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Abstract—The automated guided vehicles dispatching is one 
of the important operations in containers terminal because it 
affects the loading/unloading process. This operation has become 
faster and more complex until the automation advent. Although 
this evolution, the environment has become dynamic and 
uncertain. This paper aims to propose an improved particle 
swarm approach for solving the bi-objective problem of 
automated guided vehicles dispatching and routing in a dynamic 
environment of containers terminal. The objectives are to 
minimize the total travel distance of all automated guided 
vehicles and maximize the workload balance between them. The 
application of particle swarm algorithm in its basic form, shows a 
premature convergence. To ameliorate this convergence, the 
authors proposed the application of a method to escape the worst 
particles from the local optimum. The new Hybrid Guided 
Particle Swarm approach consists of hybridization between 
Dijkstra algorithms and a Guided Particle Swarm Algorithm. 
The routing problem is solved with Dijkstra algorithm and the 
dispatching problem with guided particle swarm approach.  As a 
first step, this approach has been applied in a static environment 
where the dispatching parameters and the routing parameters 
are fixed in advance. The second step consists of applying this 
approach in a dynamic environment where the number of 
containers associated with each automated guided vehicles can 
change, the shortest path and the container locations can also 
change during the algorithm execution. The numeric results in a 
static environment show a good Hybrid Guided Particle Swarm 
performance with a faster and more stable convergence, which 
surpasses previous approaches such as Hybrid Genetic Approach 
and the efficiency of its extension approach Dynamic Hybrid 
Guided Particle Swarm in a dynamic environment. 

Keywords—Dispatching; automated guided vehicles; dynamic; 
containers; particle swarm; genetic algorithm 

I. INTRODUCTION 
The productivity of maritime transportation has 

significantly advanced with the advent of automation. 
Automated container terminals have become crucial 
intermediaries between the marine and land transportation 
systems. As the number of ships entering and exiting daily 
from terminals has greatly increased, the number of containers 
loaded by ships has become very large [1]. Following this 
revolution, many maritime ports worldwide have established 
automated equipment to manage the increase in container 
traffic. They also installed an automated control system to 
achieve an optimal performance. The equipment in ACT is 
classified into three principal types: quayside equipment, quay 

cranes (QCs) used to load or unload containers from or to the 
ship; landside equipment, yard cranes (YCs) employed for 
container loading or unloading in the yard storage depots; and 
intermediate zone equipment, automated guided vehicles 
(AGVs) used to transport containers from the two sides of the 
port. An AGV is a mobile robot that follows markers or wires 
on the floor or uses vision, magnets, or lasers for navigation. It 
is extensively employed in industry to transport goods from an 
origin location to a target location [2, 3, 4]. AGVs are widely 
used in manufacturing, medicine, and logistics industries. 
Although this equipment has accelerated the ACT operations, 
any working failure of any one of them may cause a late or 
partial blockage or global blockage of the whole system in the 
ACT. The most critical goal of an automated container 
terminal is to increase productivity by minimizing the berthing 
duration of ships. This objective can be accomplished by 
finishing the main ship loading/unloading operation at its 
scheduled time because any lateness can affect the 
synchronization of the entire system. This operation includes 
four types of sub-operations: (1) loading/unloading containers 
from/to the ship, (2) AGV dispatching and routing, and (3) 
loading/unloading containers to the yard storage zone. The 
container loading/unloading process began after ship berthing. 
The containers are unloaded from the ship by the quay cranes 
and are then transported by the AGVs to the landside of the 
port. They are then unloaded by yard cranes and stocked in the 
corresponding yard storage zone. Conversely, the ship-loading 
operation begins by assigning containers to AGVs for transfer 
to the quayside to be loaded by the quay cranes to the ship. 
These loading and unloading operations have become faster 
with the advent of container terminal automation and a high 
number of equipment in the port [5]. Nevertheless, with this 
important evolution of the container terminal, the risk of 
breakdown of any element in the system increases. This 
failure can have some consequences, such as the lateness of 
the loading/unloading operation; therefore, the berthing 
duration of the ship increases, which will indirectly disturb the 
productivity of the port. The latency of the ship berthing 
duration may cause the unavailability of container terminal 
equipment, which will delay the loading/unloading operation 
of all ships after this disruption. This paper studies the 
problem of AGVs dispatching in a static and dynamic 
environment of containers terminal. In the first step, the 
authors investigate to solve the static problem. They choose to 
optimize the total travel distance of all AGVs and the 
workload balance between them. By studying these two 
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criteria; the total travel distance depends on AGV’s path and 
the balance workload depends on AGV’s autonomy. The first 
criteria were optimized by using an exact algorithm to search 
the shortest path for each AGV and the second criteria were 
optimized by maximizing the autonomy of each AGV. The 
workload balance makes the AGVs system more robust 
because the AGV working more tasks than other AGVs will 
lose its autonomy early. Because the AGV’s autonomy is 
limited to its battery energy, the breakdown of AGVs can be 
frequent with absence of workload balance. In a static 
environment, this problem parameters are fixed in advance; 
the number of road network nodes, and the number of AGVs, 
and the number of containers. However, the real situation in 
maritime ports in completely different because the number of 
equipment is big, so the possibility of breakdown of any 
equipment is also big. A breakdown of any equipment can 
make a delay in the corresponding sub-process which can 
affect the loading /unloading operation. A new ship arriving to 
the port may haven’t the necessary equipment of its 
unloading/loading operation available. An extension of the 
proposed approach in the first step, was developed to solve the 
problem of dispatching AGVs to containers in a dynamic 
environment. The remainder of this paper is organized as 
follows: the second Section presents a literature review of this 
problem. The problem description and mathematical 
formulation are presented in the third Section. In the fourth 
Section, we present the proposed approaches in a static 
environment. In the fifth section, the authors propose an 
extension of the proposed approach for the dynamic 
environment. The numerical study results are cited in the sixth 
section, and finally, a discussion of the results and conclusions 
is given in the seventh section. 

II. LITERATURE REVIEW 
A. Related Work 

In ACTs, the operations can be grouped into two classes of 
processes: loading and unloading. The loading process 
consists of transferring containers from the yard location area 
to AGVs via yard cranes to be transported to the ship to be 
loaded by the quay cranes. The unloading process involves 
unloading containers from the ship using quay cranes, and 
transportation by AGVs to the corresponding storage locations 
in the yard. Many studies have focused on ACT operations. 
Most studies were concerned with global loading and 
unloading operations. They proposed simultaneous scheduling 
systems including QCs, AGVs, and YCs. Despite the 
importance of dispatching containers to AGVs and AGV 
routing in the unwinding of loading and unloading processes, 
few studies have independently focused on this problem. 
Several literature reviews were developed [7, 8, 9, 10] 
studying yard and quay side operations, examining 
independently studied problems, as well as combined 
problems. They also revised the literature on yard crane 
scheduling, transport vehicle dispatching and scheduling, quay 
crane assignment and scheduling problems for the yard, 
vehicle routing and traffic control, and storage location and 
space planning problems. [11] considered the global ACT 
system and proposed an integrated scheduling model for 
handling equipment coordination and AGV routing. The 
optimization goal was to minimize the makespan of the global 

process. The authors developed a Congestion Prevention Rule-
based bi-level genetic algorithm (CPR-BGA) to solve the 
proposed model. [12] proposed a new method for optimizing 
the ASC and AGV scheduling and a collaborative AGV and 
ASC scheduling model in automatic terminal. The proposed 
model is designed based on a genetic algorithm (GA) and aims 
to minimize the AGV waiting time and ASC running time. 
The dispatching problem of AGVs to containers was studied 
by [6], where the AGVs scheduling was assimilated as a 
process of allocating AGVs to tasks, considering the cost and 
time of operations. The objectives chosen were makespan 
maximization and minimization of the number of AGVs, 
while considering the battery charge of the AGVs. A fuzzy 
GA, PSO optimization algorithm, and a hybrid GA-PSO were 
developed to optimize the proposed model. [13] proposed an 
approach named the modified memetic particle swarm 
optimization (MMPSO) algorithm based on PSO integrated 
with the memetic algorithm (MA). This approach is applied to 
generate the initial feasible solutions for scheduling multi-load 
AGVs to minimize travel and waiting time in manufacture 
system (FMS). [14] studied the problem of work transport 
organization and control. They proposed an approach based on 
a non-changeable path during travel and a fuzzy logic to order 
the set of stations requesting transport services. GA is applied 
to stations sequence optimization. [15] studied the problem of 
resource optimization in AGV-served FMS. They proposed a 
scheduling model integrating machines and AGVs. The 
objective function is the makespan of jobs from raw material 
storage to finished parts storage. [16] consider the problem of 
dispatching multiple-load AGVs in an FMS. A PDER rule 
based on pickup-or-delivery-in-route is proposed to address 
the task determination problem, which indicates whether the 
next task of an AGV partially loaded should be picking up a 
new job or dropping off a carried load. A workload-balancing 
(WLB) algorithm was developed to address the pickup-
dispatching problem that determines which job should be 
assigned to an AGV. [17] investigated the multiple-AGV path 
planning. The authors proposes a GA approach with two 
innovations; a three-exchange crossover heuristic operators, 
used to produce better offspring and a double-path constraint 
for minimizing the total path distance of all AGVs and the 
single path distances of each AGV. [18] studied the 
autonomous driving system that uses dynamic path planning 
to avoid static and moving obstacles. To determine the optimal 
path, acceleration, and vehicle speed, the proposed method 
generated a set of path candidates. The optimum path selection 
is based on the total cost of static safety, comfortability, and 
dynamic safety, with the identification of acceleration and 
speed. [19] proposed a Q-learning method to find the AGVs 
shortest-time routes. To improve the selecting action policy 
for this method, the authors developed an improved 
anisotropic Q-learning routing algorithm with vehicle-waiting-
time estimation. The performance of these methods was tested 
based on simulations. [20] considered the dynamic scheduling 
process to solve the AGV scheduling and planning problems. 
The authors proposes a two stage mixed integer model for 
AGVs cost transportation optimization with lay time 
constraint. They developed an approach based on heuristic, 
and DIK algorithm, and Q-learning algorithm for solving the 
proposed model. A strategy for avoidance conflict of AGVs 
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was also proposed. [21] investigated the dynamic AGVs 
scheduling problem with AGVs and machines having specific 
speed. They proposed a biological intelligent approach (BIA) 
inspired by hormone regulation in endocrine system. The 
objectives were to minimize the makespan and maximize the 
shop floor work efficiency. To solve this problem in a static 
environment, many approaches have been proposed, and 
metaheuristics perform well for this type of problem [6]. The 
PSO algorithm is one of the best algorithms cited in the 
literature, although the disadvantage of its premature 
convergence. To the authors' best knowledge, the problem of 
dispatching containers to AGVs in container terminals has 
been studied in general, in an integrated manner with other 
dispatching problems, such as the dispatching of quay cranes 
and yard cranes. The weakness of the combination of this 
problem of dispatching with the other problems of dispatching 
in container terminals in the same system management can 
propagate any disruption from one phase to the following 
phase. For example, if there is a problem in quay crane 
dispatching, it will propagate to AGV dispatching. So, the 
resolution becomes more complex. The study of this problem 
separately can easily detect any disruption and facilitate its 
resolution. Many studies investigate the problem of AGV 
dispatching and routing in a static environment, but this 
approach is different of the real situation inn container 
terminals so its application will not be efficient. A scarce 
number of researchers are interested in this problem in a 
dynamic environment. All the previous studies don’t combine 
the two criteria of travel distance and workload balance, 
although the combination of these two criteria can be more 
attached and applicable to the real situation. The hybridization 
of particle swarm with Dijkstra algorithm make a good guide 
to PSO approach to find the best solution and the re-
initialization of worst particles parameters help these particles 
to avoid from local optimum. The PSO approach has the 
advantage of the fast convergence in comparison with genetic 
algorithm. In this paper, the authors propose a guided hybrid 
particle swarm algorithm (GHPSO) to solve this problem in a 
static environment. Because the accurate situation in the 
container terminal is not static, they propose an extension of 
this approach to apply in the dynamic environment. 

B. Particle Swarm Optimisation 
A particle swarm is a metaheuristic algorithm presented in 

1995 by Kennedy and Eberhart, and it was developed under 
the inspiration of the behavior laws of bird blocks, fish scrolls, 
and human communities. To achieve the optimum solution, 
PSO starts from a group of random groups of solutions and 
then repeatedly searches. It has proven to be a highly efficient 
optimization algorithm in numerous studies and experiments 
[22]. As a metaheuristic, PSO does not guarantee that the 
optimal solution is obtained. The basic particle swarm 
optimization is described as follows: 

Assuming 𝑁    is the number of particles, the 𝑖𝑡ℎ  particle 
position 𝑖 = (1,2, … . ,𝑁) in dimension space 𝑑 can be denoted 
as 𝑋𝑖 = �𝑥𝑖,1 , 𝑥𝑖,2 , … . , 𝑥𝑖,𝑑� , its velocity is defined as the 
moving distance between the particles in each iteration, and is 
denoted as 𝑉 = �𝑣𝑖,1 , 𝑣𝑖,2 , … , 𝑣𝑖,𝑑�. 

The objective function consists of determining the optimal 
position of the particle, and the local optimal particle position 
Pbest in the 𝑡𝑡ℎ iteration is denoted as 𝑃𝑖 = �𝑝𝑖,1 , 𝑝𝑖,2 , … , 𝑝𝑖 ,𝑑�. 
The global optimal position gbest in the 𝑡𝑡ℎ  iteration is 
denoted as  𝑃𝑔 = �𝑝𝑔,1 , 𝑝𝑔,2 , … , 𝑝𝑔,𝑑� . In the (𝑡 +
1)𝑡ℎ iteration, the flight velocity 𝑉𝑖,𝑗(𝑡 + 1) of the 𝑖𝑡ℎ particle 
in the 𝑗  dimensional space,  𝑗 = (1,2, … ,𝑑) , and its position 
𝑋𝑖,𝑗(𝑡 + 1) can be derived from the following equations: 

𝑉𝑖,𝑗(𝑡 + 1) = 𝑊 ∗ 𝑉𝑖,𝑗(𝑡) + 𝐶1 ∗ 𝑅1 ∗ �𝑃𝑖,𝑗 −  𝑋𝑖,𝑗(𝑡)� + 𝐶2 ∗
𝑅2 ∗ �𝑃𝑔,𝑗 −  𝑋𝑖,𝑗(𝑡)�               (1) 

 𝑋𝑖,𝑗(𝑡 + 1) =  𝑋𝑖,𝑗(𝑡) +  𝑉𝑖,𝑗(𝑡 + 1), 𝑗 = 1,2, … ,𝑑           (2) 

𝑊  is the inertia coefficient; 𝐶1 and 𝐶2 are the cognitive 
coefficient and social learning coefficient, 𝑅1 and 𝑅2 denote 
random numbers between 0 and 1; 𝑃𝑖,𝑗  is the local optimal 
particle position of the 𝑖𝑡ℎ  particle in the 𝑗 dimension space, 
𝑃𝑔,𝑗  is the global optimal particle position of the 𝑖𝑡ℎ particle in 
the 𝑗 dimension space. PSO achieves its optimum solution by 
starting from a group of random solutions and then repeatedly 
searching [23, 24, 25, 26]. PSO has a good level of particle 
convergence because of the fast transmission of information 
among the particles. For this reason, swarm diversity 
decreases very quickly after the iterations and can lead to a 
suboptimal solution. This evolution process can trap in a local 
optimum or premature convergence. 

Many variants of the PSO algorithm have been proposed 
to solve the diversity loss problem. The problem of decreasing 
diversity can be attributed to several factors. The population 
diversity of PSO is an important feature that demonstrates the 
exploration or exploitation ability of the algorithm. It is a 
technique used to determine the degree of convergence or 
divergence of PSO in the search process. As example, ARPSO 
is a method used to control the degree of diversity. It consists 
of an algorithm called ARPSO, which tests if the diversity is 
above the predefined threshold dlow, then particles attract each 
other, and if it is below dlow, then the particles repel each other 
until they meet the required high diversity dhigh. LOD is also a 
method for local optima detectors; it consists of computing the 
number of iterations in which the neighbor does not improve, 
that is, if the fitness value (FV) of the best particle remains 
unchanged for a specific number of iterations, the particle 
optimization sub-process is trapped in a local optimum [27, 
28, 29, 30, 31, 32]. To increase the diversity of swarms, 
several methods have been cited in the literature as particle re-
initialization and particle mutation. Inspired from the idea of 
LOD, the authors apply this method to escape the worst 
particles from the local optimum. 

C. Scheduling/ Rescheduling  System 
The goal of this system is to plan the production of a 

collection of jobs assigned to multiple machines given the 
production environment specifications. The scheduling 
problem has been demonstrated in the literature as a non-
polynomial (NP-hard) [33]. In a multi-AGV system, n 
containers are available: {𝐶1,𝐶2,𝐶3, … . .𝐶𝑛 } to be transferred 
by k AGVs{𝑉1,𝑉2,𝑉3, … . .𝑉𝑘  }, and the main objective is to 
determine the optimal schedule for n containers to be 
transported by the system. Each AGV can transfer only one 
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container within a specific time interval. According to 
literature the selection of AGV can be based on one of the 
following methods:  [34, 35] 

• Longest travel distance 

• Shortest travel distance 

• Random 

• Minimum AGV queue size 

In its standard form, the scheduling problem can be 
described as a set of known tasks assigned to a set of available 
machines, considering the technological limitations of the 
system. This class of approach is called static scheduling. In 
this scheduling type, the tasks to be assigned and system 
parameters are known in advance and are invariant in time 
[36, 37, 38]. Multiple events, such as new task arrivals, 
machine breakdowns, task priority changes, and preventive 
machines, can affect the system in real situations. These 
changes in circumstances result from a dynamic environment 
that necessitates task reassignment. Rescheduling is defined as 
the process of updating existing production scheduling to react 
to any event. The literature explains three different strategies 
[39]. The Predictive-reactive strategy consists of providing an 
initial predictive schedule and changing it to reply to the 
disturbances that appear within the system. The proactive (or 
robust) strategy based on developing a schedule that absorbs 
any disturbances that may occur in the system. The dynamic 
strategy does not provide an initial schedule, but the 
assignment is performed dynamically. The authors choose the 
proactive rescheduling because the proposed approach was 
applied for static environment in first step, then it was 
extended for dynamic environment in second step. 

III. PROBLEM FORMULATION 
Assume a set of containers C =

{C1, C2, C3, … . . Cm }  stored in different locations L =
{L1, L2, L3, … . . Ln }   at the port. These containers must be 
transferred to unloading locations to be transported by trucks 
and trains to clients, or inversely to a charging location to be 
loaded on a ship. A set of AGVs, V = {V1, V2, V3, … . . Vk }  
should/will be available for transporting containers. The 
problem consists of assigning this set of containers to a set of 
AGVs and planning the path to each AGV. This problem can 
be decomposed into two sub-problems: A dispatching problem 
of AGVs to containers and a routing problem of AGVs. Many 
factors intervene in this optimization problem, such as 
distance traveled by AGVs, stability of the road network in the 
port, availability of AGVs, and utilization ratio of AGVs. For 
these reasons, the problem is considered as multi-objective 
problem. The authors choose to optimize the AGVs total 
travel distance and the balancing workload of AGVs. The 
AGVs dispatching and routing system can be assimilated to a 
scheduling system where a job is equivalent to the task of 
transferring the container from its origin location to its target 
location and the machine is equivalent to the AGV. In a static 
environment, the initial scheduling is sufficient for carrying a 
set of containers from their initial locations to their target 
locations. However, with the appearance of port automation, 
the number of pieces of equipment has become very 

important, and many events can appear and change the system 
situation. For example, new arrival of containers, changes in 
container priorities, breakdown of any equipment or AGV, 
AGV battery changes, and AGV preventive maintenance lead 
to system disruption. This change in the port situation requires 
system rescheduling. To develop an efficient scheduling 
system, it is necessary to study this problem in a dynamic 
environment. In first step, the authors study the problem of 
AGVs dispatching and routing in a static environment. In the 
second step they consider the cases of new containers arrival, 
the breakdown of AGVs, and the disruption of the road 
network in the port and proposed an extension of the first 
approach for resolving the problem in the dynamic 
environment. 

A. Mathematic Model in a Static Environment 
𝐶 = {𝐶1,𝐶2,𝐶3, … . .𝐶𝑚 }: Set of containers. 

𝐿 = {𝐿1,𝐿2, 𝐿3, … . . 𝐿𝑛 } : Set of container locations (nodes). 

𝑉 = {𝑉1,𝑉2,𝑉3, … . .𝑉𝑘  }  : Set of vehicles (AGV). 

𝑑𝑖𝑗                                         : Distance between nodes i and j 

𝑆                                           : Speed of AGV 

𝑡𝑖𝑗𝑘                : Travel time of vehicle 𝑉𝑘 from node i to node j 

[𝑡𝑏𝑖 ,   𝑡𝑒𝑖 ]  : Time window of node i 

𝑡𝑏𝑖               : Beginning time of task in node i  

𝑡𝑒𝑖               : Ending time of task in node i  

𝑡𝑑𝑖                 : Departure time from node i 

𝑡𝑎𝑖                        : Arrival time at node i 

𝑡𝑤𝑖                : Waiting time at node i 

𝑆                    : Speed of AGV 

𝑞𝑖𝑘                        : Load of AGV 

𝑇𝑤𝑡𝑘             : Total work time of vehicle 𝑉𝑘 

𝑋𝑖𝑗𝑘 : Decision variable � 1  𝑖𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑉𝑘  𝑖𝑠 𝑏𝑢𝑠𝑦
   0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  

  (3) 

The objective function is an aggregation of two sub-
functions to be optimized: The function F1 for the total travel 
distance of all AGVs and the function F2 for the balance of 
AGVs workload. 

𝐹 = 𝛼 ∗ 𝐹1  + 𝛽 ∗ 𝐹2                        (4) 

The objective function value depends on two coefficients α 
and β associated respectively to F1 and F2 which values are 
fixed by a domain specialist. 

𝐹 ≡

⎩
⎨

⎧ F1  =  ∑ ∑ ∑ Xijk ∗
dijk
S

                                   k∈Vj∈Ni∈N
                 

F2 = ��1
k
− 1

k3
� ∗ � ∑ Twtk2k∈V − 2 ∗ ∏ Twtk)k∈V

  (5) 

∑ ∑ 𝑋𝑖𝑗𝑘 𝑘𝜖𝑉𝑖𝜖𝑁 = 1,∀  𝑗 ∈ 𝑁                     (6) 

∑ 𝑋𝑖0𝑘 𝑖𝜖𝑁 = 1,∀𝑘 ∈ 𝑉                              (7) 
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∑ 𝑋0𝑖𝑘 𝑗𝜖𝑁 = 1,∀𝑘 ∈ 𝑉                            (8) 

∑ 𝑋𝑖𝑗𝑘 𝑖𝜖𝑁 −  ∑ 𝑋𝑗𝑖𝑘 𝑖𝜖𝑁 = 0,∀𝑘 ∈ 𝑉,∀𝑗 ∈ 𝑁             (9) 

𝑄𝑘 =  ∑ ∑ 𝑞𝑖𝑗𝑘 𝑗𝜖𝑁𝑖𝜖𝑁 = 1,∀𝑘 ∈ 𝑉                             (10) 

𝑋𝑖𝑗𝑘 = 1 →  𝑡𝑏𝑖 ≤ 𝑡𝑎𝑖 < 𝑡𝑒𝑖 ,∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝑁,∀𝑘 ∈ 𝑉     (11) 

𝑋𝑖𝑗𝑘 = 1 →  𝑡𝑏𝑖 ≤ 𝑡𝑑𝑖 < 𝑡𝑒𝑖 ,∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝑁,∀𝑘 ∈ 𝑉     (12) 

𝑋𝑖𝑗𝑘 = 1 →  𝑡𝑎𝑖  −  𝑡𝑖𝑗𝑘 + 𝑇𝑤𝑖 ≤𝑖 𝑡𝑏𝑖 ,∀𝑖 ∈ 𝑁,∀𝑗 ∈
𝑁,∀𝑘 ∈ 𝑉                      (13) 

𝑋𝑖𝑗𝑘 = 1 →  𝑡𝑑𝑖  −  𝑡𝑖𝑗𝑘 + 𝑇𝑤𝑖 ≤𝑖 𝑡𝑒𝑖 ,∀𝑖 ∈ 𝑁,∀𝑗 ∈
𝑁,∀𝑘 ∈ 𝑉                     (14) 

(6) The transport cost from node 𝑖 to node 𝑗 is equal to 1. 

(7) and (8): the possibility of moving from node zero to 
any other node. 

(9): bi-directionality of each edge. 

(10): AGV load equals 1 

(11): The AGV must arrive at node 𝑖  within the arrival 
time window. 

(12): The container must be moved within the departure 
time window of the node. 

(13) and (14): The AGV must arrive before the beginning 
of the node time window, and must move before the end of the 
node time window. 

B. Dynamic Environment Parameters 
In containers terminal, the real situation is dynamic and 

uncertain. Any equipment such as quay crane, truck, AGV, 
road can breakdown at any moment of time. A lateness of the 
loading/unloading operation for the corresponding ship can 
appear. This tardiness will propagate for all the ships coming 
after. Three cases was investigated in this study: 

a) New Arrival Containers: This case can change the 
number of containers. Assume C′ the set of containers of the 
new arriving ship. For the current process, the total number of 
containers to be loaded/unloaded will be CT = C ∪ C′ . Each 
AGV will have an extra number of containers to transfer. 

𝐶 = {𝐶1,𝐶2,𝐶3, … . .𝐶𝑚 } : set of containers for current ship 

𝐶′ = {𝐶′1,𝐶′2,𝐶′3, … . .𝐶′𝑛 }  : set of containers for new 
ship 

𝐶𝑇 = {𝐶1,𝐶2,𝐶3, … . .𝐶𝑚,𝐶′1,𝐶′2,𝐶′3, … . .𝐶′𝑛 } : Total set 
of containers to be loaded/unloaded  

b) Road Network Disturbance: This case appear when 
there is a breakdown in some nodes of road network. Assume 
L1 and L2 are unavailable, all the paths containing these two 
nodes will be modified. Assume 𝐿 = {𝐿1, 𝐿2, 𝐿3, … . . 𝐿𝑛 }, the 
initial set of nodes, the new set of nodes will be  𝐿′ =
𝐿\{𝐿1, 𝐿2}. As consequence the AGV will travel a path other 
than the shortest path proposed initially. 

c) AGVs Breakdown: If an AGV is unavailable, the set 
of containers corresponding to this AGV will be assigned to 
other AGVs. Assume 𝑉 = {𝑉1,𝑉2,𝑉3, … . .𝑉𝑘 }, if V1 and V3 are 
unavailable, the new set of available AGVs will be  𝑉′ =
𝑉\{𝑉1,𝑉3}. This event will have an effect on the workload 
balance of AGVs. 

IV. PROPOSED APPROACHES 
To increase the diversity of swarms, several methods have 

been cited in the literature as particle re-initialization and 
particle mutation. The main of particle re-initialization method 
is to increase the possibility of "jumping out" of local optima 
and to maintain the ability of the algorithm to find the "good 
enough" solution. After several iterations, some particles were 
selected to reinitialize their position and velocity. The number 
of chosen particles can be either constant or fuzzy. Three 
methods to select particles: 1) The random selection consists 
of selecting randomly a set particles to reinitialize its position 
and velocity. This method can obtain great exploration ability 
owing to the possibility that all particles have the chance to be 
reinitialized. 2) The elitist selection based on choosing a set of 
the best particles, having the best fitness value, to reinitialize 
its position and velocity. When the population diversity 
decreases, most particles have the best fitness values. When 
these elitists are reinitialized, the exploration ability of the 
algorithm increases but the good particles can be lost. 3) The 
worst particle selection consists of choosing a set of the worst 
particles to reinitialize its position and velocity. This idea can 
increase the ability of the algorithm to explore space and find 
the "good enough" solution by ameliorating bad particles. The 
particle mutation method is based on applying the mutation 
feature of GA to change one or more features of a particle to 
achieve better particles quality. This is a common method for 
increasing the population diversity. It can improve exploration 
abilities, which can be applied to different elements of a 
particle swarm. 

The authors propose a new hybrid PSO approach called 
HPSO based on a heuristic and PSO algorithm. This approach 
did not show a clear convergence. It presents a very quick 
convergence which risks premature convergence. To improve 
the approach results, the authors propose a second approach 
guided particle swarm called GPSO. It consists of guiding the 
HPSO approach in the routing problem by choosing the 
shortest path for each AGV by applying the Dijkstra 
algorithm. This approach presents acceptable convergence. In 
comparing its results with previous results, it appears 
acceptable, but it’s necessary to verify the problem of 
premature convergence. A third approach is proposed, named 
GHPSO, which combines the ameliorations of the two 
previous approaches (Fig. 1). 

A. Hybrid Particle Swarm Approach (HPSO) 
This approach is a hybridization between a heuristic, the 

Dijkstra algorithm, and the particle swarm algorithm; it is 
called the HPSO approach. It uses a heuristic based on 
assigning each container to the nearest AGV. 
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Fig. 1. GHPSO Flowchart. 

The AGV travels the shortest distance to arrive at a 
container location. The shortest path problem is solved using 
the Dijkstra algorithm, and the optimal solution is determined 
by applying the PSO algorithm through a fixed number of 
iterations. The HPSO algorithm is as follows (Fig. 2). 

 
Fig. 2. HPSO Algorithm. 

B. Guided Hybrid particle Swarm Approach (GHPSO) 
The HPSO approach and the GPSO approach show a fast 

convergence which risks the premature convergence. To 
surpass this deficiency, the authors propose to study the 
diversity of PSO population. The population diversity was 
computed to prevent premature convergence. They choose to 
control the activity of particles to detect which particles were 
responsible for the diversity of population loss. LOD (local 
optimum detector) for each particle to determine whether the 
particle is inactive for an important number of iterations. The 
authors selected a threshold value for the number of iterations. 

After detecting these particles, they re-initialize the 
positions and velocities for all particles to jump out of the 
local optimum. 

C. Robustness of the GHPSO in a Dynamic Environment 
In a dynamic container terminal environment, any 

disturbance can cause an increase in the number of containers 
in depots or Quays, because the waiting time for loading or 
unloading increases. The number of AGVs in the port is fixed 
but may decrease due to any breakdown (Fig. 3). 

 
Fig. 3. GHPSO Algorithm. 

Algorithm1: HPSO  
Results: GBest  
Iterations  =  1;   
Guided_Swarm_Initialization( );  
While (Iterations <= Nb_iterations)  
   {  
    Objective_Function_Evaluation( );  
    Best_Positions_Search( );  
    Particles_Updates( );  
    Iteration  =  Iteration + 1;  
   } 
End Algo 

Procedure1: Guided_Swarm_Initialization() 
Sort_List_Containers( ); 
While (List_Containers # ɸ) 
{ 
   Assign_container_AGV( ); 
   Choose_shortest_path( ); 
 } 
End proc 

 

 

 

Algorithm2: GHPSO 
Results: GBest 
Iterations  =  1; 
Guided_Swarm_Initialization( ); 
While (Iterations <= Nb_iterations) 
{ 
 
    While (List_Particles # ɸ) 
       if (LOD(Particle) == true) 
      { 
 
         Particle_reinitialization( ); 
         Go to EV; 
       } 
     else 
      { 
         Best_Positions_Search( ); 
         Particles_Updates( ); 
      } 
    Iteration  =  Iteration + 1; 
} 

Procedure2: LOD(Particle, limit_repetition) 
if (nb_repetition_Particle == limit_repetition) 
{ 
   nb_repetition_Particle = 0; 
   return true; 
} 
else 
{ 
  nb_repetition_Particle = nb_repetition_Particle + 1; 
  return false; 
} 
End proc 

 

                      
 
 
 
 
 
 
 
End proc 
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The authors propose an extension of the GHPSO approach 
for a dynamic environment, dynamic guided hybrid particle 
swarm called DGHPSO approach, which studies three 
disturbance cases: 

a) Arrival of New Containers: To solve the problem of 
new container arrivals, DGHPSO proposes to add the new 
containers to the AGVs queues during the Algorithm 
execution. The number of containers associated to each AGV 
will increase. An AGVi can begin the dispatching process with 
n containers and finishes it with n+m containers. The solution 
will be optimized after completing the iterations. 

b) AGV Breakdown: The DGHPSO approach proposes a 
new distribution of containers associated with a broken AGV 
for other AGVs. The number of containers for the available 
AGVs increases. New dispatching was proposed and 
optimized after completing the iterations. 

c) Network Road Disruption: The unavailability of any 
node in the road network affects the set of paths proposed for 
the AGVs. This disturbance can cause inaccessibility of any 
path. AGVs must stop the transfer of the associated container. 
The DGHPSO approach proposes a new path to travel, then 
the solution will be optimized. 

V. EXPERIMENTAL STUDIES 
The application of these approaches was performed with a 

computer having 8 GOs of RAM and a processor speed of 2.4 
GHz. The proposed approaches were implemented with a 
swarm population of 50 particles, the number of AGVs is 4 
and the number of containers is 20. The PSO parameter values 
chosen after several tests were C1=2, C2=2, Wmin=0.4, and 
Wmax=0.9. R1 and R2 were randomly chosen such that 𝑅1 +
 R2 = 1. The threshold value chosen after several tests was 5. 
After several numeric tests, the genetic algorithm parameters 
chosen are as follows: 70% of the population was selected for 
crossing over and 10% for mutation. 

Numerical tests were applied to two previous versions of 
the GA approach [40] and four new versions of the PSO 
approach. 

Fig. 4 shows a comparative graph between the two 
previous genetic algorithm approaches: genetic algorithm 
(GA) and hybrid genetic algorithm (HGA: GA + Dijkstra). 
The initial solutions of the two approaches are very different. 
This demonstrates the importance of hybridization with the 
Dijkstra algorithm in the second approach. The convergence 
of the GA with an optimum solution value is 2.51, but it is not 
significant because of the random paths chosen for the AGVs. 
The HGA graph shows good convergence with an optimum 
solution value of 1.5 because the paths are optimized using the 
Dijkstra algorithm. 

Fig. 5 presents a comparative graph of the PSO 
approaches. The basic PSO algorithm (PSO curve in blue) 
shows quick convergence from the first iterations with an 
optimum solution value of 2.6, and it becomes almost stable at 
2.5. 

 
Fig. 4. GA Approaches Comparison. 

 
Fig. 5. PSO Approaches Comparison. 

The hybridization with Dijkstra’s algorithm and the 
insertion of a heuristic for choosing the nearest AGV with the 
standard PSO (HPSO curve in green) considerably improves 
the optimum solution value from 2.5 to 1.7, but the 
convergence is again not very remarkable. It is clear that the 
population diversity quickly decreases. The guided particle 
swarm approach GPSO (PSO+ re-initialization: curve in light 
green) shows a slight improvement in the solution value. Its 
value decreases from 1.7 to 1.4, and the convergence appeared 
significant. The last curve represents the GHPSO model. Its 
solution value is 0.7, which is the optimum among all 
proposed approaches. This convergence becomes significant 
in comparison with previous approaches. It is clear that the 
problem of a faster decrease in population diversity is solved 
by the insertion of LOD and the re-initialization of particles. 

To determine the best approach, the authors performed a 
final comparison between the best GA and PSO approaches, 
as shown in Fig. 6. The graphs show good convergence of the 
PSO approach in comparison with the previous GA approach. 

A comparison of the running times computed for each 
approach is shown in Fig. 7. The GHPSO presented an 
acceptable running time of 19.510-3 s in comparison with 
other proposed approaches. 
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Fig. 6. GA and PSO Aproaches Comparison. 

 
Fig. 7. Running Time Comparison. 

The numerical results show the good performance of the 
GHPSO as the best PSO approach in a static environment. 
This approach also surpasses the performance of GA. This 
deduction encourages the authors to apply this approach in a 
dynamic environment, where the number of containers, 
AGVs, and nodes in the road network are not fixed. 

Fig. 8 shows the approach convergence after the insertion 
of new containers. The authors propose the insertion of 20 
containers at 50 iterations. It is clear that the approach begins 
by improving the initial solution to determine the optimum 
solution. The initial solution objective function value is 3, and 
at iteration 50, it becomes 1. When new containers were 
inserted, the solution value increased to 1.65. Subsequently, it 
was again in decreasing order to find the best solution. It 
reached notable convergence at almost 120 iterations with an 
optimum solution value of 0.6. This result demonstrates the 
robustness of the GHPSO approach in determining the 
optimum solution in the case of new container arrivals. 

Fig. 9 presents the numerical results of an AGV 
breakdown at iteration 100, when the guided hybrid particle 
swarm approach (GHPSO) begins to converge. The solution 
value increases again because of the distance traveled by each 
AGV, but after 140 iterations, it converges again with a 
solution value of 1.25, which was greater than the initial 
optimum solution value due to increasing of workload of each 
AGV. These results demonstrate the GHPSO approach 
efficiency in reaching the optimum solution. 

 
Fig. 8. New Containers Arrival. 

 
Fig. 9. AGV Breakdown 

 
Fig. 10. Unavailable Path. 

Fig. 10 shows the numerical results when some paths 
become unavailable. The solution value increased again and 
then decreased to converge to a solution value of 1.2, which 
was greater than the optimum solution before path breakdown 
due to unavailability of shortest path. 

VI. CONCLUSION AND PERSPECTIVES 
In this study, the problem of dispatching containers to 

AGVs in a container terminal in static and dynamic 
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environments was investigated using an improved PSO 
algorithm. A new guided PSO approach named GHPSO was 
proposed for optimizing the total travel distance and balancing 
the workload between AGVs. The first idea was to combine 
heuristic and Dijkstra with the PSO algorithm to obtain the 
optimum solution. The numerical results show an acceptable 
solution, but the convergence is not significant because an 
important number of particles cannot ameliorate their best 
local solution. The idea was to apply the insertion of the LOD 
parameter and reinitialize the particles to achieve good results. 
The convergence became significant for the GPSO, and the 
best optimum solution value was obtained using the GHPSO. 
This work showed a very good GHPSO performance 
compared to other approaches, although the running time was 
acceptable. The proposed approach was tested in a dynamic 
environment (DGHPSO), where the number of containers, 
number of AGVs, and network road nodes were not fixed. To 
demonstrate the robustness of this approach, the authors 
proposed an extension to study the arrival of new containers 
during approach execution. The numerical results show good 
convergence for the approach. In addition, for the two AGV 
breakdown and node breakdown cases, the proposed approach 
shows good convergence. This approach shows good 
robustness in static and dynamic environments for finding the 
optimum solution within a reasonable running time. In future 
work, the authors will study the efficiency of this approach for 
the multi-objective problem with the AGV energy constraint 
and its effect on task allocation in a static and uncertain 
environment. 
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