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Abstract—The application of machine learning (ML) tech-
niques to predict blocking bugs have emerged for the early detec-
tion of Blocking Bugs (BBs) in software components to mitigate 
the adverse effect of BBs on software release and project cost. 
This study presents a systematic literature review of the trends in 
the application of ML techniques in BB prediction, existing re-
search gaps, and possible research directions to serve as a refer-
ence for future research and an application insight for software 
engineers. We constructed search phrases from relevant terms 
and used them to extract peer-reviewed studies from the data-
bases of five famous academic publishers, namely Scopus, 
SpringerLink, IEEE Xplore, ACM digital library, and Sci-
enceDirect. We included primary studies published between Jan-
uary 2012 and February 2022 that applied ML techniques to 
building Blocking Bug Prediction models (BBPMs). Our result 
reveals a paucity of literature on BBPMs. Also, previous re-
searchers employed ML techniques such as Decision Trees, Ran-
dom Forest, Bayes Network, XGBoost, and DNN in building ex-
isting BB prediction models. However, the publicly available 
datasets for building BBPMs are significantly imbalanced. De-
spite the poor performance of the Accuracy metric where imbal-
anced datasets are concerned, some primary studies still utilized 
the Accuracy metric to assess the performance of their proposed 
BBPM. Further research is required to validate existing and new 
BBPM on datasets of commercial software projects. Also, future 
researchers should mitigate the effect of class imbalance on the 
proposed BB prediction model before training a BBPM. 

Keywords—Blocking bugs; systematic review; software 
maintenance; bug report; reliability; machine learning 

I. INTRODUCTION 
Software bugs are inevitable occurrences in the develop-

ment and maintenance of software products. Hence, software 
engineers rely on bug reports generated by bug tracking tools 
such as Bugzilla, BugHead, and Trac to manage and resolve 
errors in software components, an activity aimed at improving 
and maintaining the quality of software projects. In Bugzilla, 
for instance, errors encountered by a software tester or user are 
logged in the bug tracking system and assigned the state NEW. 
The state of the bug report then changes to ASSIGNED when 
the bug is allocated to a suitable developer to resolve. Once the 
bug is fixed, a developer other than the one to whom the bug 
was assigned then ascertains the fixing and closes the bug re-
port. At this point, the state of the bug report changes to 
CLOSED. However, the status of a bug report may remain at 
the ASSIGNED state for a long time because of another bug 
preventing the bug from being resolved. This type of bug is 

referred to as a Blocking bug [1]. In this context, blocking bugs 
are defined as bugs that prevent other bugs from being fixed. 
Thus, the time for fixing such a bug depends greatly on how 
long it will take to detect and resolve the blocking bug. Previ-
ous work by Valdivia-Garcia and Shihab [2] confirms that fix-
ing a BB is almost three times the amount of time needed to fix 
a non-BB. Consequently, the debugging process may be im-
pacted negatively, affecting software release and increasing the 
cost of software maintenance. Furthermore, Bohm et al. [3] 
found that locating and fixing a bug in a software product after 
the deployment stage is about 100 times more expensive than 
addressing it during the early phase of the software develop-
ment life cycle. Hence, the early detection of Blocking Bugs 
(BBs) in software projects is critical to software maintenance. 
While there are criteria for detecting BBs in bug reports, the 
method is manual and heavily reliant on the bug reporters’ and 
the developer assigned’s competence in providing suitable la-
bels [1]. However, the skills of the software user or bug report-
er to accurately label a bug as BB is intrinsically in doubt, 
hence the heavy dependence on the developer (i.e., to whom 
the bug was assigned) to label such bugs. 

Additionally, the unstructured nature of the text in some 
bug reports makes the manual BB classification process by 
developers laborious and error-prone. Meanwhile, large soft-
ware projects are likely to have enormous bug reports; for in-
stance, Valdivia-Garcia et al. [1] collected 609,800 bugs from 
eight software projects, out of which 77,448 were blocking 
bugs and 532,352 non-blocking bugs. The researchers further 
discovered that manually identifying blocking bugs takes 3–18 
days. Therefore, the over-reliance on software developers pro-
longs the process of identifying BBs in bug reports and is also 
time-consuming as the number of bug reports increases. These 
fundamental challenges present the opportunity to apply ML 
techniques to predicting BBs (i.e., classifying and detecting 
BBs). Although some peer-reviewed articles have been pub-
lished on using ML techniques to predict BBs [1], [2], [4]-[7], 
there is a dearth of literature on the subject. For instance, a 
thorough search in databases of well-known publishers such as 
Scopus, SpringerLink, IEEE Xplore, ACM digital library, and 
ScienceDirect produced only six papers. Unfortunately, none 
of these six papers was an SLR. Yet, SLR is crucial in a specif-
ic domain of studies for discovering research questions and 
rationalizing future research [8].  Even though a recent SLR[9] 
on the broader topic of bug severity acknowledged  BBs as a 
severe bug,  there has been no SLR published on the specific 
area of applying ML techniques to predicting BBs since the 
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field was first found introduced in 2014 [1]. Thus, to promote 
further research and increase the quality of literature in this 
domain, a systematic review that comprehensively discusses 
the existing BBPMs, research gaps, and possible research di-
rections to serve as a point of reference for research and prac-
tice is critically important. Additionally, this research will con-
tribute to a better understanding of the trends in characterizing 
and predicting blocking bugs. In other words, the goal of this 
study is to find out the recent trends and directions in this field 
and to identify opportunities for future research by researchers 
and practitioners within the software engineering domain and 
also to appreciate how the research space has evolved over 
time with regards to BBs. Finally, the approach presented in 
this study can serve as a guide for researchers and practitioners 
(e.g. Ph.D. Student, Master students) when seeking to predict 
instances of bugs that are BBs based on various data miners. 

Based on the aforementioned needs and motivations, in this 
work, we systematically present a detailed analysis of the 
trends in the application of ML techniques in BB prediction. 
Thus, the study aims at answering the following five research 
questions (RQs): 

RQ1: What are the publication trends in BB prediction re-
search?  

RQ2: Which datasets are used to train the proposed predic-
tion model? 

RQ3: What kind of ML learning techniques is adopted in 
building the proposed BB prediction model? 

RQ4: Which evaluation criterion is used to measure the 
performance of the BB prediction model? 

RQ5: Which ML classifiers are used as baselines to 
benchmark the proposed model? 

The remainder of study is organized as follows: Section 2 
describes the proposed research method, including the overall 
process and the goal and research questions addressed in this 
study. Section 3 discusses the findings of the meta-analysis of 
the study. Section 4 presents the results of the systematic. Sec-
tion 5 summarizes and concludes the study and provides future 
research directions. 

II. RESEARCH METHOD 
This SLR follows the software evidence-based engineering 

(SEBE) guidelines proposed by kitchenham and Charters [10]. 
The SEBE guidelines have increasingly gained popularity and 
acceptance in the software engineering research space [11]-
[16]. The SEBE provides an all-inclusive outline of how soft-
ware engineering researchers can conduct SLR using evidence-
based research and practice models. Therefore, we segmented 
the SLR into four major phases with subdivisions to conform 
with the prescriptions by kitchenham and Charters [10]: plan 
search, search procedure, search, and report. Fig. 1 depicts the 
SLR process of this study. 

 
Fig. 1. Process Flow Diagram. 

A. Phase 1: Search Plan 
This phase of the SLR process presents the research ques-

tions addressed in this study and the databases where primary 
studies were collected. 

1) Data sources: This section captures the academic 
databases and repositories where the search was conducted. 
Five databases of famous academic publishers, namely 
Scopus, SpringerLink, IEEE Xplore, ACM digital library, and 
Science Direct, were the data sources for the collection of 
primary studies for this paper. Also, a few portions of 
publications were retrieved from Google Scholar to achieve 
thorough coverage of article collection. Table I displays 
sampled data sources and the number of results returned by 
search queries in those academic databases on 18th February 
2022. 

B. Phase 2: Search Procedure 
This phase of the SLR describes how search strings were 

constructed. It also captures the inclusion and exclusion criteria 
used in selecting primary studies. 

TABLE I. DATA SOURCES AND SEARCH RESULTS 

Data Source URL Result 

Scopus https://scopus.com 61 

SpringerLink https://link.springer.com 246 

   

IEEE Xplore https://ieeexplore. ieee.org 20 

ACM Digital Library https://dl.acm.org 152 

ScienceDirect https://ieeexplore.ieee.org 31 

Google Scholar https://scholar.google.com 169 

 Total Result 679 
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1) Search string: Keywords were extracted from research 
questions and related papers. Then synonyms and alternate 
words were identified for creating search strings by using 
Boolean OR for alternative words and Boolean AND for 
linking search keywords. The keywords and their alternatives 
are shown in Table II. The resulting search phrases were 
tweaked to conform with the format required by each online 
database. Table III shows the search string for each database. 
Additionally, the Table IV shows the search strings per the 
data sources that were used in this study. 

2) Inclusion criteria: Peer-reviewed articles about 
blocking bugs published in journals, conferences, technical 
reports, or book chapters from 2012 to 2022 were targeted for 
review. Whereas 2014 marked the first application of machine 
learning to predict blocking bugs [1], 2012 was chosen as the 
start date to widen the scope of our search. Also, the focus was 
on publications in English that used ML to detect and classify 
blocking bugs or predict a phenomenon related to blocking 
bugs. Moreso, studies that constructed prediction models 
based on binary data classification of blocking bugs were 
selected. The authors ensured that all selected publications 
reported their data source, performance evaluation, baseline 
techniques, and the challenges and limitations of their studies. 

3) Exclusion criteria: Mendeley [17], a reference 
management software, was used to delete duplicate papers 
which were 274 in number. Next, the papers that were not 
peer-reviewed and for which the complete text was not 
available in English were excluded. An article that was not 
about blocking bugs in computer software or was not written 
regarding predicting a phenomenon of blocking bugs with 
machine learning was not considered. Articles were mainly 
excluded based on titles and abstracts, full-text reading, and 
later quality evaluation. The data sources and the 
corresponding number of publications after the exclusion 
criteria are captured in Table III. 

TABLE II. KEYWORDS AND ALTERNATIVE WORDS/PHRASES 

Keyword Alternative word/phrase 

Blocking Bug (‘blocker bugs’ OR ‘severe bugs’ OR 
‘Bug Severity’) 

Prediction (‘Identifying’ OR ‘Classifying’ OR 
‘Detection’ OR ‘Characterizing’) 

Machine Learning (‘machine technique’ OR ‘method’ OR 
‘model’ OR ‘algorithm’) 

TABLE III. NUMBER OF PUBLICATIONS AFTER EXCLUSION CRITERIA 

Data Source Number of shortlisted Publications 
Scopus 2 
SpringerLink 0 
IEEE Xplore 3 
ACM Digital Library 1 
ScienceDirect 0 
Google Scholar 0 

Total 6 

TABLE IV. SEARCH STRINGS PER DATA SOURCE 

Data Source Search String 

Scopus 

("Blocking Bug" OR "Severe Bugs" OR 
"Bug Severity" OR "Blocker Bug") AND 
("Identifying" OR "Prediction" OR "Clas-
sifying" OR "Detection" OR "Characteriz-
ing" ) AND ("machine learning" OR 
"method" OR "model" OR "algorithm") 

SpringerLink 

("Blocking Bug" OR "Severe Bugs" OR 
"Bug Severity" OR "Blocker Bug") AND 
("Identifying" OR "Prediction" OR "Clas-
sifying" OR "Detection" OR "Characteriz-
ing" ) AND ("machine learning" OR 
"method" OR "model" OR "algorithm") 

IEEE Xplore 

("Blocking Bug" OR "Severe Bugs" OR 
"Bug Severity" OR "Blocker Bug") AND 
("Identifying" OR "Prediction" OR "Clas-
sifying" OR "Detection" OR "Characteriz-
ing" ) AND ("machine learning" OR 
"method" OR "model" OR "algorithm") 

ACM Digital Library 

[[All: "blocking bug"] OR [All: "severe 
bugs"] OR [All: "bug severity"] OR [All: 
"blocker bug"]] AND [[All: "identify-
ing"] OR [All: "prediction"] OR [All: 
"classifying"] OR [All: "detec-
tion"] OR [All: "characteriz-
ing"]] AND [[All: "machine learn-
ing"] OR [All: "method"] OR [All: "mod-
el"] OR [All: "algorithm"]] 

ScienceDirect 

("Blocking Bug" OR "Severe Bugs" OR 
"Blocker Bug") AND ("Prediction" OR 
"Classifying" OR "Detection" OR "Char-
acterizing" ) AND ("machine learning" OR 
"algorithm") 

Google Scholar 

("Blocking Bug" OR  "Blocker Bug") 
AND ("Identifying" OR "Prediction" OR 
"Classifying" OR "Detection" OR "Char-
acterizing" ) AND ("machine learning" OR 
"method" OR "model" OR "algorithm") 

C. Phase 3: Search 
This phase of the SLR explains the approach adopted for 

sampling relevant primary studies. 

1) Study selection: To sample relevant primary studies 
that meet the needs of this study, the tollgate method proposed 
by Afzal et al. [16] was adopted. Fig. 2 depicts the tollgate 
approach used. This approach is made up of five steps which 
were traced by the authors as follows: 

Step 1: Data was collected from selected online data 
sources via the use of search strings generated in Table III. 

Step 2: Duplicate studies were excluded using Mendeley. 

Step 3: Inclusion/ exclusion criteria were applied by perus-
ing the titles and abstracts. 

Step 4: Inclusion/ exclusion criteria were applied by read-
ing the introductions and conclusions. 

Step 5: Inclusion/ exclusion criteria were applied by read-
ing the full text of sampled studies. 
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Fig. 2. The Tollgate Approach. 

The search strings established in Table III were used to 
collect 679 from the selected data sources for this study (i.e. 
Table I) in the first step. At the end of the tollgate approach, six 
primary studies [1], [4]-[7] were selected. Table VII shows the 
shortlisted primary studies. 

2) Quality assessment of selected studies: The purpose of 
the study quality assessment was to ensure that the sampled 
primary studies could adequately answer the research 
questions. It also aids in interpreting findings for data analysis 
and synthesis [18]. Hence, each quality criterion was 
designated by the prefix ‘QC’ and a number. The QC and data 
extraction activities were performed at the same time. Table V 
shows a quality assurance checklist for selected primary 
studies. A mathematical approach was used to assign quality 
scores, as in Kitchenham [10]. Thus, attributes of the quality 
criteria outlined in Table V were extracted for each primary 
study and scored on how well they met the requirements. For 
each attribute there are three possible values:  Yes (Y) = 1 
point, Partial (P) = 0.5 point, No (N) = 0 point. A study is 
allocated a score of 1 if the article clearly answers the QC 
question and a score of 0.5 if it partially answers the QC. 
Studies that do not answer the QC questions receive a score of 
0. The six QC scores were added together to get the total 
quality score. As a result, the overall quality score of each 
selected study ranged from 0 (extremely poor) to 6 (very 
good). This approach to quality score has been widely used by 
SLR researchers in the software engineering domain [14], 
[19], [20], and related domains [21]. Each selected article in 
this study received a score greater than 70%. This percentage 
score shows that the primary studies can sufficiently answer 
the research questions. 

TABLE V. QUALITY CHECKLIST FOR SELECTING PRIMARY STUDIES 

Serial Number QC Checklist 

QC1 Does the selected study give details of the machine learn-
ing techniques applied in the study to answer RQ1? 

QC2 Does the selected study give details of the dataset and the 
data source used in the study to answer RQ2? 

QC3 
Does the selected study benchmark its results with the 
performance of other prediction techniques to answer 
RQ3? 

QC4 
Does the selected study provide information about the 
performance metrics used to evaluate results to answer 
RQ4? 

QC5 
Does the selected study report the ML classifiers used as 
baselines to benchmark the proposed model to answer 
RQ5? 

3) Data extraction: A structured extraction form created 
with Microsoft Excel was used to extract the information 
needed for data synthesis. Table VI indicates the items 
extracted from each primary study. 

TABLE VI. DATA EXTRACTION FORM ITEMS 

Data Item Description 

Reference Title, Author,Type (i.e Journal/conference/workshop) 

Technique ML technique was applied in building the proposed 
model in the study. 

Pre-processing  Preprocessing methods for machine learning technique 

Dataset Source of datasets used in training ML models 

Evaluation Metrics used for model evaluation 

Results The outcome of the model performance evaluation 

Baseline Baseline techniques with which proposed models were 
compared 

Future works Future works proposed by the study 

TABLE VII. SHORTLISTED PRIMARY STUDIES 

Ref. Year Library Journal/Conference  

Valdivia-
Garcia and 
Shihab [23] 

2014 ACM 
Conference:  
MSR’14, May 31 – June 1, 2014, 
Hyderabad, India 

Xia et al         2015 Elsevier 
Journal:  
Information and Software Technolo-
gy 

Valdivia-
Garcia et 
al[2] 

2018 Elsevier Journal: 
Journal of Systems and Software 

Din et al.  2020 IEEE 
Xplore 

Conference: 
2018 IEEE 42nd Annual Computer 
Software and Applications Confer-
ence (COMPSAC) 

Cheng et al. 
[24] 2020 IEEE 

Xplore 

Conference: 
IEEE 44th Annual Computers, Soft-
ware, and Applications Conference 
(COMPSAC) 

Brown et al. 
[25] 2021 IEEE 

Xplore 

Conference: 
2021 International Conference on 
Cyber Security and Internet of 
Things (ICSIoT) 
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4) Data synthesis: At this stage, the relevant extracted 
data were synthesized using the thematic approach [22] to 
answer the research questions outlined in Table V. 

D. Phase 4: Report 
The final phase of the SLR summarizes and examines the 

review results. Then, in distinct sub-sections, the full summary 
of the findings of this review is discussed and interpreted in 
relation to the research questions. 

III. FINDINGS 
RQ1: What are the publication trends in BB prediction re-

search? 

Our search following the SEBE SLR methodology identi-
fied six primary studies that applied ML to predicting BB. The 
publication period of these studies spans from January 2014 to 
February 2022. Table VII presents the selected publications, 
while Fig. 3 depicts the publications over the years or distribu-
tion of primary studies. Observing Table VII, conference pub-
lications or proceedings seem to dominate the publications 
over the period with four articles, while journal articles account 
for two publications. This distribution further suggests the pau-
city of publications on the use of ML for predicting BBs over 
the years. 

RQ2: Which datasets are used to train the proposed predic-
tion model? 

The performance of a machine learning technique is 
heavily reliant on the quality of the dataset used in training the 
prediction model. To train BBPM, all the six selected primary 
studies in this work utilized datasets extracted from publicly 
available bug reports about specific software projects. These 
bug reports were retrieved from Bugzilla, IssueTracker, and 
monorail issue tracking systems. The ones obtained from 
Bugzilla are Eclipse, NetBeans, Gentoo, Fedora, Mozilla, and 
NetBeans. While bug reports of Chromium and OpenOffice 
were retrieved from Montrail and IssueTracker. Table IX 
shows the web locations where these bug reports about the 
various projects were extracted. Also, studies used bug reports 
from authentic projects with actual proportions of blocking 
bugs (BBs) and non-blocking bugs (Non-BBs). Table VIII and 
Fig. 4 show blocking bug and non-blocking bug distribution 
within the extracted datasets and the distribution of projects 
from which datasets were extracted per the studies, 
respectively. 

From Table VIII, it is observed that the chosen primary 
studies made use of at least two sets of datasets from the open-
source application domain. For instance, Ding et al. [5] validat-
ed their method on two open-source projects, namely, Mozilla 
Firefox and Netbeans, which contained 132,584 bugs. 18900 
were Blocking Bugs and 113,684 Non-Blocking Bugs. Also, 
Cheng et al. [7] gathered a total of 214873 bugs from Eclipse, 
FreeDesktop, NetBeans, and OpenOffice, of which 16,402 
were Blocking Bugs. Both Valdivia-Garcia and Shihab [1] and 
Xia et al. [4] selected a total of 402,962 bugs from six (6) 
open-source projects (i.e. Chromium, Eclipse, FreeDesk Mozil-
la, NetBeans, and OpenOffice). 18,422 of the total bugs were 
blocking bugs.  Similarly, Valdivia-Garcia et al. [2] and Brown 

et al. [6] mined a total of 609,800 bugs which had 77,448 
blocking bugs from eight projects (i.e., Chromium, Eclipse, 
FreeDesktop, Mozilla, NetBeans, OpenOffice, Gentoo, and 
Fedora) in their studies. The open-source projects used by the 
selected primary studies in this paper, as well as their corre-
sponding bug tracking systems, are as follows: 

 
Fig. 3. Distribution of Primary Studies. 

TABLE VIII. DISTRIBUTION OF DATASET UTILIZED BY PRIMARY STUDIES 

Studies No. of 
Projects  Projects  No. of Bbs No. of 

Non-Bbs 

Valdivia-
Garcia and 
Shihab [1] 

6 

Chromium, 
Eclipse, 
FreeDesktop, 
Mozilla, Net-
Beans, and 
OpenOffice 

18,422  384,540  

Xia et al. 
[12] 6 

Chromium, 
Eclipse, 
FreeDesktop, 
Mozilla, Net-
Beans, and  
OpenOffice 

18,422 384,540  

Valdivia-
Garcia et al. 
[11] 

8 

Chromium, 
Eclipse, 
FreeDesktop, 
Mozilla, Net-
Beans, 
OpenOffice, 
Gentoo, and 
Fedora 

77,448  532,352  

Cheng et al. 
[14] 4 

Eclipse, 
FreeDesktop, 
NetBeans, and 
OpenOffice  

34,892 229,729 

Ding et al. 
[13] 2 Mozilla Firefox 

and Netbeans 16,402 198,471 

Brown et al. 
[15] 8 

Chromium, 
Eclipse, 
FreeDesktop, 
Mozilla, Net-
Beans, 
OpenOffice, 
Gentoo, and 
Fedora 

18,900 113,684 
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TABLE IX. SOURCES WHERE DATASETS OF OPEN-SOURCE PROJECTS WERE EXTRACTED 

Project Source 

Chromium https://bugs.chromium.org/p/chromium/issues/list 

Eclipse https://bugs.eclipse.org/bugs/ 

NetBeans https://netbeans.org/bugzilla/ 

OpenOffice https://bz.apache.org/ooo/ 

Gentoo https://bugs.gentoo.org/buglist 

Fedora https://bugzilla.redhat.com/ss 

Mozilla https://bugzilla.mozilla.org/ 

free desktop https://bugzilla.freedesktop.org/ 

 
Fig. 4. Distribution of Projects Studied by the Selected Studies. 

• Chromium is a popular open-source web browser de-
veloped by Google and used mainly as the codebase for 
Google Chrome. C++ and C programming languages 
dominate it; however, it comprises other programming 
languages such as JavaScript and Python, amongst oth-
ers. Chromium has its bug tracking mechanism in 
Google code, called Monorail, which has a feature 
called "Blocking." The "blocking" feature can identify 
if a bug is a blocking bug or not. 

• Eclipse is a well-known integrated development envi-
ronment (IDE) developed mainly with Java yet supports 
many programming languages, including Python, Ruby, 
and C/C++. In addition, eclipse uses Bugzilla for re-
porting and tracking bugs. This issue tracking system 
has a feature called "Blocks." This is used for identify-
ing a bug as a blocking bug. GNU/Linux or FreeBSD. 
Gentoo also uses Bugzilla in reporting and tracking 
bugs; hence the "Blocks" field identifies a blocking bug. 

• Mozilla is an open-source project that hosts and devel-
ops products such as Firefox, Thunderbird, Bugzilla, 
Gecko layout engine, and others. The programming 
languages used in its development are C, JavaScript, 
and C++. In addition, Mozilla tracks its bugs in Bugzil-
la software and uses the "Blocks" field to show if a bug 
is a blocking bug. 

• NetBeans is an open-source IDE for developing appli-
cations in the java programming language for Win-

dows, Mac, Linux, and Solaris. However, it supports 
PHP, C, and C++, amongst others. NetBeans was de-
veloped with the Java programming language. Bugzilla 
is an issue tracking system used by Netbeans; hence the 
“Blocks” field indicates whether a reported bug is a 
blocking bug or not. 

• OpenOffice is an office suite created by Sun Microsys-
tems and is now maintained by Apache. It is maintained 
with its programming language called OpenOffice.org 
Basic. IssueTracker, a derivative of Bugzilla, was used 
by OpenOffice when these primary studies were under-
taken. Just like Bugzilla, it has a “Blocks” feature 
which indicates whether a bug is a blocking bug or not. 
At the time of this study, Bugzilla had succeeded Is-
sueTracker, which was also known as IssueZilla. 

Valdivia-Garcia et al. [2] and Brown et al. [6] used the 
most extensive dataset with the most bugs (i.e. 609,800 bugs), 
which they extracted from Chromium, Eclipse, Free Desktop, 
Mozilla, NetBeans, OpenOffice, Gentoo, and Fedora. The 
open-source project that most of the studies included in their 
dataset is Netbeans, while Gentoo and Fedora were the least 
utilized by the studies, as captured in Fig. 6. Although the six 
primary studies used datasets from popular and well-supported 
open-source projects with a substantial number of bug reports, 
the distribution of dataset sizes in Fig. 5, coupled with the une-
qual distribution of Blocking bugs and non-blocking bugs in 
Table VIII, suggests the challenge of class imbalance. Thus, in 
most studies, BBs account for less than 12% of the total avail-
able dataset [2]. However, extensive research exists about the 
challenges an imbalanced dataset, also referred to as the class 
imbalance phenomenon [23], poses to the performance of clas-
sifiers that use them in training.  Also, it is worth noting that all 
the studies considered in this work used datasets related to 
open-source projects; hence their findings may not apply to 
closed and commercial software projects. 

RQ3: What kind of ML learning techniques is adopted in 
building the proposed BB prediction model? 

The primary studies considered in this SLR proposed new 
methods for identifying a bug as blocking bugs or non-
blocking bugs based on an existing classification technique. 
Fig. 7 shows the distribution of the classification techniques 
employed in the various studies. 
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Fig. 5. Distribution of Datasets by Selected Studies. 

 
Fig. 6. Distribution of Projects and their Frequency of use in Primary Studies. 

 
Fig. 7. Distribution of Classification Techniques. 

TABLE X. DISTRIBUTION OF ML TECHNIQUES UTILIZED BY PRIMARY 
STUDIES 

ML Techniques Studies 

Decision trees (C4.5) Valdivia-Garcia and Shihab[1], Valdivia-Garcia 
et al [11] 

Ensemble learning Xia et al. [12]  
Bayes Network  Ding et al. [13] 
Deep Learning (DNN) Brown et al. [15] 
XGBoost Cheng et al. [14] 

Valdivia-Garcia and Shihab [1] and Valdivia-Garcia et al. 
[2] used a re-sampling technique to pre-process the training 
data to resolve the data imbalance issue; non-blocking bugs 
outnumber blocking bugs. Even though random forest per-
formed better in terms of F1 measure than their proposed mod-
el, which was based on Decision trees (C4.5), they recom-
mended their model as the most appropriate for practitioners. 

Xia et al. [4] built a classifier called ELBlocker based on 
the random forest technique. They separated the training data 
into many disjoint sets and developed different classifiers, 
which they then merged to identify an appropriate threshold for 
classifying bugs as blocking or non-blocking. Also, Cheng et 
al. [7] presented a new classification framework called 
XGBlocker, consisting of two stages. XGBlocker captures 
more features from bug reports in the first stage to construct an 
improved dataset. In the second stage, XGBlocker employs the 
XGBoost technique to build an efficient model for performing 
the prediction task. Ding et al. [5] proposed a Bayes Network-
based classifier for forecasting the breakability of the blocking 
bug pairs. 

The classifier is identical to the Bayes Network classifier; 
as the threshold lowers from 0.5 to 0, the classifier becomes 
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stricter and removes more boundary instances to improve pre-
cision. In Brown et al. [6], researchers proposed a DeepLabb 
classifier based on deep neural networks for predicting block-
ing bugs. Three deep neural networks were developed and 
trained independently, each with a different number of hidden 
layers. The first DNN had two hidden layers, the second DNN 
had three hidden layers, and the third DNN had four hidden 
layers. Bayesian optimization was used to estimate the best 
learning rate for each model. It is worth mentioning that apart 
from Brown et al. [6], who employed a deep learning approach 
in this domain, at the time of this work, the rest used Decision 
Trees, Random Forest, Bayes Network, and XGBoost for 
building Blocking bug prediction models in the selected prima-
ry studies. Table X shows the studies and the classification 
techniques adopted in building their classifiers. While the most 
frequently used ML technique in building BB classifiers is 
based on the Decision Trees, Random Forest was reported by 
two studies [1][11] to have performed better than Zero-R, Na-
ive Bayes, and KNN. 

RQ4: Which evaluation criterion is used to measure the 
performance of the BB prediction model? 

The primary studies assessed the prediction abilities of their 
proposed BB prediction model using various combinations of 
evaluation metrics. Fig. 8 depicts the distribution of research 
based on performance metrics. In Valdivia-Garcia and Shihab 
[2], Precision, Recall, F1-Score, and Accuracy were used to 
measure the effectiveness of their proposed classifier and re-
ported 9-29% precision, 47-76% recall, and 15-42% F1-Score. 

The F1 score and cost-effectiveness were used to assess the 
efficiency of ELBlocker in Xia et al. [12], which attained an 
F1-Score up to 0.482 and EffectivenessRatio@20% scores of 
0.831.In Valdivia-Garcia et al. [11], the researchers utilized 
Precision, Recall, and F1-Score to evaluate the performance of 
their proposed model. The proposed model achieved 13%–45% 
precision, 47%–66% Recall, and 21%–54% F1-Score. Ding et 
al. [13] used ROC Area, Accuracy, F1-Score, Recall, and Pre-
cision to assess the efficiency of the classifier they recom-
mended. In Mozilla Firefox the proposed BayesNet model 
achieved 0.629, 0.729, 0.676, 0.831, and 76.54 % for Precision, 
Recall, F-measure, Roc Area, and Accuracy, respectively. 
However, it recorded Precision, Recall, F-measure, Roc Area, 
and Accuracy of 0.488, 0.583, 0.531, 0.764, and 73.45%, re-
spectively, in the case of the NetBeans dataset. To compare the 
performance of XGBlocker to other classifiers, Cheng et al. 
[14] employed AUC, Cost-Effectiveness, and F1-Score. 
XGBlocker reported an F1-score of 0.808, ER@20% of 0.944, 
and AUC of 0.975. 

Brown et al [15] used MCC, F1, and AUC to compare 
DeepLaBB with other classifiers. DeepLaBB recorded an 
MCC of 0.8504%, F1 Score of 0.4292%, and AUC of 
2.9459%. 

The following is a summary of the various performance 
metrics used in the primary studies considered in this work: 

 
Fig. 8. Performance Metrics and the Corresponding Number of Primary 

Studies. 

Accuracy refers to the proportion of correctly categorized 
instances to the total number of instances. It can be calculated 
using the formula below with the aid of True positives (TP), 
False negative (FN), False positives (FP), and True negative 
(TN) extracted from the confusion matrix. 

Accuracy= (TP+TN)/ (TP+FP+ TN+ FN) 

MCC refers to Matthew’s Correlation Coefficient. To 
measure the quality of binary categorization, MCC examines 
all true and false positives and negatives [29]. It can be com-
puted as: 

MCC= (TP*TN-FP*FN)/√ ((TP+FP) (TP+FN) (TN+FP) 
(TN+FN)) 

Recall is the ratio of accurately categorized positive cases 
to the total number of positive instances. Recall can be calcu-
lated as: 

Recall= TP/ (TP+FN) 

Precision is a measure of the proportion of correctly catego-
rized positive instances among all positive samples. It can be 
computed as follows: 

Precision= TP/ (TP+FP) 

F1-Score if the harmonic mean of precision and recall. F1's 
best value is 1, and its worst value is 0. It can be represented 
mathematically as: 

F1-Score= (2*Precision*Recall)/ (Precision Recall) 

The AUC-ROC refers to AUC (Area under Curve)-ROC 
(Receiver Operating Characteristic). It is a trade-off between 
the True Positive Rate (TPR) and the False Positive Rate (FPR) 
and represents the classifier's ability to predict classes 
correctly. 

It can be generated by charting TPR (True Positive Rate), 
i.e., Sensitivity or recall vs. FPR (False Positive Rate), i.e., 1-
Specificity, at different threshold values. 
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Cost-Effectiveness [24] is a cost-sensitive indicator of pre-
diction performance. It assesses a method's prediction perfor-
mance under a cost limit. Even though research findings [25] 
discourage the use of Accuracy for evaluating classifiers 
trained with an imbalanced dataset, Valdivia-Garcia and 
Shihab [1] and Ding et al. [24] employed Accuracy in their 
works; the F1 score is the most common evaluation metric 
utilized among the studies in this SLR, followed by Precision 
and Recall. The least common measure employed is cost-
effectiveness. 

RQ5: Which ML classifiers are used as baselines to 
benchmark the proposed model? 

The studies considered in this work compared the perfor-
mance of proposed BB prediction models to baseline tech-
niques to assess their efficacy. Fig 8 shows the baselines to 
which the proposed techniques were compared. After review-
ing the primary studies in this work, it can be concluded that 
the proposed BB prediction models outperformed individual 
baseline classifiers in the vast majority of cases at the time of 
this study. The C4.5 Decision tree algorithm-based BB predic-
tion model proposed in Valdivia-Garcia and Shihab [1] and 
Valdivia-Garcia et al. [2] performed better than Naive Bayes, 
kNN, and Zero-R baselines. 

The C4.5 based model was chosen over the random forest 
because it is an explainable model that practitioners can easily 
understand. To forecast the possibility of a blocking bug, Xia et 
al. [4] used an ensemble of various classifiers. The ELBlocker 
showed a significant improvement compared with Valdivia-
Garcia and Shihab's methods [1], SMOTE, one-sided selection 
(OSS), and bagging. In Cheng et al. [7], the proposed 
XGBlocker was compared with Gradient Boosting Decision 
Tree (GBDT), AdaBoost, ELBlocker, XGB_14, CART, Lo-
gistic Regression, and Valdivia-Garcia and Shihab’s approach-
es. The proposed method displayed superior performance in all 
instances. Ding et al. [5] offered a method for describing and 
forecasting the breakability of the blocked bug pairs, which 
performed better compared with the Zero-R Classifier's per-
formance, Naïve Bayes, BayesNet, KNN, and Random Forest. 
Brown et al. [6] introduced DeepLaBB for predicting blocking 
bugs in open-source projects. DeepLaBB showed improved 
performance compared with the performance of Random For-
est, KNN, CART, and ANN on the same datasets. The perfor-
mance of proposed BB predicting models was compared with 
that of base classifiers such as RF, KNN, NB, Zero classifier, 
and Valdivia-Garcia and Shihab's approaches in the majority of 
the research articles. Generally, the choice of baseline varied 
from one study to another. However, as shown in Fig. 9, RF 
was the most utilized baseline classifier in most studies, closely 
followed by KNN. Even though most of the proposed BB pre-
diction models in the various studies performed better than the 
baseline classifiers, some BB prediction models have not im-
proved performance compared with traditional classifiers. For 
instance, in Valdivia-Garcia and Shihab [1], when it comes to 
chromium and Eclipse data sets, the proposed model had recall 
values of 49% and 47%, slightly below the 50% recall value of 
the baseline. In the same paper, random forest performed better 
than the proposed model in precision across all project datasets. 
Also, Zero-R outperformed all the classifiers in terms of Accu-
racy. Similarly, in Valdivia-Garcia et al. [1], the Zero-R model 

had the highest Accuracy across all project datasets except for 
Fedora. Also, in Brown et al. [6], a baseline classifier, Random 
Forest, performed better than the proposed DeepLaBB in the 
FreeDesktop dataset in terms of MCC and F1-Score. 

 
Fig. 9. Distribution of Baseline Classifiers and Primary Studies. 

IV. SUMMARY 
This SLR traced the research advances in applying ML 

techniques to predict Blocking Bugs. After a rigorous analysis 
of the most pertinent research papers published between Janu-
ary 2012 to February 2022 in the databases of five famous aca-
demic publishers, namely Scopus, SpringerLink, IEEE Xplore, 
ACM digital library, and Science Direct, six (6) BB primary 
papers/studies were identified and reviewed. The findings re-
garding the research trend, variety of proposed ML techniques, 
baseline classifiers, evaluation metrics, and sources of datasets 
for predicting BBs during this study are captured in Fig. 3, 
Table X, Fig. 9, Fig. 8, and Table IX, respectively. The existing 
studies confirm that proposed ML techniques (i.e. BBPMs) 
significantly improve the detection of BBs in software bug 
reports and that they generally outperform the traditional clas-
sifiers. Also, this study concludes that there is a paucity of lit-
erature on the application of ML to BB prediction. Further re-
search is required to validate existing and new prediction mod-
els on bug reports of commercial or closed software projects. 
In addition, new researchers should explore the effect of pa-
rameter tuning and the efficiency of ML approaches such as 
deep learning and ensemble learning in improving the classifi-
cation of BBs. Furthermore, before training a classifier, re-
searchers should take steps to mitigate the effect of class im-
balance on the proposed BB prediction model. 
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