key environment featuring categories, the
primitives for object management, introduced previously and
illustrated in Fig. 1, should be modified to deal with degrees.
Primitive new assigns degree 0 to all categories, and returns
a key featuring category 0. This category is special in that its
degree always is all 1’s, and cannot be changed. The execution
of primitives delete and exec considers the effective access
authorization granted by key K, as follows from the compound
effect of the authorization field and the degree of the category
specified by the key.

Category management is supported by two primitives
(Fig. 3). Primitive changeDegree(K, t, d) makes it possible
to modify category degrees. Its execution assigns degree d
to category t of the object referenced by key K. The exe-
cution is successful only if K specifies category 0. Primitive
K1 ← changeCategory(K, t) returns a new key in category
t for the object referenced by key K, with the same access
authorization. The execution is successful only if K specifies
category 0.

C. Comparison

Let us refer to the classical properties of an access right
revocation system [8]. In the approach based on access right
instances, revocation is partial, that is, we can revoke any
desired subset of the access rights. To this aim, we clear the
mask bits corresponding to these access rights in all instances.
Revocation is selective, that is, we can revoke an access right
from a subset of the recipients of that access right. To this
aim, we clear the mask bits of the instances specified by the
keys held by these recipients. Revocation is independent, that
is, keys received from different distributors can be revoked
independently of each other, if these keys specify different in-
stances of the same access rights. Revocation is transitive, that
is, it propagates to all copies of the same key, independently
of the path followed by the copy to reach its recipient; and
in fact, a key copy cannot be distinguished from the original.

Revocation is temporal, as it can be reversed through the same
mechanism, i.e. the mask, by setting the mask bits that were
cleared for revocation.

In the category-based approach, we can obtain a partial re-
vocation by clearing the bits of the degree field corresponding
to the access rights to be revoked from the category. Selective
revocation is intrinsic in the category model, and will be
simply obtained by clearing the degree of selected categories.
Independent revocation can be obtained at little effort for keys
belonging to different categories, by modifying the degree of
only those categories that are involved in the revocation; the
other degrees will be left unaltered. Transitive revocation is
implicit in the key model. Finally, temporality can be obtained
by simply setting the bits of the degree that were cleared for
revocation to reverse the effects of the revocation.

Instances imply no modification of the key format. In fact,
instances need to be introduced only in those object types for
which an option for revocation is necessary. In these types, the
access authorization field will be extended to include several
bits for each access rights. The size of the extension will be
decided on a type basis. In fact, we can have different numbers
of instances for different types. Conversely, in the category
based approach, the key format should be extended to include
the category field. This modification applies to all types. The
number of categories is fixed for all types, and is determined
by the size of the category field.

The memory costs of instances are connected with mask
storage and the size of the access authorization field, which is
increased to include several bits for each access rights. For four
access rights and four instances of each access right, a two-
byte access right field and a two-byte mask will be necessary.
These memory costs are to be paid only for those object types
for which revocation is necessary. On the other hand, a four-bit
category field is sufficient to implement up to 16 categories.
The memory costs for storage of the category table in the
internal representation of each object are quite limited. Let us
refer to an object type defining four access right, for instance.
In a situation of this type, for 16 categories, a 64-bit word will
be sufficient.

IV. BOUNDED KEYS

The password paradigm, as is implemented by the key
construct, implies no limitation on iterated utilizations of the
same given key to access the corresponding object. We will
now present an extension of the key concept aimed at forcing
an upper bound to the number of successful applications of
the same key.

We modify the key format by introducing a new field,
the bound field b. In the new format, a bounded key B is a
quadruple B = (psw, id, au, b) (Table I). The validity relation
is modified to take the bound field into account. The key is
valid if psw = Emp(id || au || b), where mp is the master
password of the object identified by id, au is the authorization
granted by the key, and b identifies the bound. A bound table
is associated with each object. The bound table features an
entry for each bound. The entry for a given bound contains the
extent of that bound. The extent is the total number of times
that bounded keys in that bound can be successfully used to
access the object (if the extent is 0, these keys can no longer
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TABLE I. BOUNDED KEY FORMAT

B = (psw, id, au, b): bounded key
psw = Emp(id || au || b): validity relation
psw: password
id: object identifier
au: access authorization
b: bound
E: password cipher
mp: master password

be used). If the bound is 0, then the key is a primary key that
has no bound, and can be used for an unlimited number of
accesses to the object.

The bound table of a given object will be stored as part
of the internal representation of the object. The memory
requirements for storage of the bound table are determined by
the number of bounds and the maximum extent permitted for
each bound. For instance, a bound field of three bits allows for
up to 7 bounds (bound 0 being reserved to specify a primary
key). If an extent is encoded in 16 bits, for each bound we
can have up to 65,535 executions of the exec primitive using
a bounded key in that bound. In a configuration of this type,
the whole bound table can be contained in two 64-bit words.

A. Primitives

The primitives for object management, introduced in Sec-
tion III and illustrated in Fig. 1, should be modified to deal with
bounds and extents. Primitive B ← new(T, arg0, arg1 . . . )
uses arguments arg0, arg1, . . . in the constructor of type T
to create a new object of this type, and returns a primary key
for that object, which includes all acces rights. The extents
of the bounds of the object are all equal to 0. This means
that the object can only be accessed by using the primary
key, until one or more bounds are recharged to specify new
extents (see below). Primitive delete(B) uses the destructor of
the type of the object referenced by bounded key B to delete
the object. B should be a primary key, and should include an
access authorization that specifies access right OWN. Primitive
exec(B, op, arg0, arg1, . . . ) uses arguments arg0, arg1, . . . to
execute operation op on the object identified by id. The
execution is successful if B specifies an access authorization
that includes all the access rights required by op. B should
be a primary key, or the extent of the bound of B should be
greater than 0. If this is the case, the extent is decremented by
1.

The primitives for bound management are summarized in
Fig. 4. Primitive e ← extent(B, b) returns the extent e of
the bound b of the object referenced by bounded key B,
which should be a primary key. Primitive recharge(B, b, e)
increments the extent of the bound b of the object referenced
by bounded key B by quantity e. B should be a primary key.
Primitive B1 ← newBound(B0, b) returns a bounded key B1

referencing the same object as bounded key B0, with the same
access authorization and bound b. B0 should be a primary key.

V. REPOSITORIES

The Repository data type allows us to define objects aimed
at key storage [15]. A name is associated with each key in a

e← extent(B, b)
Returns the extent e of the bound b of the object referenced by bounded
key B, which should be a primary key.
recharge(B, b, e)
Increments the extent of the bound b of the object referenced by
bounded key B by quantity e. B should be a primary key.
B1 ← newBound(B0, b)
Returns a bounded key B1 referencing the same object as bounded
key B0, with the same access authorization and bound b. B0 should
be a primary key.

Fig. 4. Primitives for Bound Management.

TABLE II. ACCESS RIGHTS IN THE Repository TYPE.

Access right Operation
GET read
PUT write
INSPECT list
OWN delete

repository. The name is unique within the repository, that is, it
will never be the case that two keys in a given repository are
associated with the same name (on the other hand, the same
key name can be freely used in different repositories).

Table II enumerates the access rights that are included in
the definition of the Repository type. For each access right, the
table shows the operation whose execution is made possible
by that access right. For a given repository, access right GET
makes it possible to read those keys in the repository whose
names are known. Access right PUT makes it possible to insert
keys into the repository. Access right INSPECT allows us to
read the names of the keys in the repository. Access right
OWN allows us to delete the repository.

Fig. 5 presents the operations defined by the Repository
type, and gives short indications of the effects of the execution
of each of them. Primitive K ← new(Repository) uses the
constructor of the type to create a new, empty repository, and
return a key referencing that repository, with a full access
authorization that includes all the access rights. Primitive
delete(K) uses the destructor to delete the repository refer-
enced by key K. This key should specify access right OWN.

The other operations of the Repository type are imple-
mented taking advantage of primitive exec. A first exam-
ple is K1 ← exec(K0, read, nm). The execution of this
operation accesses the repository referenced by key K0 to
return the key named nm in that repository. The execution
is successful if K0 specifies access right GET. Operation
exec(K0, write, nm,K1) adds key K1 to the repository refer-
enced by key K0, and associates name nm to K1. K0 should
specify access right PUT. Operation lst ← exec(K, list)
returns a list of the names of the keys contained in the
repository referenced by key K. This key should specify access
right INSPECT.

A. Hierarchies

The Repository object type makes it possible to organize
keys into hierarchies. In an organization of this type, each
repository can include keys for other repositories at a lower

www.ijacsa.thesai.org 962 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

K ← new(Repository)
Uses the constructor of the Repository type to create a new, empty
repository. Returns a key referencing that repository, with an access
authorization that includes all access rights.
delete(K)
Uses the destructor of the Repository type to delete the repository
referenced by key K, which should specify access rigth OWN

K1 ← exec(K0, read, nm)
Returns the key named nm taken from the repository referenced by
key K0, which should specifies access right GET.
exec(K0, write, nm,K1)
Adds key K1 to the repository referenced by key K0, and associates
name nm to K1. K0 should specify access right PUT.
lst← exec(K, list)
Returns a list of the names of the keys stored in the repository
referenced by key K, which should specify access right INSPECT.

Fig. 5. Operations of the Repository Type.

hierarchical level. Each repository can also include keys for
objects of any other type, which represent the leaves of the
hierarchy. In a given repository, the name associated with each
key identifies the object referenced by that key.

A subject that knows the name of a key in a given
repository, and possesses a key for that repository with access
right GET, can access the repository to read the key. If the
subject does not know the key name, it can use the list
operation, but an action of this type requires access right
INSPECT for the repository.

B. Access Right Amplification

The read operation implements a form of access right
amplification, whereby a subject that possesses access right
GET for a given repository can read the keys in that repository
independently of the access rights specified by these keys. For
instance, consider the case of a repository R0 that includes a
key K referencing another repository R1, and K specifies all
access rights. A subject that possesses a key for R0 featuring
a single access right, GET, can read K from R0. In this way,
the subject acquires a full access authorization for R1, which
is an amplification of the authorization that the subject holds
for R0.

VI. MERGING KEYS

Let us refer to a subject S that holds two keys that
reference the same object, say K0 = (psw0, id, au0) and
K1 = (psw1, id, au1), where id is the object identifier. Let
us suppose that the type of the object includes an operation
op whose execution requires both the access rights in au0 and
the access rights in au1. Primitive exec(K, op, arg0, arg1, . . . )
features a single key, whose authorization field should include
all the required access rights. It follows that subject S is not
in the position to execute op, unless the two keys K0 and
K1 are merged to form a single key including the union of
the access rights in the authorizations. To this aim, primitive
K ← merge(K0,K1) can be provided. The execution of
this operation returns a key K = (psw, id, au) for the object
identified by id. K features an authorization au that includes
the union of the access rights in au0 and au1.

It should be noted that merge implement a form of access
right amplification. In the example above, by using merge,
subject S amplifies its own execution ability to include oper-
ation op, which would be negated in the absence of merge. In
fact, the decision to include merge in the set of primitives of
the security system is a design choice. If this form of access
right amplification should be permitted, merge will be made
available.

In a more flexible approach, an ad-hoc access right, the
JOIN access right, will be required in all the keys involved in
an access right merging activity. In this case, in the example
above, a successful execution of primitive merge will be
possible only if both keys K0 and K1 include JOIN in the
respective authorizations.

Primitive merge also supports a form of cooperation be-
tween subjects. Consider two subjects S0 and S1 that hold
keys K0 and K1, respectively. These subjects cannot execute
an operation requiring the union of the access rights in au0

and au1, unless they agree to merge the two keys.

VII. CONCLUSION

With reference to a security system featuring subjects and
objects, we have considered a paradigm of object access, which
is an alternative to classical password-based environments. Our
paradigm takes advantage of keys. In particular:

• The key definition includes a password, an object
identifier, and an authorization.

• A master password is associated with each object. A
key is valid if the password descends from the master
password by using a validity relation expressed in
terms of a symmetric-key algorithm.

We analysed a number of security problems, which include:

• The revocation of access authorizations.

• Bounded keys expressing limitations on the number
of iterated utilizations of the same key to access the
corresponding object.

• Repositories, which are objects aimed at storing
keys, possibly organized into hierarchical structures
whereby each repository may include keys for other
repositories at a lower hierarchical level.

• The merging of two keys into a single key featuring
a composite authorization that includes all the access
rights in the two authorizations.

For each problem, we have proposed a solution expressed in
terms of a key treatment approach. Extensions to the original
key format have been introduced and discussed.
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