
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

Predicting Blocking Bugs with Machine Learning
Techniques: A Systematic Review

Selasie Aformaley Brown1, Benjamin Asubam Weyori2
Adebayo Felix Adekoya3, Patrick Kwaku Kudjo4, Solomon Mensah5

Department of Computer Science, University of Energy and Natural Resources, Sunyani-Ghana1, 2, 3
Department of Information Technology, University of Professional Studies Accra-Ghana1, 4

Department of Computer Science, University of Ghana, Legon-Ghana5

Abstract—The application of machine learning (ML) tech-
niques to predict blocking bugs have emerged for the early detec-
tion of Blocking Bugs (BBs) in software components to mitigate
the adverse effect of BBs on software release and project cost.
This study presents a systematic literature review of the trends in
the application of ML techniques in BB prediction, existing re-
search gaps, and possible research directions to serve as a refer-
ence for future research and an application insight for software
engineers. We constructed search phrases from relevant terms
and used them to extract peer-reviewed studies from the data-
bases of five famous academic publishers, namely Scopus,
SpringerLink, IEEE Xplore, ACM digital library, and Sci-
enceDirect. We included primary studies published between Jan-
uary 2012 and February 2022 that applied ML techniques to
building Blocking Bug Prediction models (BBPMs). Our result
reveals a paucity of literature on BBPMs. Also, previous re-
searchers employed ML techniques such as Decision Trees, Ran-
dom Forest, Bayes Network, XGBoost, and DNN in building ex-
isting BB prediction models. However, the publicly available
datasets for building BBPMs are significantly imbalanced. De-
spite the poor performance of the Accuracy metric where imbal-
anced datasets are concerned, some primary studies still utilized
the Accuracy metric to assess the performance of their proposed
BBPM. Further research is required to validate existing and new
BBPM on datasets of commercial software projects. Also, future
researchers should mitigate the effect of class imbalance on the
proposed BB prediction model before training a BBPM.

Keywords—Blocking bugs; systematic review; software
maintenance; bug report; reliability; machine learning

I. INTRODUCTION
Software bugs are inevitable occurrences in the develop-

ment and maintenance of software products. Hence, software
engineers rely on bug reports generated by bug tracking tools
such as Bugzilla, BugHead, and Trac to manage and resolve
errors in software components, an activity aimed at improving
and maintaining the quality of software projects. In Bugzilla,
for instance, errors encountered by a software tester or user are
logged in the bug tracking system and assigned the state NEW.
The state of the bug report then changes to ASSIGNED when
the bug is allocated to a suitable developer to resolve. Once the
bug is fixed, a developer other than the one to whom the bug
was assigned then ascertains the fixing and closes the bug re-
port. At this point, the state of the bug report changes to
CLOSED. However, the status of a bug report may remain at
the ASSIGNED state for a long time because of another bug
preventing the bug from being resolved. This type of bug is

referred to as a Blocking bug [1]. In this context, blocking bugs
are defined as bugs that prevent other bugs from being fixed.
Thus, the time for fixing such a bug depends greatly on how
long it will take to detect and resolve the blocking bug. Previ-
ous work by Valdivia-Garcia and Shihab [2] confirms that fix-
ing a BB is almost three times the amount of time needed to fix
a non-BB. Consequently, the debugging process may be im-
pacted negatively, affecting software release and increasing the
cost of software maintenance. Furthermore, Bohm et al. [3]
found that locating and fixing a bug in a software product after
the deployment stage is about 100 times more expensive than
addressing it during the early phase of the software develop-
ment life cycle. Hence, the early detection of Blocking Bugs
(BBs) in software projects is critical to software maintenance.
While there are criteria for detecting BBs in bug reports, the
method is manual and heavily reliant on the bug reporters’ and
the developer assigned’s competence in providing suitable la-
bels [1]. However, the skills of the software user or bug report-
er to accurately label a bug as BB is intrinsically in doubt,
hence the heavy dependence on the developer (i.e., to whom
the bug was assigned) to label such bugs.

Additionally, the unstructured nature of the text in some
bug reports makes the manual BB classification process by
developers laborious and error-prone. Meanwhile, large soft-
ware projects are likely to have enormous bug reports; for in-
stance, Valdivia-Garcia et al. [1] collected 609,800 bugs from
eight software projects, out of which 77,448 were blocking
bugs and 532,352 non-blocking bugs. The researchers further
discovered that manually identifying blocking bugs takes 3–18
days. Therefore, the over-reliance on software developers pro-
longs the process of identifying BBs in bug reports and is also
time-consuming as the number of bug reports increases. These
fundamental challenges present the opportunity to apply ML
techniques to predicting BBs (i.e., classifying and detecting
BBs). Although some peer-reviewed articles have been pub-
lished on using ML techniques to predict BBs [1], [2], [4]-[7],
there is a dearth of literature on the subject. For instance, a
thorough search in databases of well-known publishers such as
Scopus, SpringerLink, IEEE Xplore, ACM digital library, and
ScienceDirect produced only six papers. Unfortunately, none
of these six papers was an SLR. Yet, SLR is crucial in a specif-
ic domain of studies for discovering research questions and
rationalizing future research [8]. Even though a recent SLR[9]
on the broader topic of bug severity acknowledged BBs as a
severe bug, there has been no SLR published on the specific
area of applying ML techniques to predicting BBs since the

674 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

field was first found introduced in 2014 [1]. Thus, to promote
further research and increase the quality of literature in this
domain, a systematic review that comprehensively discusses
the existing BBPMs, research gaps, and possible research di-
rections to serve as a point of reference for research and prac-
tice is critically important. Additionally, this research will con-
tribute to a better understanding of the trends in characterizing
and predicting blocking bugs. In other words, the goal of this
study is to find out the recent trends and directions in this field
and to identify opportunities for future research by researchers
and practitioners within the software engineering domain and
also to appreciate how the research space has evolved over
time with regards to BBs. Finally, the approach presented in
this study can serve as a guide for researchers and practitioners
(e.g. Ph.D. Student, Master students) when seeking to predict
instances of bugs that are BBs based on various data miners.

Based on the aforementioned needs and motivations, in this
work, we systematically present a detailed analysis of the
trends in the application of ML techniques in BB prediction.
Thus, the study aims at answering the following five research
questions (RQs):

RQ1: What are the publication trends in BB prediction re-
search?

RQ2: Which datasets are used to train the proposed predic-
tion model?

RQ3: What kind of ML learning techniques is adopted in
building the proposed BB prediction model?

RQ4: Which evaluation criterion is used to measure the
performance of the BB prediction model?

RQ5: Which ML classifiers are used as baselines to
benchmark the proposed model?

The remainder of study is organized as follows: Section 2
describes the proposed research method, including the overall
process and the goal and research questions addressed in this
study. Section 3 discusses the findings of the meta-analysis of
the study. Section 4 presents the results of the systematic. Sec-
tion 5 summarizes and concludes the study and provides future
research directions.

II. RESEARCH METHOD
This SLR follows the software evidence-based engineering

(SEBE) guidelines proposed by kitchenham and Charters [10].
The SEBE guidelines have increasingly gained popularity and
acceptance in the software engineering research space [11]-
[16]. The SEBE provides an all-inclusive outline of how soft-
ware engineering researchers can conduct SLR using evidence-
based research and practice models. Therefore, we segmented
the SLR into four major phases with subdivisions to conform
with the prescriptions by kitchenham and Charters [10]: plan
search, search procedure, search, and report. Fig. 1 depicts the
SLR process of this study.

Fig. 1. Process Flow Diagram.

A. Phase 1: Search Plan
This phase of the SLR process presents the research ques-

tions addressed in this study and the databases where primary
studies were collected.

1) Data sources: This section captures the academic
databases and repositories where the search was conducted.
Five databases of famous academic publishers, namely
Scopus, SpringerLink, IEEE Xplore, ACM digital library, and
Science Direct, were the data sources for the collection of
primary studies for this paper. Also, a few portions of
publications were retrieved from Google Scholar to achieve
thorough coverage of article collection. Table I displays
sampled data sources and the number of results returned by
search queries in those academic databases on 18th February
2022.

B. Phase 2: Search Procedure
This phase of the SLR describes how search strings were

constructed. It also captures the inclusion and exclusion criteria
used in selecting primary studies.

TABLE I. DATA SOURCES AND SEARCH RESULTS

Data Source URL Result

Scopus https://scopus.com 61

SpringerLink https://link.springer.com 246

IEEE Xplore https://ieeexplore. ieee.org 20

ACM Digital Library https://dl.acm.org 152

ScienceDirect https://ieeexplore.ieee.org 31

Google Scholar https://scholar.google.com 169

 Total Result 679

675 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

1) Search string: Keywords were extracted from research
questions and related papers. Then synonyms and alternate
words were identified for creating search strings by using
Boolean OR for alternative words and Boolean AND for
linking search keywords. The keywords and their alternatives
are shown in Table II. The resulting search phrases were
tweaked to conform with the format required by each online
database. Table III shows the search string for each database.
Additionally, the Table IV shows the search strings per the
data sources that were used in this study.

2) Inclusion criteria: Peer-reviewed articles about
blocking bugs published in journals, conferences, technical
reports, or book chapters from 2012 to 2022 were targeted for
review. Whereas 2014 marked the first application of machine
learning to predict blocking bugs [1], 2012 was chosen as the
start date to widen the scope of our search. Also, the focus was
on publications in English that used ML to detect and classify
blocking bugs or predict a phenomenon related to blocking
bugs. Moreso, studies that constructed prediction models
based on binary data classification of blocking bugs were
selected. The authors ensured that all selected publications
reported their data source, performance evaluation, baseline
techniques, and the challenges and limitations of their studies.

3) Exclusion criteria: Mendeley [17], a reference
management software, was used to delete duplicate papers
which were 274 in number. Next, the papers that were not
peer-reviewed and for which the complete text was not
available in English were excluded. An article that was not
about blocking bugs in computer software or was not written
regarding predicting a phenomenon of blocking bugs with
machine learning was not considered. Articles were mainly
excluded based on titles and abstracts, full-text reading, and
later quality evaluation. The data sources and the
corresponding number of publications after the exclusion
criteria are captured in Table III.

TABLE II. KEYWORDS AND ALTERNATIVE WORDS/PHRASES

Keyword Alternative word/phrase

Blocking Bug (‘blocker bugs’ OR ‘severe bugs’ OR
‘Bug Severity’)

Prediction (‘Identifying’ OR ‘Classifying’ OR
‘Detection’ OR ‘Characterizing’)

Machine Learning (‘machine technique’ OR ‘method’ OR
‘model’ OR ‘algorithm’)

TABLE III. NUMBER OF PUBLICATIONS AFTER EXCLUSION CRITERIA

Data Source Number of shortlisted Publications
Scopus 2
SpringerLink 0
IEEE Xplore 3
ACM Digital Library 1
ScienceDirect 0
Google Scholar 0

Total 6

TABLE IV. SEARCH STRINGS PER DATA SOURCE

Data Source Search String

Scopus

("Blocking Bug" OR "Severe Bugs" OR
"Bug Severity" OR "Blocker Bug") AND
("Identifying" OR "Prediction" OR "Clas-
sifying" OR "Detection" OR "Characteriz-
ing") AND ("machine learning" OR
"method" OR "model" OR "algorithm")

SpringerLink

("Blocking Bug" OR "Severe Bugs" OR
"Bug Severity" OR "Blocker Bug") AND
("Identifying" OR "Prediction" OR "Clas-
sifying" OR "Detection" OR "Characteriz-
ing") AND ("machine learning" OR
"method" OR "model" OR "algorithm")

IEEE Xplore

("Blocking Bug" OR "Severe Bugs" OR
"Bug Severity" OR "Blocker Bug") AND
("Identifying" OR "Prediction" OR "Clas-
sifying" OR "Detection" OR "Characteriz-
ing") AND ("machine learning" OR
"method" OR "model" OR "algorithm")

ACM Digital Library

[[All: "blocking bug"] OR [All: "severe
bugs"] OR [All: "bug severity"] OR [All:
"blocker bug"]] AND [[All: "identify-
ing"] OR [All: "prediction"] OR [All:
"classifying"] OR [All: "detec-
tion"] OR [All: "characteriz-
ing"]] AND [[All: "machine learn-
ing"] OR [All: "method"] OR [All: "mod-
el"] OR [All: "algorithm"]]

ScienceDirect

("Blocking Bug" OR "Severe Bugs" OR
"Blocker Bug") AND ("Prediction" OR
"Classifying" OR "Detection" OR "Char-
acterizing") AND ("machine learning" OR
"algorithm")

Google Scholar

("Blocking Bug" OR "Blocker Bug")
AND ("Identifying" OR "Prediction" OR
"Classifying" OR "Detection" OR "Char-
acterizing") AND ("machine learning" OR
"method" OR "model" OR "algorithm")

C. Phase 3: Search
This phase of the SLR explains the approach adopted for

sampling relevant primary studies.

1) Study selection: To sample relevant primary studies
that meet the needs of this study, the tollgate method proposed
by Afzal et al. [16] was adopted. Fig. 2 depicts the tollgate
approach used. This approach is made up of five steps which
were traced by the authors as follows:

Step 1: Data was collected from selected online data
sources via the use of search strings generated in Table III.

Step 2: Duplicate studies were excluded using Mendeley.

Step 3: Inclusion/ exclusion criteria were applied by perus-
ing the titles and abstracts.

Step 4: Inclusion/ exclusion criteria were applied by read-
ing the introductions and conclusions.

Step 5: Inclusion/ exclusion criteria were applied by read-
ing the full text of sampled studies.

676 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

Fig. 2. The Tollgate Approach.

The search strings established in Table III were used to
collect 679 from the selected data sources for this study (i.e.
Table I) in the first step. At the end of the tollgate approach, six
primary studies [1], [4]-[7] were selected. Table VII shows the
shortlisted primary studies.

2) Quality assessment of selected studies: The purpose of
the study quality assessment was to ensure that the sampled
primary studies could adequately answer the research
questions. It also aids in interpreting findings for data analysis
and synthesis [18]. Hence, each quality criterion was
designated by the prefix ‘QC’ and a number. The QC and data
extraction activities were performed at the same time. Table V
shows a quality assurance checklist for selected primary
studies. A mathematical approach was used to assign quality
scores, as in Kitchenham [10]. Thus, attributes of the quality
criteria outlined in Table V were extracted for each primary
study and scored on how well they met the requirements. For
each attribute there are three possible values: Yes (Y) = 1
point, Partial (P) = 0.5 point, No (N) = 0 point. A study is
allocated a score of 1 if the article clearly answers the QC
question and a score of 0.5 if it partially answers the QC.
Studies that do not answer the QC questions receive a score of
0. The six QC scores were added together to get the total
quality score. As a result, the overall quality score of each
selected study ranged from 0 (extremely poor) to 6 (very
good). This approach to quality score has been widely used by
SLR researchers in the software engineering domain [14],
[19], [20], and related domains [21]. Each selected article in
this study received a score greater than 70%. This percentage
score shows that the primary studies can sufficiently answer
the research questions.

TABLE V. QUALITY CHECKLIST FOR SELECTING PRIMARY STUDIES

Serial Number QC Checklist

QC1 Does the selected study give details of the machine learn-
ing techniques applied in the study to answer RQ1?

QC2 Does the selected study give details of the dataset and the
data source used in the study to answer RQ2?

QC3
Does the selected study benchmark its results with the
performance of other prediction techniques to answer
RQ3?

QC4
Does the selected study provide information about the
performance metrics used to evaluate results to answer
RQ4?

QC5
Does the selected study report the ML classifiers used as
baselines to benchmark the proposed model to answer
RQ5?

3) Data extraction: A structured extraction form created
with Microsoft Excel was used to extract the information
needed for data synthesis. Table VI indicates the items
extracted from each primary study.

TABLE VI. DATA EXTRACTION FORM ITEMS

Data Item Description

Reference Title, Author,Type (i.e Journal/conference/workshop)

Technique ML technique was applied in building the proposed
model in the study.

Pre-processing Preprocessing methods for machine learning technique

Dataset Source of datasets used in training ML models

Evaluation Metrics used for model evaluation

Results The outcome of the model performance evaluation

Baseline Baseline techniques with which proposed models were
compared

Future works Future works proposed by the study

TABLE VII. SHORTLISTED PRIMARY STUDIES

Ref. Year Library Journal/Conference

Valdivia-
Garcia and
Shihab [23]

2014 ACM
Conference:
MSR’14, May 31 – June 1, 2014,
Hyderabad, India

Xia et al 2015 Elsevier
Journal:
Information and Software Technolo-
gy

Valdivia-
Garcia et
al[2]

2018 Elsevier Journal:
Journal of Systems and Software

Din et al. 2020 IEEE
Xplore

Conference:
2018 IEEE 42nd Annual Computer
Software and Applications Confer-
ence (COMPSAC)

Cheng et al.
[24] 2020 IEEE

Xplore

Conference:
IEEE 44th Annual Computers, Soft-
ware, and Applications Conference
(COMPSAC)

Brown et al.
[25] 2021 IEEE

Xplore

Conference:
2021 International Conference on
Cyber Security and Internet of
Things (ICSIoT)

677 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

4) Data synthesis: At this stage, the relevant extracted
data were synthesized using the thematic approach [22] to
answer the research questions outlined in Table V.

D. Phase 4: Report
The final phase of the SLR summarizes and examines the

review results. Then, in distinct sub-sections, the full summary
of the findings of this review is discussed and interpreted in
relation to the research questions.

III. FINDINGS
RQ1: What are the publication trends in BB prediction re-

search?

Our search following the SEBE SLR methodology identi-
fied six primary studies that applied ML to predicting BB. The
publication period of these studies spans from January 2014 to
February 2022. Table VII presents the selected publications,
while Fig. 3 depicts the publications over the years or distribu-
tion of primary studies. Observing Table VII, conference pub-
lications or proceedings seem to dominate the publications
over the period with four articles, while journal articles account
for two publications. This distribution further suggests the pau-
city of publications on the use of ML for predicting BBs over
the years.

RQ2: Which datasets are used to train the proposed predic-
tion model?

The performance of a machine learning technique is
heavily reliant on the quality of the dataset used in training the
prediction model. To train BBPM, all the six selected primary
studies in this work utilized datasets extracted from publicly
available bug reports about specific software projects. These
bug reports were retrieved from Bugzilla, IssueTracker, and
monorail issue tracking systems. The ones obtained from
Bugzilla are Eclipse, NetBeans, Gentoo, Fedora, Mozilla, and
NetBeans. While bug reports of Chromium and OpenOffice
were retrieved from Montrail and IssueTracker. Table IX
shows the web locations where these bug reports about the
various projects were extracted. Also, studies used bug reports
from authentic projects with actual proportions of blocking
bugs (BBs) and non-blocking bugs (Non-BBs). Table VIII and
Fig. 4 show blocking bug and non-blocking bug distribution
within the extracted datasets and the distribution of projects
from which datasets were extracted per the studies,
respectively.

From Table VIII, it is observed that the chosen primary
studies made use of at least two sets of datasets from the open-
source application domain. For instance, Ding et al. [5] validat-
ed their method on two open-source projects, namely, Mozilla
Firefox and Netbeans, which contained 132,584 bugs. 18900
were Blocking Bugs and 113,684 Non-Blocking Bugs. Also,
Cheng et al. [7] gathered a total of 214873 bugs from Eclipse,
FreeDesktop, NetBeans, and OpenOffice, of which 16,402
were Blocking Bugs. Both Valdivia-Garcia and Shihab [1] and
Xia et al. [4] selected a total of 402,962 bugs from six (6)
open-source projects (i.e. Chromium, Eclipse, FreeDesk Mozil-
la, NetBeans, and OpenOffice). 18,422 of the total bugs were
blocking bugs. Similarly, Valdivia-Garcia et al. [2] and Brown

et al. [6] mined a total of 609,800 bugs which had 77,448
blocking bugs from eight projects (i.e., Chromium, Eclipse,
FreeDesktop, Mozilla, NetBeans, OpenOffice, Gentoo, and
Fedora) in their studies. The open-source projects used by the
selected primary studies in this paper, as well as their corre-
sponding bug tracking systems, are as follows:

Fig. 3. Distribution of Primary Studies.

TABLE VIII. DISTRIBUTION OF DATASET UTILIZED BY PRIMARY STUDIES

Studies No. of
Projects Projects No. of Bbs No. of

Non-Bbs

Valdivia-
Garcia and
Shihab [1]

6

Chromium,
Eclipse,
FreeDesktop,
Mozilla, Net-
Beans, and
OpenOffice

18,422 384,540

Xia et al.
[12] 6

Chromium,
Eclipse,
FreeDesktop,
Mozilla, Net-
Beans, and
OpenOffice

18,422 384,540

Valdivia-
Garcia et al.
[11]

8

Chromium,
Eclipse,
FreeDesktop,
Mozilla, Net-
Beans,
OpenOffice,
Gentoo, and
Fedora

77,448 532,352

Cheng et al.
[14] 4

Eclipse,
FreeDesktop,
NetBeans, and
OpenOffice

34,892 229,729

Ding et al.
[13] 2 Mozilla Firefox

and Netbeans 16,402 198,471

Brown et al.
[15] 8

Chromium,
Eclipse,
FreeDesktop,
Mozilla, Net-
Beans,
OpenOffice,
Gentoo, and
Fedora

18,900 113,684

678 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

TABLE IX. SOURCES WHERE DATASETS OF OPEN-SOURCE PROJECTS WERE EXTRACTED

Project Source

Chromium https://bugs.chromium.org/p/chromium/issues/list

Eclipse https://bugs.eclipse.org/bugs/

NetBeans https://netbeans.org/bugzilla/

OpenOffice https://bz.apache.org/ooo/

Gentoo https://bugs.gentoo.org/buglist

Fedora https://bugzilla.redhat.com/ss

Mozilla https://bugzilla.mozilla.org/

free desktop https://bugzilla.freedesktop.org/

Fig. 4. Distribution of Projects Studied by the Selected Studies.

• Chromium is a popular open-source web browser de-
veloped by Google and used mainly as the codebase for
Google Chrome. C++ and C programming languages
dominate it; however, it comprises other programming
languages such as JavaScript and Python, amongst oth-
ers. Chromium has its bug tracking mechanism in
Google code, called Monorail, which has a feature
called "Blocking." The "blocking" feature can identify
if a bug is a blocking bug or not.

• Eclipse is a well-known integrated development envi-
ronment (IDE) developed mainly with Java yet supports
many programming languages, including Python, Ruby,
and C/C++. In addition, eclipse uses Bugzilla for re-
porting and tracking bugs. This issue tracking system
has a feature called "Blocks." This is used for identify-
ing a bug as a blocking bug. GNU/Linux or FreeBSD.
Gentoo also uses Bugzilla in reporting and tracking
bugs; hence the "Blocks" field identifies a blocking bug.

• Mozilla is an open-source project that hosts and devel-
ops products such as Firefox, Thunderbird, Bugzilla,
Gecko layout engine, and others. The programming
languages used in its development are C, JavaScript,
and C++. In addition, Mozilla tracks its bugs in Bugzil-
la software and uses the "Blocks" field to show if a bug
is a blocking bug.

• NetBeans is an open-source IDE for developing appli-
cations in the java programming language for Win-

dows, Mac, Linux, and Solaris. However, it supports
PHP, C, and C++, amongst others. NetBeans was de-
veloped with the Java programming language. Bugzilla
is an issue tracking system used by Netbeans; hence the
“Blocks” field indicates whether a reported bug is a
blocking bug or not.

• OpenOffice is an office suite created by Sun Microsys-
tems and is now maintained by Apache. It is maintained
with its programming language called OpenOffice.org
Basic. IssueTracker, a derivative of Bugzilla, was used
by OpenOffice when these primary studies were under-
taken. Just like Bugzilla, it has a “Blocks” feature
which indicates whether a bug is a blocking bug or not.
At the time of this study, Bugzilla had succeeded Is-
sueTracker, which was also known as IssueZilla.

Valdivia-Garcia et al. [2] and Brown et al. [6] used the
most extensive dataset with the most bugs (i.e. 609,800 bugs),
which they extracted from Chromium, Eclipse, Free Desktop,
Mozilla, NetBeans, OpenOffice, Gentoo, and Fedora. The
open-source project that most of the studies included in their
dataset is Netbeans, while Gentoo and Fedora were the least
utilized by the studies, as captured in Fig. 6. Although the six
primary studies used datasets from popular and well-supported
open-source projects with a substantial number of bug reports,
the distribution of dataset sizes in Fig. 5, coupled with the une-
qual distribution of Blocking bugs and non-blocking bugs in
Table VIII, suggests the challenge of class imbalance. Thus, in
most studies, BBs account for less than 12% of the total avail-
able dataset [2]. However, extensive research exists about the
challenges an imbalanced dataset, also referred to as the class
imbalance phenomenon [23], poses to the performance of clas-
sifiers that use them in training. Also, it is worth noting that all
the studies considered in this work used datasets related to
open-source projects; hence their findings may not apply to
closed and commercial software projects.

RQ3: What kind of ML learning techniques is adopted in
building the proposed BB prediction model?

The primary studies considered in this SLR proposed new
methods for identifying a bug as blocking bugs or non-
blocking bugs based on an existing classification technique.
Fig. 7 shows the distribution of the classification techniques
employed in the various studies.

679 | P a g e
www.ijacsa.thesai.org

https://bugs.eclipse.org/bugs/
https://netbeans.org/bugzilla/
https://bz.apache.org/ooo/
https://bugzilla.mozilla.org/
https://bugzilla.freedesktop.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

Fig. 5. Distribution of Datasets by Selected Studies.

Fig. 6. Distribution of Projects and their Frequency of use in Primary Studies.

Fig. 7. Distribution of Classification Techniques.

TABLE X. DISTRIBUTION OF ML TECHNIQUES UTILIZED BY PRIMARY
STUDIES

ML Techniques Studies

Decision trees (C4.5) Valdivia-Garcia and Shihab[1], Valdivia-Garcia
et al [11]

Ensemble learning Xia et al. [12]
Bayes Network Ding et al. [13]
Deep Learning (DNN) Brown et al. [15]
XGBoost Cheng et al. [14]

Valdivia-Garcia and Shihab [1] and Valdivia-Garcia et al.
[2] used a re-sampling technique to pre-process the training
data to resolve the data imbalance issue; non-blocking bugs
outnumber blocking bugs. Even though random forest per-
formed better in terms of F1 measure than their proposed mod-
el, which was based on Decision trees (C4.5), they recom-
mended their model as the most appropriate for practitioners.

Xia et al. [4] built a classifier called ELBlocker based on
the random forest technique. They separated the training data
into many disjoint sets and developed different classifiers,
which they then merged to identify an appropriate threshold for
classifying bugs as blocking or non-blocking. Also, Cheng et
al. [7] presented a new classification framework called
XGBlocker, consisting of two stages. XGBlocker captures
more features from bug reports in the first stage to construct an
improved dataset. In the second stage, XGBlocker employs the
XGBoost technique to build an efficient model for performing
the prediction task. Ding et al. [5] proposed a Bayes Network-
based classifier for forecasting the breakability of the blocking
bug pairs.

The classifier is identical to the Bayes Network classifier;
as the threshold lowers from 0.5 to 0, the classifier becomes

680 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

stricter and removes more boundary instances to improve pre-
cision. In Brown et al. [6], researchers proposed a DeepLabb
classifier based on deep neural networks for predicting block-
ing bugs. Three deep neural networks were developed and
trained independently, each with a different number of hidden
layers. The first DNN had two hidden layers, the second DNN
had three hidden layers, and the third DNN had four hidden
layers. Bayesian optimization was used to estimate the best
learning rate for each model. It is worth mentioning that apart
from Brown et al. [6], who employed a deep learning approach
in this domain, at the time of this work, the rest used Decision
Trees, Random Forest, Bayes Network, and XGBoost for
building Blocking bug prediction models in the selected prima-
ry studies. Table X shows the studies and the classification
techniques adopted in building their classifiers. While the most
frequently used ML technique in building BB classifiers is
based on the Decision Trees, Random Forest was reported by
two studies [1][11] to have performed better than Zero-R, Na-
ive Bayes, and KNN.

RQ4: Which evaluation criterion is used to measure the
performance of the BB prediction model?

The primary studies assessed the prediction abilities of their
proposed BB prediction model using various combinations of
evaluation metrics. Fig. 8 depicts the distribution of research
based on performance metrics. In Valdivia-Garcia and Shihab
[2], Precision, Recall, F1-Score, and Accuracy were used to
measure the effectiveness of their proposed classifier and re-
ported 9-29% precision, 47-76% recall, and 15-42% F1-Score.

The F1 score and cost-effectiveness were used to assess the
efficiency of ELBlocker in Xia et al. [12], which attained an
F1-Score up to 0.482 and EffectivenessRatio@20% scores of
0.831.In Valdivia-Garcia et al. [11], the researchers utilized
Precision, Recall, and F1-Score to evaluate the performance of
their proposed model. The proposed model achieved 13%–45%
precision, 47%–66% Recall, and 21%–54% F1-Score. Ding et
al. [13] used ROC Area, Accuracy, F1-Score, Recall, and Pre-
cision to assess the efficiency of the classifier they recom-
mended. In Mozilla Firefox the proposed BayesNet model
achieved 0.629, 0.729, 0.676, 0.831, and 76.54 % for Precision,
Recall, F-measure, Roc Area, and Accuracy, respectively.
However, it recorded Precision, Recall, F-measure, Roc Area,
and Accuracy of 0.488, 0.583, 0.531, 0.764, and 73.45%, re-
spectively, in the case of the NetBeans dataset. To compare the
performance of XGBlocker to other classifiers, Cheng et al.
[14] employed AUC, Cost-Effectiveness, and F1-Score.
XGBlocker reported an F1-score of 0.808, ER@20% of 0.944,
and AUC of 0.975.

Brown et al [15] used MCC, F1, and AUC to compare
DeepLaBB with other classifiers. DeepLaBB recorded an
MCC of 0.8504%, F1 Score of 0.4292%, and AUC of
2.9459%.

The following is a summary of the various performance
metrics used in the primary studies considered in this work:

Fig. 8. Performance Metrics and the Corresponding Number of Primary

Studies.

Accuracy refers to the proportion of correctly categorized
instances to the total number of instances. It can be calculated
using the formula below with the aid of True positives (TP),
False negative (FN), False positives (FP), and True negative
(TN) extracted from the confusion matrix.

Accuracy= (TP+TN)/ (TP+FP+ TN+ FN)

MCC refers to Matthew’s Correlation Coefficient. To
measure the quality of binary categorization, MCC examines
all true and false positives and negatives [29]. It can be com-
puted as:

MCC= (TP*TN-FP*FN)/√ ((TP+FP) (TP+FN) (TN+FP)
(TN+FN))

Recall is the ratio of accurately categorized positive cases
to the total number of positive instances. Recall can be calcu-
lated as:

Recall= TP/ (TP+FN)

Precision is a measure of the proportion of correctly catego-
rized positive instances among all positive samples. It can be
computed as follows:

Precision= TP/ (TP+FP)

F1-Score if the harmonic mean of precision and recall. F1's
best value is 1, and its worst value is 0. It can be represented
mathematically as:

F1-Score= (2*Precision*Recall)/ (Precision Recall)

The AUC-ROC refers to AUC (Area under Curve)-ROC
(Receiver Operating Characteristic). It is a trade-off between
the True Positive Rate (TPR) and the False Positive Rate (FPR)
and represents the classifier's ability to predict classes
correctly.

It can be generated by charting TPR (True Positive Rate),
i.e., Sensitivity or recall vs. FPR (False Positive Rate), i.e., 1-
Specificity, at different threshold values.

681 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

Cost-Effectiveness [24] is a cost-sensitive indicator of pre-
diction performance. It assesses a method's prediction perfor-
mance under a cost limit. Even though research findings [25]
discourage the use of Accuracy for evaluating classifiers
trained with an imbalanced dataset, Valdivia-Garcia and
Shihab [1] and Ding et al. [24] employed Accuracy in their
works; the F1 score is the most common evaluation metric
utilized among the studies in this SLR, followed by Precision
and Recall. The least common measure employed is cost-
effectiveness.

RQ5: Which ML classifiers are used as baselines to
benchmark the proposed model?

The studies considered in this work compared the perfor-
mance of proposed BB prediction models to baseline tech-
niques to assess their efficacy. Fig 8 shows the baselines to
which the proposed techniques were compared. After review-
ing the primary studies in this work, it can be concluded that
the proposed BB prediction models outperformed individual
baseline classifiers in the vast majority of cases at the time of
this study. The C4.5 Decision tree algorithm-based BB predic-
tion model proposed in Valdivia-Garcia and Shihab [1] and
Valdivia-Garcia et al. [2] performed better than Naive Bayes,
kNN, and Zero-R baselines.

The C4.5 based model was chosen over the random forest
because it is an explainable model that practitioners can easily
understand. To forecast the possibility of a blocking bug, Xia et
al. [4] used an ensemble of various classifiers. The ELBlocker
showed a significant improvement compared with Valdivia-
Garcia and Shihab's methods [1], SMOTE, one-sided selection
(OSS), and bagging. In Cheng et al. [7], the proposed
XGBlocker was compared with Gradient Boosting Decision
Tree (GBDT), AdaBoost, ELBlocker, XGB_14, CART, Lo-
gistic Regression, and Valdivia-Garcia and Shihab’s approach-
es. The proposed method displayed superior performance in all
instances. Ding et al. [5] offered a method for describing and
forecasting the breakability of the blocked bug pairs, which
performed better compared with the Zero-R Classifier's per-
formance, Naïve Bayes, BayesNet, KNN, and Random Forest.
Brown et al. [6] introduced DeepLaBB for predicting blocking
bugs in open-source projects. DeepLaBB showed improved
performance compared with the performance of Random For-
est, KNN, CART, and ANN on the same datasets. The perfor-
mance of proposed BB predicting models was compared with
that of base classifiers such as RF, KNN, NB, Zero classifier,
and Valdivia-Garcia and Shihab's approaches in the majority of
the research articles. Generally, the choice of baseline varied
from one study to another. However, as shown in Fig. 9, RF
was the most utilized baseline classifier in most studies, closely
followed by KNN. Even though most of the proposed BB pre-
diction models in the various studies performed better than the
baseline classifiers, some BB prediction models have not im-
proved performance compared with traditional classifiers. For
instance, in Valdivia-Garcia and Shihab [1], when it comes to
chromium and Eclipse data sets, the proposed model had recall
values of 49% and 47%, slightly below the 50% recall value of
the baseline. In the same paper, random forest performed better
than the proposed model in precision across all project datasets.
Also, Zero-R outperformed all the classifiers in terms of Accu-
racy. Similarly, in Valdivia-Garcia et al. [1], the Zero-R model

had the highest Accuracy across all project datasets except for
Fedora. Also, in Brown et al. [6], a baseline classifier, Random
Forest, performed better than the proposed DeepLaBB in the
FreeDesktop dataset in terms of MCC and F1-Score.

Fig. 9. Distribution of Baseline Classifiers and Primary Studies.

IV. SUMMARY
This SLR traced the research advances in applying ML

techniques to predict Blocking Bugs. After a rigorous analysis
of the most pertinent research papers published between Janu-
ary 2012 to February 2022 in the databases of five famous aca-
demic publishers, namely Scopus, SpringerLink, IEEE Xplore,
ACM digital library, and Science Direct, six (6) BB primary
papers/studies were identified and reviewed. The findings re-
garding the research trend, variety of proposed ML techniques,
baseline classifiers, evaluation metrics, and sources of datasets
for predicting BBs during this study are captured in Fig. 3,
Table X, Fig. 9, Fig. 8, and Table IX, respectively. The existing
studies confirm that proposed ML techniques (i.e. BBPMs)
significantly improve the detection of BBs in software bug
reports and that they generally outperform the traditional clas-
sifiers. Also, this study concludes that there is a paucity of lit-
erature on the application of ML to BB prediction. Further re-
search is required to validate existing and new prediction mod-
els on bug reports of commercial or closed software projects.
In addition, new researchers should explore the effect of pa-
rameter tuning and the efficiency of ML approaches such as
deep learning and ensemble learning in improving the classifi-
cation of BBs. Furthermore, before training a classifier, re-
searchers should take steps to mitigate the effect of class im-
balance on the proposed BB prediction model.

REFERENCES
[1] H. Valdivia Garcia and E. Shihab, "Characterizing and predicting block-

ing bugs in open source projects," in Proceedings of the 11th working
conference on mining software repositories, 2014, pp. 72-81.

[2] H. Valdivia-Garcia, E. Shihab, and M. Nagappan, "Characterizing and
predicting blocking bugs in open source projects," Journal of Systems
and Software, vol. 143, pp. 44-58, 2018.

[3] B. W. Boehm, "Software engineering economics," in Software pioneers,
ed: Springer, 2002, pp. 641-686.

[4] X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang, "Elblocker: Predicting
blocking bugs with ensemble imbalance learning," Information and
Software Technology, vol. 61, pp. 93-106, 2015.

[5] H. Ding, W. Ma, L. Chen, Y. Zhou, and B. Xu, "Predicting the breaka-
bility of blocking bug pairs," in 2018 IEEE 42nd Annual Computer

682 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

Software and Applications Conference (COMPSAC), 2018, pp. 219-
228.

[6] S. A. Brown, B. A. Weyori, A. F. Adekoya, P. K. Kudjo, S. Mensah, and
S. Abedu, "DeepLaBB: A Deep Learning Framework for Blocking
Bugs," in 2021 International Conference on Cyber Security and Internet
of Things (ICSIoT), 2021, pp. 22-25.

[7] X. Cheng, N. Liu, L. Guo, Z. Xu, and T. Zhang, "Blocking Bug Predic-
tion Based on XGBoost with Enhanced Features," in 2020 IEEE 44th
Annual Computers, Software, and Applications Conference
(COMPSAC), 2020, pp. 902-911.

[8] P. V. Torres-Carrión, C. S. González-González, S. Aciar, and G.
Rodríguez-Morales, "Methodology for systematic literature review ap-
plied to engineering and education," in 2018 IEEE Global engineering
education conference (EDUCON), 2018, pp. 1364-1373.

[9] L. A. F. Gomes, R. da Silva Torres, and M. L. Côrtes, "Bug report sever-
ity level prediction in open source software: A survey and research op-
portunities," Information and software technology, vol. 115, pp. 58-78,
2019.

[10] B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner, M.
Niazi, et al., "Systematic literature reviews in software engineering–a
tertiary study," Information and software technology, vol. 52, pp. 792-
805, 2010.

[11] M. Niazi, A. M. Saeed, M. Alshayeb, S. Mahmood, and S. Zafar, "A
maturity model for secure requirements engineering," Computers & Se-
curity, vol. 95, p. 101852, 2020.

[12] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou, "Varia-
bility in software systems—a systematic literature review," IEEE Trans-
actions on Software Engineering, vol. 40, pp. 282-306, 2013.

[13] M. Ilyas, S. U. Khan, and N. Rashid, "Empirical validation of software
integration practices in global software development," SN Computer
Science, vol. 1, pp. 1-23, 2020.

[14] R. Hoda, N. Salleh, J. Grundy, and H. M. Tee, "Systematic literature
reviews in agile software development: A tertiary study," Information
and software technology, vol. 85, pp. 60-70, 2017.

[15] V. Garousi, G. Giray, E. Tüzün, C. Catal, and M. Felderer, "Aligning
software engineering education with industrial needs: A meta-analysis,"
Journal of Systems and Software, vol. 156, pp. 65-83, 2019.

[16] J. dos Santos, L. E. G. Martins, V. A. de Santiago Júnior, L. V. Povoa,
and L. B. R. dos Santos, "Software requirements testing approaches: a
systematic literature review," Requirements Engineering, vol. 25, pp.
317-337, 2020.

[17] “Search | Mendeley.” https://www.mendeley.com/search/ (accessed Apr.
04.

[18] B. Kitchenham and S. Charters, "Guidelines for performing systematic
literature reviews in software engineering," 2007.

[19] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. r. Mahrin, "A system-
atic literature review of software requirements prioritization research,"
Information and software technology, vol. 56, pp. 568-585, 2014.

[20] M. Goulão, V. Amaral, and M. Mernik, "Quality in model-driven engi-
neering: a tertiary study," Software Quality Journal, vol. 24, pp. 601-
633, 2016.

[21] A. Qazi and N. A. Fayaz Hussain, "Rahim, Glenn Hardaker, Daniyal
Alghazzawi, Khaled Shaban, Khalid Haruna 2019," Towards Sustaina-
ble Energy: A Systematic Review of Renewable Energy Sources, Tech-
nologies, and Public Opinions," IEEE Access, vol. 7, pp. 63837-63851.

[22] D. S. Cruzes and T. Dyba, "Recommended steps for thematic synthesis
in software engineering," in 2011 international symposium on empirical
software engineering and measurement, 2011, pp. 275-284.

[23] H. He, "Member, IEEE, and Edwardo A. Garcia," Learning from Imbal-
anced Data,"" IEEE Transactions on knowledge and data engineering,
vol. 21, pp. 1041-4347, 2009.

[24] F. Rahman and P. Devanbu, "How, and why, process metrics are better,"
in 2013 35th International Conference on Software Engineering (ICSE),
2013, pp. 432-441.

[25] T. Menzies, J. DiStefano, A. Orrego, and R. Chapman, "Assessing pre-
dictors of software defects," in Proc. Workshop Predictive Software
Models, 2004.

683 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Research Method
	A. Phase 1: Search Plan
	1) Data sources: This section captures the academic databases and repositories where the search was conducted. Five databases of famous academic publishers, namely Scopus, SpringerLink, IEEE Xplore, ACM digital library, and Science Direct, were the data so�

	B. Phase 2: Search Procedure
	1) Search string: Keywords were extracted from research questions and related papers. Then synonyms and alternate words were identified for creating search strings by using Boolean OR for alternative words and Boolean AND for linking search keywords. The �
	2) Inclusion criteria: Peer-reviewed articles about blocking bugs published in journals, conferences, technical reports, or book chapters from 2012 to 2022 were targeted for review. Whereas 2014 marked the first application of machine learning to predict b�
	3) Exclusion criteria: Mendeley [17], a reference management software, was used to delete duplicate papers which were 274 in number. Next, the papers that were not peer-reviewed and for which the complete text was not available in English were excluded. An�

	C. Phase 3: Search
	1) Study selection: To sample relevant primary studies that meet the needs of this study, the tollgate method proposed by Afzal et al. [16] was adopted. Fig. 2 depicts the tollgate approach used. This approach is made up of five steps which were traced by �
	2) Quality assessment of selected studies: The purpose of the study quality assessment was to ensure that the sampled primary studies could adequately answer the research questions. It also aids in interpreting findings for data analysis and synthesis [18]�
	3) Data extraction: A structured extraction form created with Microsoft Excel was used to extract the information needed for data synthesis. Table VI indicates the items extracted from each primary study.
	4) Data synthesis: At this stage, the relevant extracted data were synthesized using the thematic approach [22] to answer the research questions outlined in Table V.

	D. Phase 4: Report

	III. Findings
	IV. Summary
	References

