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Abstract—Most existing identification and tackling of chaos in 
swarm drone missions focus on single drone scenarios. There is a 
need to assess the status of a system with multiple drones, hence, 
this research presents an on-the-fly chaotic behavior detection 
model for large numbers of flying drones using machine learning 
techniques. A succession of three Artificial Intelligence 
knowledge discovery procedures, Logistic Regression (LR), 
Convolutional Neural Network (CNN), Gaussian Mixture Models 
(GMMs) and Expectation–Maximization (EM) were employed to 
reduce the dimension of the actual data of the swarm of drone’s 
flight and classify it as non-chaotic and chaotic. A one-
dimensional, multi-layer perceptive, deep neural network-based 
classification system was also used to collect the related 
characteristics and distinguish between chaotic and non-chaotic 
conditions. The Rössler system was then employed to deal with 
such chaotic conditions. Validation of the proposed chaotic 
detection and mitigation technique was performed using real-
world flight test data, demonstrating its viability for real-time 
implementation. The results demonstrated that swarm mobility 
horizon-based monitoring is a viable solution for real-time 
monitoring of a system's chaos with a significantly reduced 
commotion effect. The proposed technique has been tested to 
improve the performance of fully autonomous drone swarm 
flights. 

Keywords—Chaos detection; swarm of drones; machine 
learning; autoencoder; Rössler system 

I. INTRODUCTION 
A swarm of drones is a group of two or more drones that 

exchange data and work as a single cooperative unit to 
accomplish a specific mission objective. Drone coordination 
has been extensively researched in the fields of surveillance 
systems, precision agriculture, transportation, disaster 
management, and entertainment [1] [2]. 

A swarm of small aircraft allows for a larger mission area, 
more flexible mission capabilities, greater resilience against 
single-point failure, and lower costs. Swarm drone research has 
covered a wide range of topics, including collision avoidance 
[3], [4], [5], [6], mission-level planning and control to enable 
high-level autonomy [7], [8], the human operator's 
communication with a swarm of drones [9], [10], ad hoc 
backbone network customized for a swarm operation, and the 
construction of small-scale airborne vehicles [11], [12]. 
Previously, technology-oriented research focused on how to 

improve performance and capacity [13], [14], [15], but more 
recent research has focused on making such swarm systems 
more safe, secure, and reliable to operate [7], [16], [17]. 
Studies in the development of new coordination algorithms that 
combine biological processes are based on self-regulation [18], 
[19], and environmental adaptability to allow a swarm of 
drones to work with greater sophistication, reliability, 
scalability, and flexibility [20]. 

A number of practical issues that might disrupt the 
successful completion of the swarm mission could arise during 
the operation of a swarm of drones. For example, the energy 
consumption limitation of drones, which limits drones in their 
ability to handle long-term flight, may cause one or more 
drones in the swarm to experience failure, necessitating the 
development of an intelligent, efficient power failure 
mechanism. Alternatives for aerial path loss should also be 
considered while maintaining drone security and safety. When 
considering a multi-drone environment, where a small or large 
group should operate together or act in the same aerial 
environment, various flight problems and obstacles, in addition 
to the aforementioned chaotic difficulties, may arise, such as 
weather conditions and signal loss. These chaotic issues, 
however, impose a number of constraints on the use of swarms 
of drones and must be addressed in real-time. 

The ability to monitor or manage the disorder or instability 
of the drones in a swarm, and take predictive and critical steps 
as needed for the safe and dependable operation of swarm 
drones, is referred to as chaos handling. Many factors can have 
an impact on the system's health, such as issues with the drone 
system's actuators and sensors, communication connection 
flaws, and possibly hostile cyberattacks. Determining such 
causes requires a thorough understanding of the system, 
mission, and surroundings. Therefore, detecting chaos in 
swarm system behavior is the first step toward managing the 
system's health. This is crucial even when the source or type of 
chaos is unknown. 

Despite extensive research into traditional model-based 
approaches for fault handling, identification, and isolation, 
particularly in aircraft safety systems, there are no known 
existing solutions for dealing with chaos among drones [21] 
[22]. Failure Detection, Identification, and Recovery (FDIR) 
has recently been extended to swarms of drone systems in 
terms of operations [23], and resistance against cyberattacks 
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[23], [24], [25], but there is still a need to address chaos among 
the swarm of drones, regardless of whether the causes of such 
chaos are known or unknown. In [26], evaluation of drones that 
use onboard sensor data for Failure Detection, Identification, 
and Recovery (FDIR) using a cooperative virtual sensor system 
for the design and experimental verification of techniques and 
procedures for handling chaos in swarm drone systems was 
done. Furthermore, compared to large aircraft, drone swarms 
are a new market entry; thus, failure mechanisms and chaos are 
not widely implemented or in use. Therefore, statistical 
methods which do not rely solely on the physical-based model 
of the drones may be a more viable option for detecting and 
mitigating chaos in the current swarm of drone systems. Thus, 
in this study, an attempt was made to develop a machine 
learning-based model for chaos detection in a swarm of drones; 
and a mitigation technique to deal with such chaotic conditions 
is also proposed. 

The remaining sections of the paper are organized as 
follows: Section II discusses related works, while Section III 
describes the machine learning methods used in detecting and 
mitigating chaos in real-time swarm dataset. Section IV 
describes the chaos detection modeling process, while Section 
V presents the results of the model evaluations to demonstrate 
the effectiveness of the chaos detection and mitigation 
strategies for swarms of drones. Finally, the conclusion was 
presented in Section VI. 

II. RELATED WORK 
 Several significant studies have been conducted in order to 

apply data-driven machine-learning algorithms for detecting 
faults and anomalies in aerial vehicles. Some researchers 
combined chaotic dynamics with powerful swarm-based 
algorithms used in mobility models such as Ant Colony 
Optimization (ACO), Artificial Bee Colony (ABC), and 
Particle Swarm Optimization (PSO) [27], [28], [29]. The 
Lorenz and Rössler attractors are time-discretized, and the 
three-dimensional chaotic maps are addressed via a three-
dimensional solvable chaos graph built from general chaos 
solutions. 

A three-dimensional path planning for Unmanned Aerial 
Vehicles (UAVs) based on chaos particle swarm optimization, 
which addresses the shortcomings of particle swarm 
optimization (PSO) was proposed in [30]. However, the 
solution quickly falls into a local optimum and gradually 
converges with poor precision in a motion phase. The concept 
of the Chaos Optimization (CO) algorithm was incorporated 
into the PSO algorithm through in-depth analysis based on the 
conventional update operations on the velocity and location of 
the mobile nodes in the swarm. As a result, track preparation 
searches are eliminated and rapidity followed by convergence 
precision is enhanced. 

In [31], a basic two-dimensional solvable chaos map was 
used to mathematically analyze chaotic modeling and 
simulation on a dynamic coordinate. Also in [32], a chaotic-
based approach was used to maintain coordinated flight 
formation of swarm unmanned aerial vehicles at a low input 
cost. A study in [33] focuses on a discrete dynamic map 
(logistic map) to generate a chaotic sequence of bits [33]. The 
bits are then translated into locations that allow the robots to 

construct a deterministic route plan. Meanwhile the R-UAVs 
are fractional three-dimensional when using the Qi system 
[34]. As a result, a three-dimensional chaotic dynamic solution 
should be used to model the mobility model of swarm UAVs. 

The 3D chaotic-based-approach is used in ASIMUT to 
implement dynamic system mobility models for UAVs in an 
unpredictable regime. This mobility model is supplemented by 
a hybrid mobility model called Chaotic Ant Colony 
Optimization for Coverage (CACOC), which combines the 
ACO with the system's three ordinary differential equations. 
The mobility model is data-centric in a multi-level swarm 
perception networked on the multi-layer FANET architecture 
[35], [36]. Also, a collision avoidance technique was 
incorporated into a predictive mobility model, based on the 
assumption that all UAVs were flown at different altitudes to 
avoid collisions [37]. However, this may not be realistic in 
some UAV swarm applications. 

For real-time detection and monitoring of aviation system 
abnormalities, a Multivariant Gaussian Mixture Model 
(MGMM) was proposed [38]. Also proposed was a Recurring 
Neural Network (RNN) method for events and trends which 
can reduce the security margins of a system using a dataset 
from a Flight Data Recorder (FDR) [39]. 

A K-nearest neighbor (KNN) methodology was introduced 
in [40] to identify the reasons and factors for drone failures and 
potential deteriorations in drone performance on the ground in 
order to assess the causes of failure and potential deterioration 
in drone performance during flight. An actual flight dataset 
was used in [41] to validate the developed Anomaly Detection 
(AD) model, which shows if there is any abnormality in the 
swarm drone flight. For the generation model, the AD model 
created a training model using a Deep Neural Network. 

Most of the work done has focused only on the health 
management of a single drone; no methodological approach for 
the reliable detection of chaos in swarm flights has been 
proposed, with the goal of overcoming the aforementioned 
swarm drone behavior constraint. For example, an end to end 
fault analysis framework for a single micro aerial vehicle that 
only considers anomalies with obstacle detections [54]. Some 
studies used artificial neural network for sensor-based fault 
detection [55]. As a result, this current study proposes a 
machine learning-based, data-driven methodology for detecting 
chaotic anomalies in swarm flights. The proposed method 
aimed to address both the lack of marked recorded information 
in swarm flights and the disparity between non-chaotic and 
pathological data. This study investigates the use of moving 
average-based monitoring with a limited time frame to reduce 
noise in continuous monitoring while also allowing for 
responsive chaos detection. 

In general, supervised learning approaches outperform 
unsupervised learning methods in classification problems. 
However, in the case of chaos detection, a relatively new type 
of self-supervised knowledge extraction that outperforms the 
fully supervised technique has been reported. As a result, this 
method can be used to detect chaos in in-flight data. A highly 
sophisticated self-supervised framework that outperforms all 
other unsupervised methods, and demonstrated that the 

450 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 6, 2022 

completely controlled approach ranks better and outperforms 
the other methods was developed in [42]. 

This paper backs up this claim by demonstrating that 
supervised learning is still a viable core framework when a 
significant amount of labeled data is available, and an adequate 
labeling process can be produced. This study makes three 
significant contributions: It (a) proposes a systematic process 
for data-driven chaos identification in swarm flights, (b) 
generates a real-time solution to such chaos, and (c) validates 
the method using real flight test data. 

III. METHODOLOGY 
The following methods were used in this study to detect 

chaos in a swarm of drone flights: First, a set of unsupervised 
learning methods were employed: An Autoencoder (AE) was 
used to reconstruct and reduce the time series dimensionality of 
flight data, and then an Expectation–Maximization (EM) 
clustering by Gaussian Mixture Model (GMM) separated the 
flight data time series dimension into four categories: true 
chaos, unsure chaos, doubtful normal, and truly normal. Then, 
a Deep Neural Network was trained to extract features and 
detect chaos, which is a 1D-CNN concatenation of a single, 
multi-layer logistic regression perceptron neural network [43]. 

To properly identify chaos and handle it, three decisions 
must be made: (a) detecting chaos symptoms in the swarm, (b) 
identifying which drone is in chaos, and (c) providing a 
solution to such drones in a state of chaos. The chaotic 
detection technique makes these decisions by observing the 
kinematic characteristics of the drones, such as a drone's 
location and velocity. This chaos detection scheme is located at 
the ground station or controller, which monitors the health and 
the flying status of all swarm vehicles; thus, it transfers drone 
data to the ground station, where it is processed by the chaos 
detection scheme to show flight normality. 

In this study, the swarm system employed a real-time 
Kinematic Velocity (KV) GPS-based precision navigation 
method as described by [44]. The dataset used as learning data 
for recognizing chaotic behavior during swarm mission 
execution was sourced from a series of swarm drone flight tests 
conducted by the Korean Aerospace Research Institute, in 
which up to 30 quadcopter drones were deployed [41]. 

A total of 50 tests were conducted, with individual and 
multiple groups of test drones. The output data from each 
drone trajectory consists of 248 parameters presented as time 
series, some of which include numerous observations of 
various parameters. As critical characteristics in detecting 
chaos in motion, three sites were chosen: the drone location 
and set point values, three-vehicle speed components, and 
vehicle status. The KV-GPS data, in which the accuracy was 
validated in [44] was used to calculate the location coordinates 
(xt, yt, zt) and velocity components in three dimensions for the 
drones. The following three parameters in Equation 1 are also 
considered chaotic, as they can be associated with errors 
between intended and actual behavior during drone movement 
coming from mission control. 

𝑥 = 𝑥𝑡 − 𝑥𝑠 

𝑦 = 𝑦𝑡 − 𝑦𝑠 

𝑧 = 𝑧𝑡 − 𝑧𝑠              (1) 

Also, inertial navigation system readings labeled GA from 
accelerometers and gyro sensors may also cause mechanical 
faults in drone systems because they can cause unexpected 
acceleration and angular rate behavior. Thus, the drone status 
indicator is used to verify the data consistency and calibration. 
Since this research aimed to develop a chaos detection and 
mitigation method that is independent of drone type and 
features, datasets are not tagged with drone identifiers as a 
result. Fig. 1 depicts an illustrative view of the swarm system 
configurations. 

It should be noted that these topological indicators are not 
always the whole set of characteristics required to identify all 
potential chaos in swarm flights. These are, nevertheless, 
crucial indicators for sensing chaos produced by specific kinds 
of errors and failures. As a result, this research detects and 
identifies chaotic behavior using topological indicators and 
produces a solution to such a problem using a chaotic attractor. 
Also, the flight trajectory dataset is only partially labeled. 
Some of the incorrect events discovered during the flight test 
are classified as chaos. Table I lists the features of the 
indicators utilized in this paper. 

 
Fig. 1. Configuration of the Swarm of Drone System. 

TABLE I. PARAMETERS EXTRACTED FOR DRONE SWARM FLIGHT 
ANALYSIS 

Drone Parts Parameter Description Attribute 

Drone state Hovering Navigating Discrete 

Trajectory Position (xt, yt , zt) Continuous 

GA 

Gyro (Rate and integrals of drone body 
frame) 
Accelerometer (Axis (x,y,z) values and 
integrals of accelerometer) 

Continuous 

KV-GPS Inertial Velocity Vectors and Positions Continuous 
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A. Machine Learning Algorithms 
This section discusses four machine learning methods that 

were used in this study to develop a data-driven chaos 
detection strategy. The first two are unsupervised learning 
algorithms that work with unlabeled data, whereas the last two 
are supervised classification algorithms that work with labeled 
data. The details are as follows: 

1) Autoencoder and Chaos Detection (AECD): 
Autoencoder-based chaos detection (AECD) is a semi-
supervised learning-based chaos identification technique. As 
part of this study, an autoencoder was used to compress the 
raw flight input data. Autoencoders (AE) are neural networks 
that are statistically based on a given probability distribution 
[45]. The autoencoder consists of two sub-models: encoder 
and decoder. The encoder compresses the input, while the 
decoder attempts to reconstruct the input from the encoder's 
compressed form. After training, the encoder model is saved, 
whereas the decoder is destroyed. For machine learning 
training, the encoder is then used as a data preparation tool, to 
extract features from raw data. 

A single-layered neural network has an encoder and a 
decoder, as shown in Equations (2) and (3). This is the 
nonlinear transformation function of the autoencoder. Equation 
2 depicts how an affine mapping uses nonlinearity to convert 
an input vector d to a hidden vector h. In Equation 3, the 
decoder uses the same transformation as the encoder to rebuild 
the cached representation h back to the initial input space. As 
shown in Equation 4, the reconstruction error is defined as the 
difference between the original input vector d and the 
reconstruction z. The reconstruction error is minimized via the 
autoencoder. 

ℎ = 𝜎(𝑊𝑑ℎ𝑑 + 𝑏𝑑ℎ)              (2) 

𝑧 = 𝜎(𝑊ℎ𝑑𝑑 + 𝑏ℎ𝑑)              (3) 

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =∕ 𝑑 − 𝑧 ∕            (4) 

where, w and b are the weights and biases of the neural 
network. 

By adding noise to the original input vector d, the 
autoencoders use a noisy input vector d' as the input vector. In 
other words, a noisy input d' was fed into the autoencoder in 
order to recreate the original input d. In this way, the 
autoencoder is protected from white noise in the data and 
collects only significant patterns in swarm flight data [46]. The 
reconstruction error is then calculated by measuring the 
difference between the final output and the noisy input 
reconstruction. The reconstruction error is then used to 
determine the chaos score. 

Data points with a high degree of reconstruction are 
described as chaos. To train the autoencoder, only data with 
normal occurrences is utilized. The autoencoder will 
successfully reconstruct normal data after training but will fail 
to reconstruct chaotic data that the autoencoder has never seen. 
Algorithm 1 depicts the chaos detection technique based on 
autoencoder reconstruction errors. 

Algorithm 1 Autoencoder and Chaos Detection Algorithm 

INPUT: Normal dataset D d(1),…, d(n), Chaos dataset d'(i)  
 i=1 ,…, n, threshold α  
OUTPUT: reconstruction error ||d – d'|| 
θ,φ ← Initialize parameter  
repeat 
 E =∑ ||𝑛

𝑖=1  d(i)- gθ(ƒφ(d(i))) || Calculate the total amount of reconstruction 
error, where gθ  and ƒφ are the autoencoder's multilayered neural networks. 
 θ,φ ← update parameters using Stochastic Gradient Descent 
until parameters θ,φ convergence 
 then  

θ,φ ←Using the normal dataset D, train the autoencoder 
for all values i=1 to n do 

 reconstruction error(i) = || d(i)- gθ(ƒφ(d(i)))|| 
 if α < the reconstruction error(i) then 

 d(i) is in chaos 
  else 

 d(i) is not in chaos 
 end if 

end for 

2) Clustering using Gaussian Mixture Models (GMMs) 
and Expectation–Maximization (EM): The flight data points 
were assumed to be distributed randomly in a Gaussian 
manner. Gaussian Mixture Models (GMMs) were used to 
simulate the data. Each flight data cluster's Gaussian 
parameters were determined using two parameters derived 
from an optimization technique called Expectation-
Maximization (EM): the mean and standard deviation. 
Therefore, drone clusters can have any elliptical shape since 
the standard deviations in the x and y axes are obtained. As a 
result, each Gaussian distribution has exactly one cluster. The 
hidden variables were used to find the Maximum Likelihood 
Estimators (MLEs). Since the AECD model contains latent 
variables, maximum likelihood estimates of the model were 
sought using the EM method. As a result, the log-likelihood is 
as shown in Equation 5. 

log�𝑃 (𝐷|𝜃)� = log (∑ 𝑃((𝐷,𝑍|𝜃))𝑧            (5) 

Where, D represent the total number of observable 
variables 

Z represent the total number of latent variables, 
marginalized from the joint distribution. 

Assuming datasets D and Z, were selected at the same time, 
the entire dataset is referred to as {D, Z} and the incomplete 
dataset is referred to as D. From the original dataset, Z, is 
unknown, but the posterior P(Z|D,Θ) contains the information 
about Z. Therefore, the log-likelihood expectation was 
analyzed by using the M-step process to evaluate the posterior 
probabilities. The expectation of the entire data log-likelihood 
was maximized to get a new estimated parameter via the E-step 
process. The current value of the parameters θ0 was used in the 
E-step to obtain the posterior distribution of the latent 
variables, which is provided by P (Z |D, θ0). This expectation, 
represented by Q (θ, θ0) is shown in Equation 6. The new 
parameter θ´ is then determined in the M-step by maximizing 
Q as shown in Equation 7. 
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𝑄(𝜃,𝜃0) = 𝐸�𝑍�𝐷,𝜃0�[log�(𝐷,𝑍|𝜃)�] =
𝑃∑ 𝑃 (𝑍 |𝐷,𝜃0)log(𝑃 (𝐷,𝑍 |𝜃 ))𝑍 40 T  
          (6) 

𝜃′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑄(𝜃,𝜃0)             (7) 

where 

𝜃 = 𝜇1,⋯ , 𝜇𝑘,𝜎1,⋯𝜎𝑘 ,𝜋1,⋯ ,𝜋𝑘  are the unknown 
parameters used in deriving the MLE Gaussian Mixture Model. 
The relevant quantities for GMM are then derived to form the 
complete likelihood as shown in Equations 8 and 9. 

log (𝑃(𝐷,𝑍|𝜇,𝜎,𝜋)) = ∑ ∑𝑚
𝑘=1

𝑛
𝑖=1 )𝐼(𝑍𝑖 =

𝑘)( log(𝜋𝑘) + log (𝑁(𝐷𝑖|μ𝑘 ,σ𝑘))            (8) 

𝐸(𝑍|𝐷) log�𝑃(𝐷,𝑍|𝜇,𝜎,𝜋)) = ∑ ∑ 𝑌𝑍(𝑘𝑚
𝑘=1

𝑛
𝑖=1 ) (𝑙𝑜𝑔 𝜋𝑘 +

𝑙𝑜𝑔(𝑁(𝐷𝑖|𝜇𝑘 ,𝜎𝑘))� 40T               (9) 

The posterior probabilities γZi(k) was evaluated from the 
current values of μ𝑘 and σ𝑘 38T. Since EZ | D[I(Zi=k)] = P(Zi=k|D), 
marginal probability distribution can thus be replaced with the 
posterior probability γZi(k). 

Hence, Expectation-Maximization is derived as follows: 
first, initial values were chosen for the parameters μ σ, and π, 
these parameters were employed in the E-step to evaluate the 
posterior probability γZi(k). With fixed γZi(k), the expected 
complete log-likelihood is maximized as shown in Equation 9 
with respect to μk, σk, and πk. 

3) Convolutional Neural Network (CNN): Convolutional 
Neural Network concept was used to extract features from 
drones' trajectories. It was noted that CNN has made great 
strides in handling two-dimensional image data and thus for 
one-dimensional time series data, locality/dispersion may also 
be used [43]. The CNN network structure employed in this 
study for cataloguing and classification comprises a stack of 
one-dimensional convolutional and max-pooling layers, 
including an additional global-pooling or flattening layer 
connected to the max-pooling layers. A Multi-layer Perceptron 
(MLP) is linked to the output layer of the one-dimensional 
CNN and then stochastic gradient descent is used to maximize 
the weights of both the MLP and CNN simultaneously [47]. A 
nonlinear activation function is used to transform a perception 
y into a linear combination that uses its weighted inputs to 
generate a single output which is dependent on many real-
valued inputs (from the GMM and EM outputs). The 
perceptron is expressed in Equation 10. 

𝒚 = 𝜑(∑ 𝜔𝑖𝐷𝑖 + 𝑏𝑛
𝑖=1 )=𝜑(𝑤𝑇𝑥 + 𝑏)          (10) 

4) Logistic Regression (LR): Logistic Regression (LR) 
was used for two-class classification in this study. LR is one 
of the easiest and most widely used methods of machine 
learning that can be used for two-class classification. It is a 
statistical method for predicting binary classes with 
intrinsically dichotomous values or target variables like one 
and zero. Equation 11 can be used to express the logistic 
regression hypothesis. 

𝑦 = (1|1 + exp (−(𝛽0 + 𝛽1𝐷1 + 𝛽2𝐷2+,⋯ ,𝛽𝑚𝐷𝑚)        (11) 

 where, Dm denotes the explanatory features of the flight 
data and; βm denotes the related coefficients that will be 
optimized via a learning process. 

Because y has a value between 0 and 1, the result can be 
interpreted as the likelihood of fitting to class 1. As shown in 
Equation 12, the most common loss function for optimizing 
coefficients is maximization of output probability. 

𝑙𝑜𝑠𝑠(𝑧, 𝑦) = −∑ (𝑧𝑖 𝑙𝑜𝑔 𝑦𝑖  +  (1 −  𝑧𝑖)𝑙𝑜𝑔(1 −  𝑦𝑖))𝑛
𝑖=1      (12) 

where, n represents the amount of data points and; 

 z represents the desired outcome. 

Equation 12 illustrates how the loss function can also be 
viewed as the cross-entropy between z and y. Instead of using a 
neural network, this sigmoidal activation function is commonly 
used for categorization. In this scenario, the network is trained 
to minimize the cross-entropy loss. 

B. Rössler System (RS) 
The Rössler System (RS) was used to handle any drone's 

trajectory in the swarm that remains in a state of chaos. As 
shown in Equation 13, the numerical solution for a drone's 
three-dimensional trajectories is given as a fractional order of 
the Rössler System [34]. The data for the a drone’s three 
coordinates in the (x,y,z) axis is given by a time step t. 

⎩
⎪
⎨

⎪
⎧

𝐷𝑡𝑥 = 𝑦 − 𝑧 
  

𝐷𝑡𝑦 = 𝑥 + 𝑎𝑦
 

𝐷𝑡𝑧 = 𝑏 + 𝑧(𝑥 − 𝑐)
  

           (13) 

The RS is composed of three Ordinary Differential 
Equations (ODEs) with only one non-linear term, with constant 
values a = 0.2, b = 0.2, and c = 9.0; thus, each ODE can 
represent a dimension of a drone's flight trajectory [36], [48]. 
The synchronization of the RS with machine learning 
algorithm for trajectories in chaos was achieved after 
eliminating the leading drone's trajectory flight data 
observations. In order to remove the transient states, a 
numerical solution was constructed for this system using the 
fourth-order Runge-Kutta approach and record time points with 
each time step being t = 0.1. 

IV. CHAOS DETECTION AND MITIGATION MODEL 
DESCRIPTION 

The details of the model description are as follows: 

A. Model Architecture 
Fig. 2 depicts the general architecture of the model for 

detecting and mitigating chaos in a swarm of drones. The flight 
test data used for this study were collected in advance but when 
swarm flight data is provided in real time, it is not 
automatically labeled. This is normal in chaos detection 
instances since the data can only be plainly labeled in the 
presence of a functioning chaos detector or if human 
investigators have thoroughly examined the data. As a result, 
the data was initially grouped and labeled into various relevant 

453 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 6, 2022 

groups using a clustering method. Four criteria are addressed in 
this study's labeling method because of the ambiguity in chaos 
judgments: Normal (N), chaos (C), tentative normal (N˜), and 
tentative chaos (C˜). The last two categories were included 
because there are times when it's unclear whether the data 
provided is sufficient to determine whether a flight's behavior 
is chaotic or normal. After the labeled data has been secured, a 
binary classifier based on CNN was trained and validated on a 
set of training data to understand the critical characteristics in 
identifying chaos in swarm flight data. The trained model may 
then be utilized for both post-flight analysis and real-time 
chaos monitoring as a chaos detection technique. Meanwhile, 
as a chaos handling technique, the Rössler system was used to 
generate new flight paths for drones in the swarm that are in a 
chaotic state. 

B. Data Preparation 
A total of 73,749-time series dataset were generated as a 

result of the data preprocessing analysis, which includes data 
cleaning, integration, and transformation. 

1) Data cleaning: The data cleaning process includes the 
completion of missing values, the filtering of excessive noise, 
the elimination of outlines, and the resolution of solution 
discrepancies. The difference between the real and reference 
positions of the drones in the swarm, as well as the actual 
velocity, are used as input data. To correspond to the 
timestamps of the two distinct data sources, a linear 
interpolation approach was used. In order to get a different 
value to real data at the same time, a linear interpolation of 
reference data with low noise relative to actual signals was 
performed. Excessively high values, possibly due to the 
training dataset, remove noise aberrations. 

2) Data integration: Data from multiple drones were 
combined to create a dataset containing drone identification 
numbers. The drone identification numbers are not explicitly 
used in the learning process, but they are necessary for 
evaluating the performance of the learned model. One label, a 
one-time stamp, and six kinematic variables are also included 
in the input data. 

3) Data normalization: The goal of data normalization is 
to keep the array of values for the specified parameters within 
a certain range. The well-known standardizing approach was 
used in this study. As shown in Equation 14, the 
standardization approach normalized each data sequence by 

computing the mean (Dmean) and standard deviation (Dstd) 
values. 

𝐷𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = (𝐷 − 𝐷𝑚𝑒𝑎𝑛/𝐷𝑠𝑡𝑑             (14) 

C. Data Labelling and Clustering 
Sensors mounted on drones produces multidimensional 

data which is characterized by a complex correlation, making it 
difficult to define the system's status. An autoencoder and 
chaos detection (AECD) algorithm was used to reduce the 
dimensionality of the data by identifying the primary 
correlation pattern between the variables. AECD is based on 
the assumption that the majority of system states can be 
adequately described by the characteristics of a few key 
components, and it has proven to be a successful feature 
extraction technique in a variety of situations [49]. The 
encoded kinematic information is represented by a six-
dimensional AECD algorithm to produce the rate of 
cumulative dispersion to encode the component axes of a 
swarm of drones. 

The clustering approach was used to facilitate labeling of 
unlabeled data in its raw form. Labeling data aids supervised 
learning processes in chaos classification by grouping data 
based on some kind of similarity or distance measure, making 
it easier for human specialists to classify the data. 

This study employed clustering on the smaller space 
created by the AECD algorithm using Gaussian Mixture 
Models (GMMs) and Expectation-Maximization (EM). The 
time-series data for AECD was based on six variables for 
drone trajectories in the (x, y, z) axes and the velocity vectors 
(vx, vy, vz), with one drone label presented after AECD. 
Because the principal component axis was chosen to have a 
cumulative dispersion rate of 90% or higher, the number of 
dimensions reduced as a result of AECD may vary depending 
on the available flight data. 

Specifically, clustering was performed on data that had 
been dimension-reduced, and the EM technique was used to 
maximize the number of clusters [50]. Based on the clustered 
findings, the state of each drone in the swarm was classified as 
Normal (N) or Chaos (C). The associated variables were 
obtained by categorizing them into two groups. 
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Fig. 2. Chaos Detection and Mitigation Model Architecture for Swarm of Drones. 

It first examined the outcome of a swarm of drones in 
completing a specific scenario as a mission using KV–GPS 
data and trajectory location data. It finally checked the sensor 
signals to detect any chaos in the drone using the GA data. 
AECD, GMMs, and EM clustering are the three techniques 
that label unlabeled datasets into two categories: Normal (N) 
with a data sample of 23,501 and Chaotic (C) with a data 
sample of 20,266. 

D. Optimization and Classification of Data Sample 
The data sample was classified and optimized in three 

stages. First, the data sample was standardized, then the data 
was classified using a CNN classifier, and finally, the classified 
data was optimized using Stochastic Gradient Descent with the 
AdaDelta optimization technique. 

1) Standardization of data samples: After categorizing the 
normal and chaotic states, the drone-label information was 
deleted, leaving a total of six variables. To standardize the 
range of input variable values, a data standardization approach 
similar to pre-processing for clustering was used. In the 
labeled data, the Logistic regression technique was used for 
the binary categorized variables. The two-potential dependent-
variable values of 0 and 1 represent the "normal" and 
"abnormal" results. Binary logistic models were used to assess 
the likelihood of a binary answer based on one or more 
predictor (or independent) functions. 

2) CNN Classifier: To normalize the time sequence data 
of the kinematic variables specified in this study, the Gaussian 
Mixture Models and Expectation-Maximization technique 
were used. The data was first transferred through a one-
dimensional Convolutional Neural Network (CNN) with six 
hidden layers, which was then linked to a dense multilevel 
perceptron with sigmoid activation at the output end. The 
sigmoid activation function result was compared to the target 
label value by reversing this error and its cross-entropy error 
(Equation 5), and was used to learn the overall neural network. 
A Stochastic Gradient Descent technique combined with 
minibatch was used for learning. Table II shows the details 
about the neural network layers and the parameters used to 
train the network, while Table III shows more details about 

the design, it was created by first building a sufficiently large 
network and then controlling it with batch normalization [51]. 

3) Stochastic and mini batch gradient descent in adadelta 
optimization: Most neural network methods are designed to 
improve accuracy; they work best when each class studies the 
same (or comparable) amount of data. However, when the 
number of normal and chaotic drones is significantly different, 
a varied binary classification, such as in defect classification 
or chaotic detection, does not produce excellent results [52]. 
This method generates additional samples in order to achieve 
a one-to-one relationship between normal and abnormal data 
for batches in order to optimize AdaDelta to compensate for 
the imbalance used in the network's training [53]. 

The AdaDelta optimization method is a stochastic 
optimization methodology for Stochastic Gradient Descent 
with a per-dimension learning rate method. It aims to slow 
down the monotonously fast rate of learning. Rather than 
gathering all past squared gradients, AdaDelta limits the 
window of accumulated past gradients to a specific size. Only 
one example was analyzed at a time to perform a single step in 
Stochastic Gradient Descent (SGD). Using the SGD, the 
following steps were taken for each epoch: 

a) Take the sample data, 
b) Insert it to Convolutional Neural Network, 
c) Find its gradient, 
d) Use the computed gradient in step 3 for weight 

updates, 
e) Repeat steps (a)–(d) for all of the items in the data 

sample. 
Because only one example was considered at a time, the 

cost will fluctuate rather than decrease over the training 
examples. Considering, mN and mC denoting the number of 
data points labeled as normal (N) and chaotic (C), respectively. 
If the sampling required to produce a minibatch in the stores' 
gradient is carried out consistently, the predicted data quantity 
ratio for the two classes is mN/mC. 

TABLE II. ONE-DIMENSIONAL CONVOLUTIONAL NEURAL NETWORK 
PARAMETER 
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Layer Input Variables 
(n, timestamp, 5) 

Output 
(n, 160, 5) 

Operation 
Standard 

1 (n, 160, 5) (n, 80, 10) 

One-dimensional 
Convolutional, Rectified 
Liner Unit (ReLU), one-
dimensional batch 
normalization 

2 (n, 80, 10) (n, 40, 20) 

One-dimensional 
Convolutional, ReLU, one-
dimensional batch 
normalization 

3 (n, 40, 20) (n, 20, 40) 

One-dimensional 
Convolutional, ReLU, one-
dimensional batch 
normalization 

4 (n, 20, 40) (n, 10, 80) 

One-dimensional 
Convolutional, ReLU, one-
dimensional batch 
normalization 

5 (n, 10, 80) (n, 5, 160) 

One-dimensional 
Convolutional, ReLU, one-
dimensional batch 
normalization 

6 (n, 5, 160) (n, 5, 128) 

One-dimensional 
Convolutional, ReLU, one-
dimensional batch 
normalization 

7 (n, 5, 160) (n, 160) Global pooling average  

8 (n, 160) (n, 64) Batch standardization, 
Dense, ReLU 

9 (n, 80) (n, 2) Dense, Sigmoid 

TABLE III. LEARNING MODEL HYPER-PARAMETERS 

Size of 
Batch  

Length of Batch 
in Seconds 

Number of 
Epoch Learning rate 

128 160 50 0.00005 

E. Handling Drones in Chaos 
The optimized classified chaos based on the trajectories of 

the drones in the swarm were addressed in real time using the 
Poincare map from the Rössler system, with the data sample 
classified and labeled as chaos, mC. The Poincaré map was 
created by charting the function's value each time it crosses a 
specified plane in a specific direction. 

Plotting the x, y, and z coordinates every time it passes 
through the x=0 plane, where x changes from negative to 
positive. As a result, the Poincare map converts the solutions of 
the three Ordinary Differential Equations of the Rössler system 
into the coordinates that best remove such drones from the 
chaotic state. 

V. RESULT AND DISCUSSION 
The detailed results are as follows: 

A. Clustering and AECD 
The flight data from a swarm of six drones was evaluated 

using the Autoencoder and Chaos Detection algorithms, as well 
as Gaussian Mixture Models and Expectation-Minimization for 
clustering. Fig. 3 and Fig. 4 depict the clustering results for a 
swarm of drones on a specific illustrative flight test day using 

AECD and Gaussian Mixture Models. The first and second 
autoencoder components generated the distribution of data 
points in the reduced space; Fig. 3 is based on KV-GPS data, 
while Fig. 4 is based on GA data. The dimension was reduced 
to auto-decoded axes with a cumulative dispersion rate of at 
least 93% using the AECD process, and the clusters were 
discovered using Gaussian Mixture Models clustering with 
Expectation-Maximization. Fig. 4 depicts the distribution of 
data points in the reduced space formed by the autoencoder 
encoder and decoder components. A drone's data is 
disseminated in a very different way than data from other 
drones. As a result, it's reasonable to assume that data from the 
fourth drone in the swarm (Drn 4) will contain the chaotic time 
series. However, it is unclear how the clustering result is 
related to chaos, given that all data from a potentially 
problematic drone is unlikely to belong to a single cluster. The 
scatter plot for each cluster is shown in Fig. 5. This depicts the 
swarm's data point cluster. The plot aids in identifying the 
points of the root causes of chaos in a swarm, as well as the 
dependability of such points in relation to the rest of the 
swarm. Fig. 6 shows the percentage of data from each drone 
that belongs to a specific cluster. This depicts the effectiveness 
of such clusters of data points in relation to each drone in the 
swarm in order to identify the chaotic drone. 

The majority of flight data from all drones falls into 
Clusters 4 and 9, but the distributions for the swarm's fourth 
drone (Drn 4) and the other drones differ. Drn 4 differs from 
the others in the ratio of data belonging to Clusters 4 and 9, 
with significantly more data belonging to Cluster 4 than 
Cluster 9 when compared to the other drones in the swarm. 
Another intriguing discovery is that data from Drn 4, a 
potentially chaotic drone, does not belong in Clusters 1, 2, 3, or 
8. As a result, while the clustering does not indicate which 
drone may have exhibited chaotic behavior, the distribution of 
data among the clusters may indicate chaos in the flight data. 
Clusters 5, 6, and 7 may indicate chaos flight data, whereas 
Clusters 1, 2, 3, 8, and 9 indicate normal data. For the 
remainder of the clustering method, data from each drone in 
Clusters 4-6 was labeled "C," while data from Clusters 1-4, 8, 
and 9 was labeled "N." In cases of indistinct data, such as 
Cluster 3, and questionable data, such as the first drone (Drn 1) 
in Cluster 6, a human expert may examine the flight data to use 
as labeled data. 

 
Fig. 3. Autoencoder KV-GPS Set Points Data Results. 
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Fig. 4. Autoencoder GA Data Results. 

 
Fig. 5. Cluster Scatter Plot. 

 
Fig. 6. Clustering Results for Swarm Flight Data using Gaussian Mixture Models. 

B. Classification Results 
The developed Convolutional Neural Network (CNN) 

classifier was trained until its cross-entropy and loss value 
converged on the learning parameters listed in Table II. The 
data from the test flight obtained from the swarm of drones was 
used as the training set of size 43,767; 70% of this dataset was 
used for training the neural network and 30% for model 
validation. 

The dataset contains all of the drone's flight data, which 
was used to generate a test set with a size of 8,753. To validate 
the applicability of the sampling method, the test accuracy was 
equated with the variable rate of imbalance, resulting in the 

chaos data ratio versus the non-chaotic data in the initial 
dataset. If the recommended sampling is not used, chaotic 
swarm flight data is used in the learning process with the rate 
of imbalance relative to non-chaotic data. The chaos swarm 
flight dataset was replicated by the factor of the rate of inverse 
imbalance when samplings are used. The classification data 
accuracy was compared by the accurate classification out of all 
cases, which is dependent on the use of the sampling scheme to 
detect the differential imbalance of the original swarm flight 
data set. Fig. 7 compares the chaos findings of the case for the 
original rate of imbalance. This is the scenario when the 
swarm's sixth drone (Drn 6) exhibits chaotic flying behavior; 
only the sampling result clearly identifies chaos in the Drn 6 
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flight data. It is clear that the suggested sampling strategy 
significantly improves classification accuracy, achieving zero 
classification error. It should also be noted that when the 
sampling technique is not used, the classification accuracy is 
approximately 50%. One thing to keep in mind is that even 
with a higher imbalance rate of 0.5, there was no improvement 
as shown in Fig. 8. 

 
Fig. 7. Drone Imbalance Percentage (with Sampling). 

 
Fig. 8. Drone Imbalance Percentage (without Sampling). 

C. Discussion 
The proposed chaos detection methods were tested to see if 

the trained neural network classifier was useful for time series 
entry using real flight test data. If the input time series did not 
belong to the training set, the results for a sample drone flight 
test data and probability were computed [43]. The swarm flight 
test data was used, with clustering findings shown in Fig. 5 and 
Fig. 6. When the time series of the entry was constantly fed 
into the network, the neural network's output value corresponds 
to the sixth drone (Drn 6). The first output comes in response 
to the Kinematic variables [44] in the first 16 seconds segment, 
as the Convolutional Neural Network (CNN) takes a length of 
160 input at a data rate of 10 Hz. The neural network calculates 
the output in real-time in response to the most recent 160-times 
segment points. The possibility of being normal has been 
determined to fluctuate over time until it reaches zero. When 
the average was achieved over the entire duration of the swarm 
flight, the average probability value of the six drones flown in 
that swarm flight test was compared. There's a much higher 
chance that this troublesome drone will be in a state of chaos 
than usual. According to Drn 6, the time history of the film 
input variables revealed that the drone does not respond 
effectively to changes in the x- and z-direction in the 90s and 
75s, respectively; thus, the chaos detection schema revealed 
that the system cannot be normal at 85 seconds from the 

original data point, based on the behavior. Drn 6 crashed 
during the flight test, according to the original flight log. As a 
result of the application of the Rössler system's algorithm, the 
drone was sent on alternate routes assuming the chaos is in the 
trajectory flight data. This prevents drone 6 (Drn 6) from 
crashing in the test flight log. In terms of online chaos 
monitoring, the results showed that there were two extreme 
approaches to monitoring. Constant monitoring of the non-
chaotic or chaotic probability allows for a high frequency 
assessment of system chaos. This method enables effective 
responsiveness in chaos detection because it constantly delivers 
updated information about the system's normalcy. 

The output signal, on the other hand, was noticeably noisy 
during the transient period, as shown in Fig. 8. As shown, the 
average probability over the entire time duration provides a 
cooperative judgment on the system's chaos. Despite the fact 
that the decision frequency may be too low, this method may 
be the least noisy susceptible method. The non-chaotic/chaotic 
probabilities are averaged over a set period of time, and the 
dataset was then updated with new values. 

The adjacent averaging window's time frame may overlap. 
The average non-chaotic probability was computed over 30 
seconds and updated every 20 seconds, implying that one-third 
of the data is overlapped between time frames. The chaotic 
probability of 70 is around 40% in the first time segment 
window, increases to around 55% in the second time frame, 
and finally exceeds 90% in the third time window. This enables 
the chaos to be observed at a relatively high frequency while 
avoiding data noise. 

VI. CONCLUSION 
This study proposed a machine learning-based chaos 

detection and a mitigation technique for the flight paths of a 
swarm of drones. The proposed techniques consist of three 
major steps: a labeling phase that uses lower-dimensional 
features to label unlabeled data, a binary/dual classification 
step that employs a 1-D CNN with a cross-entropy-based loss 
function, and a mitigation step that employs the Rössler system 
to generate new non-chaotic trajectories for drones in chaos. 
The deep neural network was trained using real flight test data. 
In this paper, Swarm mobility horizon-based monitoring was 
demonstrated to be a viable solution for real-time monitoring 
of a system's chaos with significantly reduced commotion 
effect. This technique can be used to mitigate the effects of 
drone crashes and failures in a fully autonomous swarm of 
drones. 

A future focus will be the integration of network intrusion 
detection, monitoring, and mitigation into the overall health-
management architecture of swarm drones. This could result in 
a more reliable fully autonomous swarm of drones by 
mitigating the effects of network intrusions, which can cause 
chaos and anomaly in a swarm of drones. 
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