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Abstract—In recent years, the rapid development of many 
pests and diseases has caused heavy damage to the agricultural 
production of many countries. However, it is difficult for farmers 
to accurately identify each type of insect pest, and yet they have 
used a large number of pesticides indiscriminately, causing 
serious environmental pollution. Meanwhile, spraying pesticides 
is very expensive, and thus developing a system to identify crop-
damaging pests early will help farmers save a lot of money while 
also contributing to the development of sustainable agriculture. 
This paper presents a new efficient deep learning system for real-
time insect image recognition on mobile devices. Our system 
achieved an accuracy of mAP@0.5 with the YOLOv5-S model of 
70.5% on the 10 insect dataset and 42.9% on the IP102 large-
scale insect dataset. In addition, our system can provide more 
information to farmers about insects such as biological 
characteristics, distribution, morphology, and pest control 
measures. From there, farmers can take appropriate measures to 
prevent pests and diseases, helping reduce production costs and 
protecting the environment. 

Keywords—Deep learning; real-time insect pest detection; 
YOLOv5; mobile devices 

I. INTRODUCTION 
Climate change has caused pests to multiply, grow quickly, 

and cause significant damage to the world's agricultural 
economy [1]. Pests are estimated to cost up to 40% of 
worldwide agricultural output each year, according to the Food 
and Agriculture Organization. At present, plant diseases cost 
the global economy almost $220 billion each year, while 
invading insects cost at least $70 billion [2]. Therefore, farmers 
in many countries have used a large number of different 
pesticides to protect crops and ensure the quality of agricultural 
products. However, due to a lack of specialized knowledge, 
many farmers have difficulty detecting and correctly 
identifying pests and diseases that cause crop damage. As a 
result, most farmers did not have reasonable pest control 
measures, including the indiscriminate and improper use of a 
large number of pesticides on a large scale. This not only 
increases production costs but also seriously pollutes the 
environment, destroys beneficial insects, disrupts ecosystem 
balance, and damages the health and living environment of 
humans and many other species. As a result, it is critical to 
research information technology systems in order to accurately, 
efficiently, quickly, and conveniently identify pests and 
diseases that harm crops. This system will aid in the resolution 
of the aforementioned issues, thereby contributing significantly 
to long-term agricultural development. Such a system must be 
designed for real-time identification, be simple to install and 

use, and be appropriate for farmers' level of knowledge and 
actual working conditions, where each farmer typically has a 
smartphone with a basic configuration. Therefore, an automatic 
system to identify pests on plants using inexpensive smart 
phones must be developed and deployed. The primary goal is 
to efficiently detect insects in real-time manner, providing 
farmers with greater convenience and mobility in early pest 
treatment. Although smartphones have penetrated a variety of 
industries, including manufacturing, medicine, and health care, 
use of mobile devices in agriculture has been slower. Farmers 
understand the need for mobile agriculture as technology 
advances, which not only allow farmers to execute agricultural 
activities more effectively using their phones, but also 
transform arable farming into smart agriculture. In this 
research, a real-time insect object detection system is built in 
the context of large-scale insect pest datasets. Our system is 
based on the YOLOv5-S model and has been integrated onto 
mobile devices with limited hardware configurations, making it 
ideal for farmers in the field. 

II. BACKGROUND STUDY 
Much of the prior research has presented real-time image-

based recognition systems for mobile devices based on various 
CNN architectures. To recognize leaves from images, the 
authors of [3] have developed a novel extraction and 
classification technique. The insect population and illness 
regions in the segmented images are then calculated using a 
region-labeling technique. A mathematical morphological 
algorithm is utilized to separate the items in the zones of 
adhesion. The proposed solution is tested in the field and 
deployed on mobile smart devices. The experimental findings 
reveal that the suggested technique has high efficiency and 
strong recognition performance. The authors of [4] have 
created a pest infestation early warning system for paddy 
farming that includes an Android application and a web-based 
application. The Agriculture Department will use the 
technology to identify insect infestations, locate them, and alert 
the early warning system. The technology will be able to enter 
the farmers' infestation data into databases. The data will be 
utilized by the agronomist to assess the paddy plot's risk in four 
stages. The number of pests, kind of pest, location, and present 
circumstances will be used to classify each stage. After the 
agronomist has completed their review, the system will send an 
email to the farmers informing them of the quality of their 
current paddy plot. The researchers from [5] suggested an 
image processing technique and a smartphone application to 
recognize and count insects. The nonuniform brightness of 
insect images obtained with mobile phones is released using a 
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sliding window-based binarization, and then connected 
domain-based histogram statistics are utilized to identify and 
count the insects in stored grain. Finally, testing using an 
Android application shows that the proposed technique can 
count random bug photographs from mobile phones with 95% 
accuracy, which is superior to the previous method. In [6], 
MAESTRO, a novel grasshopper identification framework that 
employs deep learning to recognize insects in RBG pictures, is 
demonstrated. MAESTRO uses a state-of-the-art two-stage 
deep learning training approach. The framework may be used 
on cellphones as well as desktop PCs. The authors of [7] offer 
an AI-based pest detection system that addresses the challenge 
of identifying scale pests using photos. Scale pests are detected 
and localized in the image using deep-learning-based object 
identification models such as faster region-based convolutional 
networks, single-shot multibox detectors, and YOLOv4. 
Among the algorithms, YOLOv4 had the highest classification 
accuracy, with 100% in mealybugs, 89% in Coccidae, and 97% 
in Diaspididae. A smartphone application based on the trained 
scale insect detection model has been developed to assist 
farmers in identifying pests and administering appropriate 
pesticides to reduce crop losses. The researchers at [8] have 
studied the best machine learning approach for developing a 
pest detection model for mobile information systems. The 
article [9] proposed a novel smartphone application that uses a 
deep-learning method to automatically categorize pests for the 
benefit of professionals and farmers. Faster R-CNN is used in 
the created application to do insect pest recognition using cloud 
computing. To assist farmers, a database of suggested 
pesticides is linked to the reported crop pests. This research has 
been validated for five distinct pest species. The suggested 
Faster R-CNN had the greatest accuracy in identification rate 
of 99% for all pest images analyzed. The study [10] provided a 
novel method for establishing the use of hand-held image 
capture of insect traps for pest detection in vineyards by 
embedding artificial intelligence into mobile devices. Their 
solution integrates many computer vision technologies to 
enhance numerous areas of picture quality and 
appropriateness. The extensive review [11] examines deep 
learning framework methodologies and applications in smart 
pest monitoring, with a focus on insect pest categorization and 
detection using field photos. The methodology and technical 
information created in insect pest classification and detection 
using deep learning are consolidated and distilled during 
multiple processing stages: picture collection, data 
preprocessing, and modeling strategies. Finally, a generic 
framework for smart insect monitoring is proposed, and future 
challenges and trends are discussed. In AlertTrap [12], SSD 
architecture implementation with different cutting-edge 
backbone feature extractors, such as MobileNetV1 and 
MobileNetV2, appears to be a viable solution to the real-time 
detection problem. SSD-MobileNetV1 and SSD-MobileNetV2 
work well, with AP@0.5 rates of 0.957 and 1.0, respectively. 
YOLOv4-tiny surpasses the SSD family in AP@0.5 with 1.0; 
nevertheless, its throughput velocity is significantly slower, 
indicating that SSD models are better candidates for real-time 
implementation. They also ran the models via synthetic test 
sets that simulated predicted environmental disruptions. The 
YOLOv4-tiny tolerated these disruptions better than the SSD 
variants. By combining EfficientNet [13] and Power mean 

SVM [14], the authors of the research [15] published the state 
of the art on insect image classification on the large-scale 
IP102 dataset with an accuracy of up to 71.84%. However, the 
abovementioned systems still have some limitations, such as 
the small number of pest identifications; the accuracy is not 
high; the equipment configuration requirements are high; and it 
is difficult to deploy in practice. They lack aspects such as 
geolocation recoding of recognized harmful pests, information 
about identified dangerous pests, and robust distributed mobile 
information frameworks. Currently, there is no real-time 
existing identification system for mobile devices. Therefore, 
this paper proposes a new real-time insect identification system 
with reasonable cost, efficiency, easy installation, and practical 
deployment on mobile devices with limited hardware 
configuration. Furthermore, this study also looks at lightweight 
network models and embedded terminal realizations, both of 
which are increasingly relevant and promising. The paper's 
main contributions are as follows: 

• A novel real-time insect identification system that is 
ideal for mobile devices with restricted hardware 
configuration, easy to install, inexpensive, and user-
friendly. 

• The most current identification results using YOLOv5-
S from the large-scale dataset IP102 are presented. 

• A new system captures images and uses GPS to 
determine the distribution of insects in the field. This 
contributes to the development of a large insect 
database and insect distribution maps. 

The rest of the article is arranged as follows. Section III 
describes the materials and methods used to evaluate our 
approach, including an overview of our system, the YOLOv5 
model, and the pest insect image datasets. The experimental 
results and discussion are reported in Section IV. Section V 
presents the conclusions, limitations, and recommendations for 
future research. 

III. MATERIALS AND METHODS 

A. Overview of our System 
An overview of our real-time insect identification system is 

shown in Fig. 1. Users can first use their mobile phones to 
photograph insects in a real-time manner, or they can use insect 
photographs found on the internet or images captured by bug 
traps. The YOLOv5-S model, which is already embedded into 
the mobile application, then identifies the insect image in real 
time, resulting in a very quick insect identification time. When 
an insect image is properly identified, the system will provide 
the user with detailed information on the insect, such as its 
name, biological characteristics, distribution, morphology, and 
control strategies. Our new insect recognition system can work 
in both online and offline mode. In the online mode, the insect 
identification information is sent to the Web server, which then 
processes and returns detailed insect information in JSON 
format [16]. Insect information can be viewed alongside 
similar images in the data warehouse. The user can also see a 
list of all insects, complete with detailed information and 
images. Users can upload insect images and shooting locations 
to update the data warehouse at the same time in this mode. 
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The entire database will be stored on the server in the online 
mode, making it suitable for mobile devices with limited 
hardware configuration and ensuring that information is always 
up-to-date. The application's speed, however, is determined by 
the available network bandwidth. In the offline mode, SQLite 
[17], a C-language package that creates a compact, fast, self-
contained, high-reliability, full-featured SQL database engine, 
is used for storing insect information data on mobile devices. 
This mode will be very useful in cases where farmers' working 
environments do not have internet, such as in the fields far 
from urban areas, where internet, 4G, and 5G coverage are not 
yet available. However, in this mode, some application 
functions will be restricted. 

B. YOLOV5 
YOLOv5 [18] is a single-stage object detection system. In 

one-stage object identification approaches, object detection is 
considered as a regression issue. It estimates the class 
probability and the coordinates of the bounding box that will 
contain the object in a single step on the input picture. The 
backbone, neck, and head are the three main components. 
YOLO is another name for the head layer. The model 
backbone's duty is to draw attention to the image's unique 
features. In YOLOv5, the model backbone is a CSPNet [19] 
structure. The CSPNet approach divides the feature map in the 
base layer into two parts; some reach the transition layer 
through the dense block, while the other half is directly 
integrated with the transition layer. This not only reduces 
model size but also increases inference speed [20]. In this 
study, the YOLOv5-S model is used to develop applications on 
mobile devices due to its small size and model parameters, 
GFLOPs calculation speed and high accuracy, and lack of 
requirement for high hardware configuration when compared 
to other YOLO models such as YOLOv4 [21], YOLOX [22]. 
As shown in Table I, the YOLOv5-S model is relatively small 
in size, with a network parameter of 7.3M and a disk size of 
14.2 MB, making it suitable for mobile devices with limited 
hardware configuration. With a GFLOPs index of 17.1, the 
calculating speed of the YOLOv5-S is adequate. Furthermore, 

when compared to other YOLO models, the indicators of 
mAPval@0.5 and the speed of the YOLOv5-S model in 
Table IV and Table V are quite excellent. 

TABLE I. NETWORK PARAMETERS OF YOLO MODELS 

Models Params (M) Size on disk (MB) GFLOPs 

YOLOv4 27.6 245.0 59.6 

YOLOv4-tiny 5.88 23.1 6.8 

YOLOv5-S 7.2 14.2 17.1 

YOLOv5-M 21.2 40.8 51.4  

YOLOv5-L 46.5 89.3 115.6 

YOLOv5-X 86.7 167.1 219.0 

YOLOX-S 9.0 68.5 26.8 

YOLOX-M 25.3 193.0 73.8 

YOLOX-L 54.2 413.0 155.6 

YOLOX-X 99.1 757.0 281.9 

C. Datasets 
To create the insect pest database for machine learning 

models, 2,335 photos of 10 distinct pest kinds were collected 
from internet data sources, as shown in Fig. 2. The dataset was 
then split into the following proportions: 70% of the samples 
were utilized for training, 20% for model evaluation, and the 
remainder for testing. As a consequence, the result dataset has 
1634 images for training, 467 images for validation, and 234 
images for testing, as shown in Table II. The LabelImg 
program [23] is utilized to manually label the insect objects and 
generate the .xml file containing object position information, 
which is then transformed into the .txt file that YOLOv5 can 
read. Because the IP102 data set has some constraints, such as 
the same class with numerous different insect stages such as 
larvae, caterpillars, and moths, achieving high identification 
efficiency is challenging. Therefore, the YOLOv5-S model was 
tested with 10 insect classes that were gathered by the 
agriculture expert volunteers. 

 
Fig. 1. Overview of our Real-time Insect Image Recognition System by Mobile Devices. 
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Fig. 2. Some Images of Insect Samples in the Insect10 Dataset. 

TABLE II. THE NUMBER OF IMAGES IN THE INSECT10 DATASETS WITH 10 
INSECT SPECIES 

No Insect name Train Validation Test 
1  Acalymma_vittatum 116 33 17 
2  Achatina_fulica 258 74 37 

3  Alticini 193 55 28 
4  Asparagus_beetles 89 25 13 

5  Aulacophora_similis 113 32 16 
6  Cerotoma_trifurcata 86 25 12 
7  Dermaptera 111 32 16 

8  Leptinotarsa_decemlineata 234 67 33 
9  Mantodea 185 53 26 

10  Squash_bug 249 71 36 
 Total 1634 467 234 

In this paper, the new system was also evaluated on large-
scale insect image datasets. However, collecting a large-scale 
insect pest image dataset is difficult due to the fact that, 
depending on the species and kind of insect pest, all insect 
pests go through several phases during their lifecycle. As a 
result, the insect pest pictures from the publicly available IP102 
dataset [24] are used for evaluating the system. It comprises 
almost 75,000 photos from 102 agricultural insect pest 
categories. The IP102 collection includes 75,222 photos and 
102 insect pest classifications, while the smallest category 
comprises just 71 samples. There are 18,983 annotated photos 
for the job of object detection. As in [24], the images with 
bounding box annotations were divided into training and 
testing sets of 15,178 and 3,798 images, respectively. Some 
sample images of the IP102 dataset are shown in Fig. 3. 

 
Fig. 3. Some Images of Insect Samples in the IP102 Dataset. 

IV. RESULT AND DISCUSSION 

A. Experimental Setup and Training 
All YOLO model training experiments were carried out on 

Google Colab using a Tesla K80 24 GB GPU. Algorithms are 
written in the Python and Keras programming languages. To 
train the models, the experimental setup is as follows: a 
learning rate of 0.01, an image size of 640 pixels, a batch size 
of 16, and 150 epochs for YOLOv5, YOLOX, and 2,000 
epochs for YOLOv4. The Stochastic Gradient Descent [25] is 
used as the optimization algorithm. Devices with low 
configuration are utilized to conduct tests on mobile devices, as 
indicated in Table III. 

TABLE III. SMARTPHONE DEVICE CONFIGURATION AND APPLICATION 
DEVELOPMENT ENVIRONMENT 

Smartphone hardware 
configuration 

The Samsung Galaxy A30 is powered by a 
Samsung Exynos 7 Octa 7904 processor with 
MHZ and 8 cores. The powerful processor and 
3000.0 MB of RAM give incredible performance, 
ensuring trouble-free operation of even the most 
complex program or game. The Samsung Galaxy 
A30 uses a microSDXC memory card. The phone 
carries over the 15.93-megapixel rear camera 
sensor at the back of the device. The front camera 
of the Samsung has 15.93. It gives us very high 
quality photos and videos with a great camera 
interface. The device has a 6.4-inch SUPER 
AMOLED display. It gives a decent display 
quality and a great gradation between warm and 
cold colors. The OS is Android 10. 

Programinng language to 
build applications 

Programing language: Java, Development 
Environment: Android Studio 

The light Normal luster intensity 

B. Evaluation Metrics 
Mean Average Precision (mAP) is a popular metric for 

assessing the performance of object detecting systems. The 
mAP computes a score by comparing the ground-truth 
bounding box to the detected box. The higher the score, the 
more precise is the model's detections. The mAP formula is 
based on the following sub metrics: Confusion Matrix, 
Intersection over Union (IoU), Recall, Precision. To create a 
confusion matrix, the experiments present four attributes: True 
Positives (TP): The model predicted a label and matched it 
correctly as per ground truth. True Negatives (TN): The model 
does not predict the label and is not a part of the ground truth. 
False Positives (FP): The model predicted a label, but it is not a 
part of the ground truth. False Negatives (FN): The model does 
not predict a label, but it is part of the ground truth. 

In Equation (1), IoU denotes the overlap of anticipated 
bounding box coordinates with ground truth box coordinates. It 
explains how an object identification algorithm creates 
prediction scores. The definition of IoU is described in Fig. 4. 
Higher IoU implies that the anticipated bounding box 
coordinates are similar to the ground truth box coordinates. 

𝐼𝑂𝑈 =
area of overlap
area of union

=  (1) 
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Fig. 4. IoU Definition. 

In Equation (2), Precision refers to how successfully you 
can identify true positives (TP) from all positive predictions. In 
Equation (3), Recall measures how well you can find true 
positives (TP) out of all predictions (TP+FN). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

             (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

              (3) 

In Equation (4), Average Precision is calculated as the 
weighted mean of precision at each threshold; the weight is the 
increase in recall from the prior threshold. In Equation (5), 
Mean Average Precision is the average of the AP of each class. 
However, the interpretation of AP and mAP varies in different 
contexts. On the validation datasets, the mAPval@0.5 means the 
average mAP with IoU thresholds over 0.5. The 
mAPval@0.5:0.95 means average mAP over different IoU 
thresholds, from 0.5 to 0.95, step 0.05. 

𝐴𝑃 = ∑ [𝑅𝑒𝑐𝑎𝑙𝑙(𝑘) − 𝑅𝑒𝑐𝑎𝑙𝑙(𝑘 + 1)] ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘)𝑘=𝑛−1
𝑘=0    (4) 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 

𝑚𝐴𝑃 = 1
𝑛
∑ 𝐴𝑃𝑘𝑘=𝑛
𝑘=1              (2) 

𝐴𝑃𝑘 = 𝑡ℎ𝑒 𝐴𝑃 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑘, 𝑎𝑛𝑑 𝑛 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

C. Experimental Results and Discussion 
The experiment was conducted to analyze the backbone of 

models, input image size, mAP@IoU:0.5 and 
mAP@IoU:0.5:0.95 metrics as a result of the training. 
Table IV and Fig. 5 show the results of four different model 
variations on the Insect10 dataset. On the Insect10 dataset, the 
numerical results in Fig. 5 demonstrate that the new mobile 
application has a relatively high success rate in precision, recall 
and mAP for pest object recognition. For instance, the 
detection performance of the Alcalymma insect has the lowest 
mAP@IoU:0.5 identification accuracy of 0.45, while the 
detection performance of Leptinotarsa has the highest at 
0.979. Our application is based on the YOLOv5-S model, 
which was trained on Insect10 datasets with 10 different insect 
species. The actual results show that, when compared to other 
object detection methods, YOLO has a faster recognition speed 
and can almost identify objects in real-time manner. Fig. 7 
shows some examples of successful insect recognition on 
mobile devices using the Insect10 datasets. 

Our approach has also been evaluated on the large-scale 
dataset IP102 [24] to see how well it scales on these datasets. 

As shown in Table V and Fig. 6, our system has achieved a 
promising performance of mAPval@0.5 accuracy of 42.9% with 
the YOLOv5-S model. This result shows that the new approach 
outperforms several previous approaches that were reported in 
[24]. However, insect object detection was still more 
challenging using the IP102 dataset. The reason is that the 
insect pests in the image are difficult to detect due to their color 
appearance and the image backgrounds are very similar. In 
addition, the morphology of an insect pest issue, such as a 
moth, can vary substantially as it develops. Fig. 8 depicts some 
images of successful insect recognition using the IP102 dataset 
on a mobile device. This indicates that our approach offers 
several benefits over existing methods, including the ability to 
handle massive data sets with excellent accuracy. Moreover, 
this new system may also be implemented on low-cost mobile 
devices with minimal hardware configuration. In addition, as 
illustrated in Fig. 9, the usage of matching pesticides is 
integrated with the pest categorization findings to advise 
professionals and farmers. In the near future, this system will 
be implemented on new devices like the NVIDIA Jetson Nano 
Developer Kit [26], which have a higher hardware 
configuration, a lower cost, a smaller footprint, and a better 
level of durability. 

TABLE IV. SIMULATION RESULTS OF YOLOV4, YOLOV5, AND YOLOX 
MODELS ON THE INSECT10 DATASET 

Models Backbone mAPval@0.5 mAPval@0.5:0.95 

YOLOv4 CSPDarknet53 84.9 63.2 

YOLOv4-tiny CSPDarknet53 64.4 48.3 

YOLOv5-S Darknet-53 70.5 35.9 

YOLOv5-M Modified CSP v5 76.6 42.7 

YOLOv5-L Modified CSP v5 78.9 46.8 

YOLOv5-X Modified CSP v5 73.0 40.9 

YOLOX-S Darknet-53 84.8 58.5 

YOLOX-M Modified CSP v5 82.3 61.9 

YOLOX-L Modified CSP v5 84.0 65.0 

YOLOX-X Modified CSP v5 83.0 64.0 

 
Fig. 5. Precision and Recall of Insect Recognition Results on the Insect10 

Dataset using the YOLOv5-S Model. 
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TABLE V. SIMULATION RESULTS OF YOLOV4, YOLOV5, AND YOLOX 
MODELS ON THE IP102 DATASETS 

Models Backbone mAPval@0.5 mAPval@0.5:0.95 
YOLOv4 CSPDarknet53 39.2 20.1 

YOLOv4-tiny CSPDarknet53 36.1 19.0 
YOLOv5-S Darknet-53 42.9 24.0 
YOLOv5-M Modified CSP v5 47.4 27.9 

YOLOv5-L Modified CSP v5 50.1 29.9 
YOLOv5-X Modified CSP v5 54.0 32.5 

YOLOX-S Darknet-53 52.3 34.1 
YOLOX-M Modified CSP v5 54.2 35.1 
YOLOX-L Modified CSP v5 53.9 34.7 

YOLOX-X Modified CSP v5 54.1 34.9 

 
Fig. 6. Precision and Recall of Insect Recognition Results on the IP102 

Dataset using the YOLOv5-S Model. 

 
Fig. 7. Some Images were Successfully Detected on Mobile Devices using 

the Insect10 Dataset. 

 
Fig. 8. Some Images were Successfully Detected on Mobile Devices using 

the IP102 Dataset. 

The information on insect GPS location and density will be 
extremely useful for several Integrated Pest Management 
systems. Therefore, our systems are designed to allow users to 
automatically record this information. Then, a real-time insect 
distribution density map is created using this data, as illustrated 
in Fig. 10. This map will assist expert users in tracking and 
forecasting the density and evolution of insect infections over 
large areas. At the same time, it is possible to evaluate the 
potential effects of insect pests on agriculture and ecosystem 
production. 

   
Fig. 9. The user Interface Screen shows the Successful Insect Recognition 

and Detailed Insect Information on a Mobile Device. 

 
Fig. 10. The Insect Distribution Map was constructed based on GPS Location 

Information from the user's Insect Photos. 

V. CONCLUSION AND FUTURE RESEARCH WORK 
This paper presents an efficient system for real-time mobile 

smart device-based insect detection. Our system was developed 
based on the YOLOv5-S model because of its lightweight 
convolutional neural network and is thus suitable for mobile 
devices with limited hardware configuration. Moreover, insect 
pest detection and classification may be incorporated into 
hardware that farmers can utilize across a wide range of 
situations to safeguard their farms from pests. Therefore, our 
method has numerous advantages in terms of real-time insect 
identification, low cost, simple implementation, and practical 
implementation. The numerical results showed that the new 
system achieved 70.5% classification accuracy with mAP@0.5 
on the Insect10 dataset and 42.9% accuracy with the large 
dataset IP102. This is the best insect pest detection result with 
YOLOv5-S ever reported from the largest insect dataset, 
IP102. However, these mAP accuracy results are still low when 
compared to the accuracy required for actual insect detection 
for agricultural production. Consequently, the next task will be 
to investigate more efficient recognition models in order to 
improve the accuracy and number of insects. Simultaneously, 
this work will be continued to study on better mobile devices, 
such as the NVIDIA Jetson Nano Developer Kit, which has a 
central processing unit, a graphical processing unit, a web 
camera, and currently only a low charge, allowing larger 
convolutional neural network models to be installed. 
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