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Abstract—In today's digital landscape, Internet of Things 
(IoT) networking has grown dramatically broad. The major 
feature of IoT network devices is their ability to connect to the 
internet and interact with it through data collecting and 
exchanging. Distributed Denial of Service (DDoS) is one form of 
cyber-attacks in which the hackers penetrate a single connection 
and then multiple machines are operating together to attack one 
target. The direct connectivity of IoT devices to the internet 
makes DDoS attacks worse and more dangerous. The more 
businesses adapted IoT networks to streamline the operations, 
the more allowing of DDoS intrusions at small and large scales to 
take place. Therefore, the intrusion detection module in the IoT 
networks is not optional in today’s business environment. To 
achieve this objective, in this paper, an intelligent intrusion 
detection model is proposed to detect DDoS attacks in IoT 
networks. The intelligent model is a backpropagation neural 
network-based framework. The results are analyzed using 
different performance measures. The proposed model proves a 
detection rate of 99.46% and detection accuracy of 95.76% using 
the up-to-date benchmark CICDDoS2019 dataset. Furthermore, 
the proposed model has been compared with the most recent 
DDoS intrusion detection schemes and competitive performance 
is achieved. 

Keywords—DDoS; backpropagation neural network; IoT 
network; intrusion detection; CICDDoS2019 

I. INTRODUCTION 
IoT networks are considered a considerable movement in 

the world of networking and data communication. This 
movement is majorly driven by the fifth-generation network 
(5G), which is expected to broaden todays’ IoT functionalities. 
As the adaption of IoT networks is in a dramatic increase, IoT 
network is expected to be a huge growing market. 

However, this growth is thwarted by DDoS attacks which 
are the most prevalent cyber threats. Some cybersecurity 
experts consider IoT networks as the major force behind DDoS 
attacks. These types of attacks have a distributive nature; in 
particular, they depend on one vulnerable device in the IoT 
network to create an opening for intruders to make use of any 
other IoT devices to drive a huge amount of traffic. 

IoT platform security is embedded in the process of product 
development of IoT-based devices. However, when it comes to 
cybersecurity, no data processing unit is an island. From data 
production, data transmission, data processing, data 
visualization to data analysis and prediction, all of these major 
stages of IoT networking are considered open gates for 
intrusions and hackers to perform their attacks especially 

DDoS and Botnet attacks. The botnet is a collection of hijacked 
internet-connected devices that are used to execute a large-
scale attack. The infected devices are controlled by attacks 
actors who they often cybercriminals and are used to perform 
particular malicious duties in an unobserved manner from the 
user. One of the major tasks to be done by a botnet is to 
generate malicious traffic for DDoS attacks. 

DDoS attacks are carried out when multiple machines 
(devices) are operating together for sake of attacking one target 
device. Using control and command software, DDoS attacker 
avails of the weaknesses and security vulnerabilities of one IoT 
device to control several IoT network devices. Once the target 
device is in control, DDoS attack admits exponentially requests 
to be sent to the target device, which enhances the power of 
attack on one hand and boosts the difficulty of detecting 
attribution on the other hand, where due to the distributive 
nature of the DDoS attack, the original source of the attack 
becomes harder to be identified. DDoS attacks are easy to deal 
with in the short term, but it becomes very difficult in the long 
term. Due to the distributed nature of the DDoS attack, it is 
considered one of the most fatal enemies of the internet of 
things platform. In principle, if internet-connected devices get 
hacked, the DDoS malware could easily spread to other 
devices in the network [1], [2]. 

Although IoT has used a variety of protocols for security 
purposes, hackers and intruders developed more complex and 
intelligent techniques to fulfill their penetrations ending up 
with misalignment between the speed of IoT development and 
IoT cybersecurity. In the case of dealing with sensitive data 
processing and management through IoT platforms, there is a 
pressure to close the gap that caused an increased vulnerability, 
especially for crucial data where security becomes the single 
most cardinal factor that companies, and organizations 
consider when purchasing IoT products. 

In response, a new generation of artificial intelligence-
based intrusion detection techniques to address the limitations 
of the conventional intrusion detection techniques has emerged 
and adapted as a major building block of IoT security systems. 
Recently, the awareness to use the machine learning in general 
and artificial neural networks in particular to secure network 
traffic against DDoS attacks has increased rapidly. DDoS 
Detection systems based on artificial neural networks are such 
typical solutions to model and predict malicious behavior over 
network traffic flows and Backpropagation neural network are 
considered one of the powerful yet flexible supervised training 
algorithms. 
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In the context of supervised neural networks, 
backpropagation neural network is considered one of the 
powerful classifying and filtering engines in this field. Much of 
the power of backpropagation arises from the fact that the 
repeated composition of specific types of nonlinear functions 
boosts the abstract representation power of the neural network. 
Moreover, an efficient computation of the gradient at each 
layer can be highly performed by the backpropagation training 
algorithm. Therefore, backpropagation neural network can 
efficiently learn the abstract representation of the behavior of 
network flows in general, and the pattern of the malicious 
flows in particular. 

Some researchers, in this field, deployed backpropagation 
in its original form to design and develop different schemes for 
intrusion detection systems. However, the majority of 
researchers tend to use the enhanced versions of 
backpropagation in order to address the shortcomings of the 
classical backpropagation algorithm in an attempt to lower the 
time and the computational overhead of the training phase or to 
remedy the convergence difficulties of the classical version. 
Other scenarios use a standard backpropagation neural network 
that heavily depends on a variety of features engineering 
techniques in prior. 

These scenarios come at the expense of higher design 
complexity associated with new born issues related to time cost 
and resources. Furthermore, in the context of intrusion 
detection, the overall performance of many of the predictive 
models based on the enhanced versions do not exceed that can 
be achieved by the classical one. 

With minimal neural network architecture, and without any 
features preprocessing, the main aim of this work is to prove 
that the conventional standard backpropagation can be used to 
build an accurate yet robust predictive model for DDoS 
attacks. We have achieved this by conducting the training 
using modern up-to date DDoS dataset and conducting 
rigorous testing analysis while the performance of the 
predictive model is benchmarked using highly indicative 
standard performance metrics. 

The major improvements that we presented in this article 
are reviewed as follows: 

• Propose an intelligent DDoS intrusion detection system 
that can predict DDoS malicious network traffic in IoT 
networks by exploiting the predictivity power of the 
standard backpropagation neural network. 

• In this work, CICDDoS2019 dataset is used to verify 
that the proposed detection model applies to different 
types of DDoS malicious traffic flows. 

•  We have proved that using low-complexity standard 
version of backpropagation based neural network can 
achieve comparable detection performance even though 
no form of features engineering (such as feature 
weighting or features selection), was considered. 

The rest of the paper is organized as follows: Section II 
presents related works; Section III describes our proposed 
DDoS intrusion detection methodology followed by the 

experimental performance evaluation in Section IV and Section 
V concludes this paper and suggests future directions. 

II. RELATED WORK 
Exploiting the very basic form of backpropagation 

algorithm applied on multi-layered perceptron neural network, 
an intrusion detection model seeking a reduction in false alarm 
rate as a major performance aspect was proposed by [3] where 
it shows the intrusion recognition capability of the 
backpropagation algorithm despite the rudimentary framework. 

Using internet packet traces as an experimental dataset, 
authors in  [4] used the standard backpropagation neural 
network to thwart DoS and DDoS attacks in IoT environments. 

As a precise and efficient classifier [5] used a standard 
backpropagation network to classify DDoS traffic after an 
initial judgment of the characteristics of the abnormal network 
traffic. 

Using a backpropagation-based autoencoder, [6] designed a 
joint anomaly and signature-based DDoS intrusion detector 
implemented in the cloud. Based on a behavioral study that 
collected a variety of DDoS signatures in one database, the 
targeted traffic was first compared to the known DDoS attacks. 
If no matching has occurred, then the traffic fed to the 
backpropagation autoencoder to be classified into DDoS or 
benign. If a DDoS attack was detected, the signature of this 
attack was used to update the database of DDoS signatures. 

Despite the vivid versatility of backpropagation in 
designing intelligent intrusion detection models/systems, it has 
some downsides such as local minima, slow convergence, and 
network paralysis. These downsides moving the wheel of 
extension around the axel of standard backpropagation were 
enhanced versions of backpropagation emerged and 
implemented for harder predictive tasks such as DDoS/DoS 
detection. As an example of using an enhanced version of 
backpropagation in the domain of intelligent intrusion 
detection, [7] presented an intrusion detection system 
composed of hybrid phases of misuse detection and anomaly 
detection by applying the Levenberg-Marquardt algorithm as a 
technique to optimize the backpropagation-based network that 
was used as the classification engine of the proposed predictive 
system. 

Applying the same backpropagation customization, authors 
in [8]  used multi-core technology to detect DDoS intrusions 
via neural networks. Multi-core uses one CPU that combines a 
couple or more independent cores into a single circuit. Their IP 
flow-based DDoS intrusion detection technique is built based 
on the idea that an IP packet holds information of the upper 
layer which can be exploited into special attributes representing 
the special characteristics of DDoS attacks in a well-posed 
manner. Then, attributes vectors are fed into a Levenberg-
Marquardt based backpropagation neural network as input to 
be classified into DDoS or benign traffic. 

Authors in [9] proposed a DDoS intrusion detection 
algorithm composed of two main phases: a training phase and a 
detection phase. In the training phase, a non-linear time series 
model called GARCH was used to evaluate the normal traffic 
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prediction, whereas a feed-forward backpropagation neural 
network was used as the benign/DDoS classifying engine. 

For cloud security, based on backpropagation neural 
networks, authors in [10] proposed a DDoS detector model that 
offered a solution to tracing back a given cloud traceback for 
the sake of finding the source of the real attack. Moreover, they 
introduced a cloud protector built using a feedforward 
backpropagation neural network. 

III. METHOD 
As IoT networks are broad, the attack surface for this type 

of network is even broader. This has been reflected in various 
methodologies and techniques designed to fall under the 
umbrella of IoT network security. Public Key Infrastructure 
(PKI) authentication, securing Application Program Interface 
(API), and network intrusion detection systems, the lists long 
are just a few of the techniques IT leaders can use to combat 
the growing malicious penetrations rooted in vulnerable 
devices of IoT networks. As a rule of thumb, as the ways 
available for devices to be able to connect, the more ways 
attackers and hackers can intercept them. 

Therefore, one of the most harmonious security techniques 
that can be deployed for IoT network security is the security 
gateways, which act as intermediary units between the IoT 
network devices and the outside world (internet, cloud 
computing, etc.). These units are equipped with processors 
chips with more computational capabilities, memory, and 
processing power rather than that exists in the IoT devices 
themselves. These additional features enable gateway units to 
run artificial neural network-based intelligent intrusion 
detection systems to ensure intruders cannot access the IoT 
network devices they connect. 

Fig. 1 shows the general high-level framework of our 
proposed DDoS intrusion detection model in the context of IoT 
networking where at the heart of the IoT securing gateway lies 

the proposed intrusion detection model. Fig. 2 illustrates the 
flow pipeline of our proposed system, which is built using the 
backpropagation feedforward artificial neural network that 
trained, validated, and tested using a real benchmark 
CICDDoS2019 dataset [11]. As illustrated in Fig. 2, once the 
dataset is pre-processed in a way harmonious to the format 
accepted by the neural network, it is split into two datasets: 
training and testing. Then, a backpropagation neural network is 
trained to obtain the optimal parameters and meta parameters 
of the network structure. Afterward, the network is ready to be 
used as intelligent DDoS intrusion detection, where a new set 
of flow traffic (DDoS and normal traffic) is presented to the 
network, where it detects the DDoS attack traffic and raises an 
alarm. The following subsections elaborate each module of our 
proposed model shown in Fig. 2 in detail. 

 
Fig. 1. High-Level Framework of the Proposed DDoS Intrusion Detection 

System in the Framework of IoT Networks. 

 
Fig. 2. Proposed DDoS Intrusion Detection System using Standard Backpropagation Neural Network. 
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A. Dataset Pre-Processing 
To evaluate our backpropagation network-DDoS detection 

model, the real benchmark CICDDoS2019 dataset [11] is used. 
This dataset is composed of two types of DDoS attacks: 
reflection and exploitation in form of both malicious and 
normal network packets. 

Even though the CICDDoS2019 dataset is major consists of 
numerical values, dataset preprocessing is an essential step to 
validate its suitability for both: as input to the neural network 
and for the classification task of the model. Fig. 3 illustrates the 
basic steps that applied to the raw CICDDoS2019 dataset 
which include: dataset cleansing, features selection, and dataset 
normalization. 

Initially, the total number of raw dataset features is 81, in 
the dataset cleansing, we select the features that have zero 
values, which have no impact on the classification output of the 
neural network and dropped them out resulting in 22 unique 
features. Moreover, all dataset samples that contain infinity or 
misleading values have been removed as well. The label 
column of the dataset is converted into a numerical 
representation where 0 represents the benign traffic and 1 
represents the DDoS one. 

As the last step of dataset preprocessing, the dataset values 
are normalized using the standard min-max normalization [12], 
[13] as illustrated in (1): 

𝑣�́�  =  𝑣𝑖− 𝑚𝑖𝑛𝐷𝐵
𝑚𝑎𝑥𝐷𝐵−𝑚𝑖𝑛𝐷𝐵

∙ (𝑛𝑒𝑤𝐷𝐵𝑚𝑎𝑥  −  𝑛𝑒𝑤𝐷𝐵𝑚𝑖𝑛) + 𝑛𝑒𝑤𝐷𝐵𝑚𝑖𝑛      (1) 

where (1) represents the min-max normalization step that 
linearly transformed the raw database 𝐷𝐵 =  𝐶𝐼𝐶𝐷𝐷𝑜𝑆2019 
values 𝑣𝑖 ∈  𝐷𝐵  into new values 𝑣�́�  in the range 
[𝑛𝑒𝑤𝐷𝐵𝑚𝑎𝑥 ,𝑛𝑒𝑤𝐷𝐵𝑚𝑖𝑛]. 

B. Proposed Model 
At the core of the proposed model, a backpropagation 

feedforward neural network is used to model the behavior of 
the flows of the network traffic. The basic annotated structure 
of the backpropagation neural network is shown in the simplest 
form of the feedforward network structure composed of input 
units at the left, any number of intermediary hidden layers, and 
a layer of output units at the right. 

Connections from the second hidden layer to the last 𝐿 
hidden layers are hidden whereas the connections from higher 
layers to lower layers are forbidden. Backpropagation 
comprises two major phases: (1) Forward phase, and 
(2) Backward phases. In the forward phase, the outputs of all 
nodes are computed, the local derivatives of the nodes 
‘activation function relative to the net inputs are computed as 
well. 

On the other hand, the main task of the backward phase is 
to aggregate the products of these local values over all paths 
from the nodes to the network outputs. In the forward phase, 
the components of an input training vector are fed into the 
neural network. This results in driving a forward cascade of 
computations across network layers using the current state of 
weights to yield the network output, which represents the 
predicted output of the network. Afterward, the predicted 
output is compared to the label associated with the training 
instance and the derivative of the loss function concerning the 
output is computed. 

The derivative of the resulting loss is fed to the backward 
phase where it is used to compute the loss concerning the 
weights in all layers in the backward path. 

As pictorially illustrated in Fig. 4, Let 𝔇 = {𝑦,𝑑} refers to 
the training dataset composed of the input-output (label) pairs 
and let𝑥𝑗 refers to the net input of the𝑗𝑡ℎ unit where 𝑥𝑗 is a 
linear combination function of the 𝑖𝑡ℎ weighted outputs 𝑦𝑖  of   
𝑖𝑡ℎ layer as in (2): 

𝑥𝑗  =  ∑ 𝑦𝑖𝐼
𝑖 𝑤𝑗𝑖               (2) 

Where 

𝐼   : refers to the number of features of input vector (for our    
case, 𝐼 =  63). 

𝑤𝑗𝑖: is the weight of the connection between the layer (𝑗) and 
the layer (𝑖). 

𝑦𝑖    : is the output of the layer (𝑖). 

 
Fig. 3. CICDDoS2019 Dataset Pre-Processing Steps. 
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Fig. 4. Backpropagation Neural Network Layers Structure. 

As shown in Fig. 4, all neurons are given biases by 
introducing an extra input line with no input but of a constant 
output (always has a value of 1) and it treated as an extra 
weighted input connection. Each neuron in the network has a 
real valued nonlinear function of its total input as in (3): 

𝑦𝑗(𝑥) =   (1−𝑒−𝛼𝑥𝑗)
(1+𝑒−𝛼𝑥𝑗)

             (3) 

𝑤ℎ𝑒𝑟𝑒 : 

∆𝑤  : represents the updated value of the weight vector 𝒘. 

𝛾: is a positive learning step (learning rate) parameter. 

The target is to find a set of weights parameters generated 
the network that is same as (or sufficiently close to) the desired 
output, the network model has the given set of weights 
parameters which used to make predictions and the differences 
between those predictions and the actual outputs are computed 
as error values. Typically, we seek to minimize the error of the 
function given by in (4): 

𝑥𝑗  =  ∑ 𝑦𝑖𝐼
𝑖 𝑤𝑗𝑖               (4) 

Where, 𝐸 is the error function,  𝑑 is the index over target 
outputs, 𝑗 is an index over the output units of the output layer. 

Gradient decent of the error function ∇𝐸 lies at the heart of 
backpropagation, where it seeks to change the weights 
parameters through multiple evaluations where the 
optimization algorithm (∇𝐸 = 0) navigates down the gradient 
of error function till the minimum is found. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
This section analyzes the performance of the proposed 

DDoS intrusion detection framework using backpropagation-
based predictive model. This system is implemented, and 
experimentation is performed on Intel(R) Core (TM) i7-4500U 
CPU @ 1.80GHz and 2.40 GHz with 8GB of RAM and 64-bit 
Windows operating system. For more deeper experimental 
analysis and more controllability, we use MATrix LABratory 
(MATLAB)®2021b to build the back propagation neural 

network-based model from scratch where the available built-in 
neural network toolbox has not been used. 

A. Performance Metrics 
For purpose of model analysis, we used a subset of 

CICDDoS2019 dataset [11] we conducted many simulation 
trials, where the training dataset volume almost equals the 
volume testing dataset. In order to evaluate the detection 
performance of the system, we first established the confusion 
matrix, as shown in Table I. Then, the confusion matrices of 
the training and testing results are obtained. Based on the 
confusion matrices we considered the performance metrics that 
include Accuracy, Precision, F1-measure, False Positive Rate 
(FPR), Recall, Mathew Correlation coefficient and Kappa 
coefficients as in (5)-(11). 

Accuracy (Acc) =  (𝑇𝑃+𝑇𝑁)
(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)

            (5) 

Precision (Pr) = 𝑇𝑃
𝑇𝑃+𝐹𝑃

             (6) 

Mathew Correlation Coefficient (Mcc) =  
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

�(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
            (7) 

Kappa Coefficient (К)  =   𝑂𝑏𝑠
𝑎𝑔𝑟𝑒𝑒−𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑔𝑟𝑒𝑒

1−𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑔𝑟𝑒𝑒
          (8) 

Where 

𝑂𝑏𝑠𝑎𝑔𝑟𝑒𝑒 =  𝐴𝐶𝐶 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁), 

 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑔𝑟𝑒𝑒 =            
𝐴 + 𝐵

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) , 

TABLE I. CONFUSION MATRIX 

 Predicted 

Actual Normal DDoS 

Normal TN FP 

DDoS FN TP 
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 𝐴 =   
(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁),  

𝐵 =   
(𝐹𝑃 + 𝑇𝑁)(𝐹𝑁 + 𝑇𝑁)
(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

 

FPR = 𝐹𝑃
𝐹𝑃+𝑇𝑁

              (9) 

F-Measure (F1) = 2
1

𝑅𝑒𝑐𝑎𝑙𝑙+
1
𝑃𝑟

           (10) 

Recall (Sensitivity) = 𝑇𝑃
𝑇𝑃+𝐹𝑁

          (11) 

where, False Positive (FP) and False Negatives (FN) refers 
to misclassified events. In contrary, True Positive (TP) and 
True Negative (TN) refers to the events that are correctly 
predicted by the model, i.e., if the model predicts normal 
events as normal, then, it is recorded as TN, whereas, if the 
model predicts the DDoS attack traffic flow as a DDoS 
malicious attack traffic, then it is recorded as TP. 

B. Results 
In this section we performed a series of experiments to 

determine the optimal network model architecture of the 
proposed backpropagation-based model along with varying 
many networks' hyper-parameters. 

Afterwards, we performed another set of experiments that 
analyze the impacts of varying specific network parameters on 
the detection performance of the proposed intrusion detection 
model. We used four layers backpropagation neural network 
with two hidden layers of 64 neurons with 𝑡𝑎𝑛ℎ(𝑥)  =
( 2
1+𝑒𝑥𝑝(−𝛼𝑥)

 − 1) as activation function, where the optimal 
value of the sigmoid slope 𝛼  parameter is to be determined 
through the experimental analysis. 

Table II shows the architecture of this network whereas 
Table III shows the optimal values of hyper-parameters of the 
backpropagation neural network used in our proposed intrusion 
detection model. Dataset was normalized via min-max 
normalization with [0.5, +0.5] range and then have been split 

into training and testing sub-datasets with normal/DDoS 
distribution as shown in Fig. 5. 

Although in the real-time applications, the number of 
DDoS attack traffic is much less than the normal one, for a 
robust intrusion detection system, we used a training dataset 
composed of about 50% DDoS attacks and the same scenario 
was used for test dataset as can be noted from Fig. 5. 

Table IV and Table V show the confusion matrices of both 
training and testing phases respectively, meanwhile, Table VI 
represents the detection performance of both stages in terms of 
performance metrics listed in (5)-(11). 

From Table IV, Table V, TPR and TNR are high whereas 
FPR and FNR are low. Moreover, besides the high detection 
performance shown in Table VI, it is noticeable that there is a 
subtle difference in the detection performance between the 
training and testing phases, therefore, our backpropagation 
model is not underfit or overfit. 

In terms of True positive rate, True negative rate, False 
positive rate, and False negative rate illustrated in (12)-(15), 
Table VII summarizes a comparison between our approach and 
a recent work proposed by Liu et al. [14]. 

TABLE II. NETWORK LAYERS ARCHITECTURE 

Layer Neurons number  Activation Function  

Input 64 none 

Hidden #1 44 Tanh 

Hidden #2 20 Tanh  

Output 1 Tanh 

TABLE III. HYPER-PARAMETERS OF NETWORK MODEL 

Parameter Value 

Learning rate 𝛾 -10 

Number of Epochs 4000 

Training batch size  50,000 

Loss Function  Mean Square Error (MSE) 

 
Fig. 5. Frequency of DDoS Intrusions for Training and Testing Datasets for the 2-Labels (Normal/DDoS) Scenario. 
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TABLE IV. CONFUSION MATRIX OF TRAINING PHASE 

 Predicted 

Actual Normal DDoS 

Normal 23092 1893 

DDoS 134 24881 

TABLE V. CONFUSION MATRIX OF TESTING PHASE 

 Predicted 

Actual Normal DDoS 

Normal 23022 1984 

DDoS 136 24859 

TABLE VI. AVERAGE DETECTION PERFORMANCE OF THE PROPOSED 
BACKPROPAGATION NN-BASED DDOS INTRUSION DETECTION MODEL 

Performance Metric Training Phase  Testing Phase 

Accuracy 0.9595 0.9576 

Detection Rate (Recall) 0.9946 0.9945 

Specificity 0.9242 0.9207 

Precision 0.9293 0.9261 

FPR 0.0758 0.0793 

F1-Score 0.9609 0.9591 

MCC Coefficient 0.9212 0.9177 

Kappa Coefficient 0.9189 0.9152 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒  =  𝑇𝑃
𝑇𝑃+𝐹𝑁

          (12) 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒  =  𝑇𝑁
𝑇𝑁+𝐹𝑃

          (13) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒  =  𝐹𝑃
𝐹𝑃+𝑇𝑁

          (14) 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒  =  𝐹𝑁
𝐹𝑁+𝑇𝑃

          (15) 

As can be noted from Table VII, detection performances 
achieved by our proposed BP-based model were higher 
compared to those achieved by the different ML-based listed in 
Table VII. Although Liu et al. [14] had considered only the 
results of the neural network and disregarded the other 
approaches due to the unacceptable results, our proposed 
model still has higher performance. On the other hand, In 
contrary to the simple preprocessing of neural network inputs 
required by our proposed model, Liu et al. [14] used the Fast 
Fourier Transform (FFT) coefficients and the information 
entropy as input features to the input layer of the neural 
network which entails extra computational overhead and 
preprocessing of the network traffic before the detection takes 
place. 

Furthermore, we compare our proposed DDoS intrusion 
detection model with various related Machine Learning 
approaches as shown in Table VIII. 

TABLE VII. THE AVERAGE  PERFORMANCE OF OUR PROPOSED 
BACKPROPAGATION ANN MODEL IN TERMS OF FPR, FNR, TPR, TNR 

METRICS 

 Year   FPR FNR TPR  TNR 

Random 
Forest [14] 2021 0.844 0.0001 0.999 0.156 

Gaussian 
Naive Bayes 
[14]  

2021 1.0 0.0 1.0 0.0 

Neural 
Network [14] 2021 0.0222 0.0069 0.9930 0.9777 

 Proposed BP 
ANN-Model  -  0.0793 0.0054 0.9946 0.9207 

TABLE VIII. AVERAGE PERFORMANCE EVALUATION OF THE PROPOSED 
MODEL WITH OTHER CLASSICAL ML-BASED TECHNIQUES 

Machine Learning-  
based Method Year Acc Recall F1 

Score Precision 

ID3 [11] 2019 - 0.65 0.69 0.78 

Random Forest(RF) 
[11] 2019 - 0.56 0.62 0.77 

Naive Bayes (NB) 
[11] 2019 - 0.11 0.05 0.41 

Multinomial 
Logistic Regression 
(LR) [11] 

2019 - 0.02 0.04 0.25 

 

Bandwidth Control 
Mechanism + 
Extreme Gradient 
Boosting Algorithm 
(XGBoost) [15] 

2020 0.997 1.000 1.0000 1.0000 

Logistic Regression  
[15],[16] 2020 0.8000 0.8000 0.8000 0.8500 

Naive Bayes  
[15],[17] 2020 0.7700 0.7700 0.7600 0.8400 

ID3 [15],[18] 2020 0.9850 0.9990 0.9900 0.9900 

Random Forest 
[15],[19] 2020 0.9855 0.9900 0.9900 0.9900 

 

Autoencoder [20] 2021 0.8945 - - - 

Restricted  
Boltzmann [20] 2021 0.5651 - - - 

K-means  [20] 2021 0.7538 -  - - 

Expectation-
Minimization (EM) 
[20] 

2021 0.7096 - - - 

 

Proposed Model  - 0.9576 0.9946 0.9591 0.9261 
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As shown in Table VIII The obtained results show that the 
detection performance of our proposed BP-based DDoS 
predictive model is far superior to that had been reported by the 
authors of the CICDDoS2019 dataset [11] using ID3, RF, NB, 
and LR algorithms owing to the nonlinear modeling power of 
the backpropagation neural network. The same findings can be 
noticed if the detection performance of our proposed BP-model 
is compared to Autoencoder, Restricted Boltzmann, K-means, 
and Expectation-minimization machine learning algorithms 
adopted by [20]. 

Even though ID3, RF, NB, and LR algorithms were re-
generated by [15], they have achieved superior detection 
performance to that had been achieved by [11]. Authors in [15] 
attributed their higher results to the performed preprocessing 
steps they adapted. However, in comparing our results to that 
reported by [15] for LR and NB-based algorithms, we can 
conclude that the influence of the pre-processing is limited 
because our BP-model that processed by the simple classical 
pre-processing steps was able to achieve superior results in 
comparison with these algorithms. 

A regular BP-based detection model and the detection 
performance of [15] built is based on sequential steps of 
preprocessing and a combination of the bandwidth control 
mechanism and Extreme gradient boosting algorithm. 

C. Experiments on Different Network Parameters Tunning 
Since backpropagation network is a gradient-descent based 

learning algorithm, the first steps that come into consideration 
while building the network architecture is the initial state of the 
network as well as the network parameters tunning of the 
network in order to converging to the optimal minima of loss 
function gradient in least number of epochs. 

Therefore, in the following subsections, we investigate the 
influence of the required number of Epochs, learning rate 𝛾 and 
sigmoid slope 𝛼 on the detection performance of the system in 
training and testing phases and then analyze for the most 
appropriate values of these parameters. 

It is worthy to mention that the backpropagation network is 
highly sensitive to the initial state of their weight’s metrices, 
we have turned the initial weights to random values in the 

range −0.285 ≤  𝑤𝑖𝑛𝑖 ≤  −1.06 before we are conducting 
these experiments. Otherwise, improper weights initialization 
can drive the network to saturate at a static accuracy threshold 
and stuck in a static local minimum. 

1) Impact of increasing number of epochs: To examine 
the effect of increasing epochs number of the training phase 
on the detection performance in the prediction phase of the 
proposed BP-based model in terms of accuracy, recall, FPR, 
Precision, Kappa and MCC coefficient. First, we set the span 
of epoch to be from 200 to 9000  and fix other parameters 
such as learning rate, initial weights, and sigmoid slope, then a 
comparative analysis between the impact of epochs number on 
the detection performance on both training and testing phases 
is conducted as illustrated in Fig. 6. and Fig. 7. 

As illustrated in Fig. 6 and Fig. 7 the predictive behavior of 
the proposed model in training and testing phases is almost the 
same, which ensures that our model is not underfitting or 
overfitting. To emphasize this behavior further and to ensure 
the stability and robustness of the prediction performance, the 
difference of accuracy performance between these phases are 
zoomed in as illustrated in Fig. 8 where it can be noted that the 
differential behavior decreases steadily to less than 0.1e-3 and 
in unison manner as the number of the training epochs 
increases. 

As can be noted from Fig. 6, the accuracy of detection 
increases steadily as the training epochs increases until it hits 
𝐸𝑝𝑜𝑐ℎ =  2000, where beyond this value, the rate of change 
in detection is saturated and cannot be traced without zooming 
in effect. At 𝐸𝑝𝑜𝑐ℎ  =  4500, the accuracy behavior shows a 
temporary tenuous decrease; however, it is not exhibited by the 
Recall and FPR performance behavior. It is clear that by epoch 
4000, almost accuracy, recall, and FPR performances start to 
converge quickly to a steady-state behavior, therefore 4000 is 
a sufficient number of training epochs for sake of optimal 
performance. Although FPR, as shown in Fig. 6, reaches the 
minimum at 𝐸𝑝𝑜𝑐ℎ𝑠 =  2000, the accuracy and sensitivity of 
the predictive model do not show the same characteristic, and 
as a compromised solution, Epochs = 2000 was not adapted. 

 
Fig. 6. (a) Accuracy Performance of the Proposed Model in Training and Testing Phases Versus Number of Training Epochs Zoomed in from Epoch No = 4000 

to 8000. (b) Difference between the Accuracy Detection of Training and Testing Phases Zoomed in from Epoch No =4000 to 8000. 
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Fig. 7. Accuracy, Recall (Sensitivity), and FPR Performance of the Proposed Model in Training and Testing Phases Versus Number of Training Epochs Zoomed 

in from Epoch No = 4000 to 8000. 

 
Fig. 8. Precision, Kappa and MCC Coefficients based Performance of the Proposed Model in Training and Testing Phases Versus Number of Training Epochs 

Zoomed in from Epoch No = 4000 to 8000. 

Epochs number of 4000 may appear as a large number of 
training iterations that required for the neural network to reach 
a steady detection performance which insinuates a 
computational challenge appertains to the running time 
required to train the network. However, due to the simple and 
efficient network architecture, the entire training phase takes 
less than five minutes (299 seconds at rate of 13 seconds per 
epoch). On the other hand, the prediction stage of the system is 
more time-crucial in comparison to the training phase. Most of 
the computational overhead is front-loaded during the training 
phase, the prediction process for 50,000 traffic flows takes less 
than 0.068 second (in a rate of 1e-6 second per each traffic 
flow), which is considered as highly computational efficient. 

2) The variation of sigmoid slope experiment: In this 
experiment, the slope of sigmoid function (activation function 
used in all network neurons) was changed in the range 
0 ≤  𝛼 ≤ 1  and the detection accuracy, sensitivity and FPR 
metrics were recorded. 

As shown in Fig. 9, the performance of the system shows a 
noticeable enhancement as 𝛼  parameter is increased from 

0.1 to 0.2 , however, as the value of 𝛼  transcends 0.2 , the 
system shows a degradation in terms of accuracy and FPR. 
Furthermore, as the value of 𝛼 transcends 0.5, the network fails 
to converge. 

On the other hand, even though detection rate shows an 
enhancement as value of 𝛼 transcends 0.2, it is unnoticeable 
and in comparison, to the FPR-based behavior, it cannot be 
adapted. Thus, based on the experiment we have adapted 
𝛼 = 0.2. 

3) The variation of learning rate experiment: In this 
experiment, the effect of learning rate on the system 
performance is investigated. As shown in Fig. 10, the 
detection performance is decremental as the learning rate 
exceeds 𝛾 > −10 , whereas, system performance, for all 
metrics, shows almost a saturated behavior against increasing 
learning rate in the range −30 ≤ 𝛾 ≤ −10 . Therefore, 
𝛾 =  −10, was adapted. 
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Fig. 9. System Performance (in Terms of Accuracy, Detection Rate and FPR) Under different Values of Sigmoid Slope 𝛼. (a) Sigmoid Activation Function 

Profiles for Different Values of Slope 𝛼. (b) Detection Accuracy versus Changing Sigmoid Slope 𝛼 Parameter. (c) Detection Rate versus Changing Sigmoid Slope 
𝛼 Parameter. (d) FPR versus Changing Sigmoid Slope 𝛼 Parameter. 

 
Fig. 10. Accuracy, Recall (Sensitivity), and FPR Performance of the Proposed Model in Training and Testing Phases Under Different Values of Learning Rate 

Parameter 𝛾. 

V. CONCLUSION 
In this paper, we have proposed a backpropagation neural 

network-based methodology for DDoS attacks detection in IoT 
networks. CICDDoS2019 dataset has comprehensive 
categories of reflective DDoS attacks that have been 
considered, so our scheme uses this dataset for model training 
and evaluation. In contrast to many machines learning-based 
DDoS intrusion detection models that adapt numerous 
preprocessing steps and multiple stages and hybrid types of 
machine learning algorithms to attain high detection 
performance, our proposed model requires a simple 
preprocessing step used the standard backpropagation neural 
network only as a detection engine where we have achieved 
competitive detection performance. Results show that our 
model achieves a recall of 0.9946 and accuracy and FPR of 

0.9576 and 0.0793 respectively. In our experimental results, we 
have conducted extensive comparisons with other up-to-date 
DDoS intrusion detection schemes, and we examined the effect 
of changing epoch parameter on the overall performance of the 
backpropagation neural network, however, for further detection 
performance amelioration, tunning other hyperparameters and 
examining their impact can be offered as a future work where 
different approaches such as Bayesian optimization and 
Random search can be utilized for this purpose. 
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