
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

A Hybrid Quartile Deviation-based Support Vector
Regression Model for Software Reliability Datasets

Y. Geetha Reddy1, Dr. Y Prasanth2

Research Scholar1, Professor2

Department of Computer Science and Engineering
KLEF, Guntur District, A.P., India

Abstract—Software reliability estimation using machine
learning play a major role on the different software quality
reliability databases. Most of the conventional software
reliability estimation model fails to predict the test samples due
to high true positive rate of the traditional support vector
regression models. Most of the traditional machine learning
based fault prediction models are integrated with standard
software reliability growth measures for reliability severity
classification. However, these models are used to predict the
reliability level of binary class with less standard error. In this
paper, a hybrid support vector regression-based quartile
deviation growth measure is implemented on the training fault
datasets. Experimental results are simulated on various
reliability datasets with different configuration parameters for
fault prediction.

Keywords—Software fault detection; reliability prediction;
support vector machine; exponential distribution; quartile deviation

I. INTRODUCTION
Reliability, in its simplest form, means that a failure

cannot occur within a certain period of time. The reliability
concept thus stresses the probability, expected function (s),
time, and operating conditions of four components. Reliability
also depends on the conditions of the system that may or may
not change over time. Software systems have increased
significantly in size and complexity in recent decades, and the
trend is expected to continue in the future [1]. Computer
reliability and accessibility, usability, performance,
serviceability, capabilities, and documentation are important
attributes of software quality. Software reliability is difficult
to achieve since software complexity seems to be high. While
it is difficult to achieve a certain degree of reliability for any
highly complex system, including software, system developers
tend to upgrade the software layer with complexity and
rapidly developing system sizes. The Software Reliability
Growth Model (SRGMs) is a software reliability model
(SRMs) design recognition class which is converted into a
mathematical model. The reliability assessment of recent
system updates is an important challenge in IT software
management [2].

The probabilistic models are based on dynamic models and
are represented as time-based statistical distributions. All these
models are used to predict current trends and predict future
trends in reliability. Probabilistic software reliability
prediction models use statistical methods to estimate variables
such as system error numbers, failure rates, software
complexity, programme failures, etc. There are a number of

software models in the literature, but none of them is ideal.
The selection of an appropriate estimate model based on a
specific application is a major research problem [3]. A data set
that includes instances of defined classes and a test data set for
which the class must be decided must therefore be entered.
The quality of the data provided for learning, and also the type
of algorithm used in machine learning, depends greatly on the
ability to classify successfully. Categorical labels (discrete,
unorderly) estimate classification results of continuously
valued function models. It implies that numerical data values
are expected instead of class marks to be incomplete or
inaccessible. Regression analysis is the most widely used
statistical method for numerical forecasting. Although other
methods are available, the prediction also consists of
identifying distribution trends based on available data. Genetic
algorithms are also implemented to maximise the number of
delayed input neurons and the number of neurons in the neural
network's hidden architectural layer. We have demonstrated,
using the software model for online adaptation that good-
fitness and next-step predictability are better than traditional
methods when cumulative software failure times are forecast
because those variables' meanings are certainly not known.
Many potential values can be equated to the likelihood of
occurrence. Therefore, we really don't know when the next
loss will happen. We know only a few possible failure times
and their likelihood. “T” Two types of fault data, namely,
time-domain data and interval-domain data, are widely used in
software reliability modeling. The time-domain form is
determined by the time the failure occurred. Learning
supervised is a methodology for machine learning to build a
data structure for preparation. Maximum Likelihood
Assessment (MLE) is a common statistical method for the
determination of the probability distribution parameters
underlying a given dataset. Throughout the literature, there are
many predictive models of the reliability of software-based
neural networks, which are better known than certain
statistical models [4-6]. Computer reliability is one of the key
factors taken into account in maintaining the accuracy of the
computer. Simply put, software reliability is about system
failure or failure [7]. "Success and success" are two distinct
variables commonly included in our software development. A
fault could be identified as a fault or error during the
development phase. As software constraints and modular
complexity increase, the manufacture of a quality finished
product is too difficult. Software defects may lose cash and
time, so bugs for good performance products and decision-
makers need to be predicted in advance. As a consequence,
these bug accounts contain comprehensive data on bugs along

796 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

with the seriousness level [8] within different bug tracking
frameworks. Generally, software bugs are defective
limitations that trigger inaccurate outputs. These limitations
can be described as a collection of characteristics to discover
the bugs. These features affect the bug prediction model's
effectiveness. Applications for software defect detection
include decision trees, multifunctional regressions, neural
networks, SVM, nave Bayes, and various classification types
and selection models. But the relevant flaws for suitable
classification could not be selected in these designs. Nave
Bayes is a highly efficient method of classification for
predicting flaws based on samples of practice. A naive Bayes
system sees bug predictions as binary classifiers, i.e., by
evaluating historical measurement information, it trains and
predicts the predictor. If the attribute kinds in the metric
information are blended, errors owing to lacking values or
uncertain data are hard to estimate. Three separate layers of
dynamic analysis can be classified. A systemic testing layer is
the first layer. This layer is designed into the policy to run
target programs. These strategies are designed to efficiently
achieve error states. The second layer is a layer of data
retrieval. In order to check programme correctness, data on the
inner behaviour of the target programmes is collected. In the
third level, monitors create from the information collected an
abstract model of the destination programme and then check
for possible errors in the programme on the abstract model.
The test limits are fundamental to all dynamic analysis
techniques. Dynamic analysis cannot support full target-
program analysis because it uses monitored partial programme
compliance. The other restriction is that it is hard to
implement dynamic analysis methods except for the
completion of the target programs. Executable environments
and sample instances involve dynamic analysis methods. [9]
the significance of various software prediction-model metrics.
In this model, correlations and metric events were introduced
using distinct algorithms in the bug forecast model, and bug
counts were calculated in each metric. Object-oriented
measurement metrics for object-oriented quality software A
model for bug-projection was proposed and its levels with
high, medium, and low severity defects were found to be
lower than traditional models with various severe values. The
technique of regression is intended to predict the quantity and
density of software defects. The technique of classification
aims at determining whether or not a software module (e.g. a
package, code, or file) has a higher risk of defect than another.
This approach [10] uses fuzzy logic with neural networks in
software reliability prediction. The recurrent neural network is
trained using the back-propagation algorithm. The number of
failures and cumulative execution time in the failure dataset
are used as inputs to the network to predict the next step
failure.

The rest of the paper is organized as follows. Section II
describes the related works of the SRM and its limitations.
Section III describes the proposed solution to the SRM based
machine learning framework on different dataset. Section IV
describes the experimental results and analysis. Finally, we
conclude the paper in Section V.

II. RELATED WORK
Lazarova et al. have developed various SRGMs

concerning the growth rate software reliability index for error
detection [11]. Li et.al, proposed a measuring method as an
indicator collection, gathering data for the testing of all those
metrics [12]. Mirchandaniet al. suggested the non-
homogeneous Poisson method-based software reliability
growth pattern because the detection of these errors might also
lead to detection of other errors without failure [13]. Nagaraju
proposed an evolutionary model of the neural network to
estimate and predict the software reliability based on a
multimedia architecture input and output. In this study, the
development of neural network models for software-reliability
predictions was proposed using an Exponential and
Logarithmic Encoding Scheme. Neural network models with
the two encoding schemes above have shown a better
prediction of cumulative failures than some statistical models.
However, [14] the value of the encoding parameter is
calculated by repeated hit / test experiments. This paper
presents recommendations for encoding parameter selection,
which provide consistent results for various data sets. The
proposed solution is implemented using 18 separate data sets
and a clear result for all datasets is observed. The method was
compared to known statistical models using three sets of
change points.

Rani [15] proposed a neural network approach focused on
predictions of software reliability. He compared the approach
to parametric model recalibration with some meaningful
predictive measures with the same data sets. We concluded
that better predictors are neural network methods.

Rizvi et al. [16] proposed a system in which software
reliability based on the neural network would be expected.
They used the reverse propagation algorithm for instructions.
They used several failure times in the last 50 to estimate the
next failure as output. The performance of approaches was
calculated by changing the number of input nodes and hidden
nodes. We concluded that the success of the strategy usually
depends on the quality of the data sets.

Sagar [17] submitted a neural network approach focused
on the evolutionary prediction of device reliability. They used
single output architecture with multiple delayed inputs.
Vojdani [18] suggested two models for cumulative system
failure estimation, such as exponential neural network
encoding (NNEE) and logarithmic encoding (NNLE). He
encoded the data with the above two encoding scheme, i.e. the
time of execution. He used the four dataset method and
compared the results with some statistical models and found
better results than those models.

Wang et al. [19] have proposed to reuse data from
previous projects / releases for failure to boost early reliability
for current projects / releases. Wang et al.[20] proposed the
combinational dynamic weighted model (DWCM) based on a
neural network for the prediction of device reliability. Based
on the software-reliability growth model (SRGM), they used
various activation functions within the secret layer. The
method was used on two sets of data and the effect was
compared with certain statistical models. The experimental
results indicate that the DWCM approach is more successful

797 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

than traditional models. The neural network is a methodology
for performance computation. The machine performance can
previously be predicted on the basis of our neural network
architecture. The system is also trained unless its desired
output or destination can be achieved. For training purposes,
we use different learning techniques that are freely described
as supervised and unattended learning [21]. Software
reliability is a quantitative study of every software designed
since it affects directly software quality [22]. An efficient
software reliability model is required in order to achieve good
results. The previously developed reliability model is based on
the analysis of faults linked to the code and context in which it
was implemented [23]. All software reliability models are
designed based on the execution time and calendar time. The
time required or spent by the processor in the execution of
instructions from the program is the execution time of any
program [24].

Research Gaps: From the literature works, the main gaps
identified for the software reliability estimation process are:

1) Difficult to predict the new reliability test data using
machine learning approach.

2) Traditional SVM require different hyper parameters in
order to improve the classification optimization.

III. PROPOSED GEOMETRIC PERTURBATION BASED PRIVACY
PRESERVING CLASSIFIER

In this section, a statistical quartile deviation-based
improved SVR prediction model is proposed on the software
reliability datasets. In this work, a novel approach to predict
the software reliability on the training and test software fault
data. This model is integrated with the quartile deviation
growth function in order to fit the S shaped curve. In the
proposed model, reliability estimation is performed in two
phases. In the initial phase, quartile deviation based error
estimation is calculated on the training data for software
reliability prediction. In the second phase, a hybrid support
vector regression model is designed and implemented on the
computed S-shaped training data as shown in Fig. 1.

Fig. 1. Proposed Ensemble Deep Learning Framework for Privacy

Preserving.

In the proposed model, an enhanced support vector
regression is designed and implemented on the software fault
dataset to improve the prediction rate and to minimize the
error rate. The following proposed SVR model is implemented
on the fault data. Initially, input data is given to hybrid SVR
model to predict the effort rate. The prediction values of the
SVR are tested using the Quartile deviation model and
maximized composite reliability measures. These measures
are used to find the deviation, skewness and shape of the
dataset. The impact of failures on decision making is
calculated using traditional software metrics. Extensive
research was done using one or two software stage metrics to
discover the error models. However, redundant and
meaningless characteristics affect the effects of traditional
designs. Also, the relationship between the new metrics and
the traditional metrics is becoming too complex to make
decisions as the number of software metrics increases.
Generally, software metrics are used to gain quantitative
insight into the software or its characteristics. The value of
metrics is an ordinal, an interval, or a nominal scale. Software
quality is assessed by the various features such as
performance, documentation, easy maintenance and system
soundness. Software reliability is considered as it is difficult to
achieve with the complex nature of software. The software is
therefore layered by the system developers throughout the
design process to achieve a certain level of reliability, to
support the later update of the software system and also to
incorporate elasticity for increased system size. The reliability
of software is inversely linked to the level of software
complexity, since complexity is directly associated with
enhanced capacity and strong software system features with
enhanced functions. The main objective of this paper is to
improve the software reliability prediction using the hybrid
SVR model.

Let m(x) be the input data, m be the estimation function.
M value is estimated by using multiple linear regression
method. Then the objective function of the proposed SVR
model is given as

𝐶(𝑥) ≔
1
2
∥ 𝑤 ∥2+

Where

MLR(x) = Multiple linear regression

IV. EXPERIMENTAL RESULTS
In this work, experimental results are simulated with java

environment for different software reliability datasets. The
first, second, third and fourth datasets DS1, DS2, DS3, and
DS4 are taken from Rome air development centre (RADC)

. (x). (x)

ξψ φ

(x) | m(x) m(x) | | m(x) MLR(x) |

ψ = − = −

2 2' ||x x;|| /2.

(x, x) e− − σφ =

*
k k

*
k k

2
,

2 *
k k,

1min C(x) || w || . (x). (x) b
2
1min C(x) || w || . | | . (x) b
2

ξ ξ

ξ ξ

= +λ ψ φ +

= +λ ξ −ξ φ +

798 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

projects. Each dataset and its type are given in Table I,
Table II, Table III and Table IV.

TABLE I. DS1 FOR FAULT PREDICTION BASED ON SEVERITY LEVEL

W CF Label

1 16 L

2 24 L

3 27 L

4 55 M

5 41 L

6 49 L

7 54 M

8 58 M

9 69 M

10 75 H

11 81 H

12 86 H

13 90 H

14 93 H

15 96 H

16 98 H

17 99 H

18 100 H

19 100 H

20 100 H

TABLE II. DS2 FOR FAULT PREDICTION BASED ON SEVERITY LEVEL

W CF Label

1 28 L

2 29 L

3 29 L

4 29 L

5 29 L

6 37 M

7 63 M

8 92 H

9 116 H

10 125 H

11 139 H

12 152 H

13 164 H

14 164 H

15 165 H

16 168 H

17 170 H

18 176 H

TABLE III. DS3 FOR FAULT PREDICTION BASED ON SEVERITY LEVEL

W F label

40 71 M

41 72 M

42 74 M

43 74 M

44 80 M

45 84 M

46 84 M

47 84 M

48 84 M

49 85 H

50 86 H

51 89 H

52 90 H

53 90 H

54 92 H

55 108 H

56 120 H

57 128 H

58 129 H

59 139 H

60 146 H

TABLE IV. DS4 FOR FAULT PREDICTION BASED ON SEVERITY LEVEL

W F Label

 33 79 L

34 80 L

35 82 L

36 83 L

37 83 L

38 84 L

39 84 L

40 85 M

41 85 M

42 87 M

43 87 M

44 87 M

45 89 M

46 89 M

47 91 H

48 91 H

49 94 H

799 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

Fig. 2 represents the mean time to failure rate and its
runtime for the proposed exponential distribution function.
Here, the proposed exponential function is used to test the
reliability of the given input parameters.

Fig. 3 represents the F-measure rate for the proposed
exponential distribution function to the existing models. Here,
the proposed exponential function is used to test the reliability
of the given input parameters. From the figure, it is observed
that the proposed approach has better improvement over the
conventional model on all the datasets.

Fig. 4 represents the recall rate for the proposed
exponential distribution function to the existing models. Here,
the proposed exponential function is used to test the reliability
of the given input parameters. From the figure, it is observed
that the proposed approach has better improvement over the
conventional model on all the datasets.

Fig. 2. Mean Time to Failure Rate and Runtime of the Proposed Model to

the Exponential Model.

Fig. 3. Comparison of Proposed Fault Prediction Model to Existing

Weighted SGRM Model on All Datasets.

Fig. 4. Comparison of Proposed Fault Prediction Model to Existing

Improved Weighted SGRM Model on All Datasets.

V. CONCLUSION
Software reliability fault prediction plays a vital role in

small- and large-scale software applications. In this paper, a
hybrid support vector regression-based quartile deviation
model is implemented on the different software reliability
datasets. Most of the traditional machine learning based fault
prediction models are integrated with standard software
reliability growth measures for reliability severity
classification. However, these models are used to predict the
reliability level of binary class with less standard error.
Experimental results proved that the proposed reliability fault
prediction model has better performance in terms of prediction
and time is concerned.

VI. FUTURE WORK
In future work, a supervised learning model is integrated to

the SVR model in order to predict the reliability for the new
unclass labelled data.

REFERENCES
[1] J. Cho, S. M. Shin, S. J. Lee, and W. Jung, “Exhaustive test cases for the

software reliability of safety-critical digital systems in nuclear power
plants,” Nuclear Engineering and Design, vol. 352, p. 110151, Oct.
2019, doi: 10.1016/j.nucengdes.2019.110151.

[2] L. V. Utkin and F. P. A. Coolen, “A robust weighted SVR-based
software reliability growth model,” Reliability Engineering & System
Safety, vol. 176, pp. 93–101, Aug. 2018, doi:
10.1016/j.ress.2018.04.007.

[3] E. Abuta and J. Tian, “Reliability over consecutive releases of a
semiconductor Optical Endpoint Detection software system developed
in a small company,” Journal of Systems and Software, vol. 137, pp.
355–365, Mar. 2018, doi: 10.1016/j.jss.2017.12.006.

[4] C. Jin and S.-W. Jin, “Parameter optimization of software reliability
growth model with S-shaped testing-effort function using improved
swarm intelligent optimization,” Applied Soft Computing, vol. 40, pp.
283–291, Mar. 2016, doi: 10.1016/j.asoc.2015.11.041.

[5] M. S. Alhammadi, B. S. Almaqrami, and B. Cao, “Reliability of Beta-
angle in different anteroposterior and vertical combinations of
malocclusions,” Orthodontic Waves, vol. 78, no. 3, pp. 111–117, Sep.
2019, doi: 10.1016/j.odw.2019.02.002.

[6] D. Amara and L. B. Arfa Rabai, “Towards a New Framework of
Software Reliability Measurement Based on Software Metrics,”
Procedia Computer Science, vol. 109, pp. 725–730, Jan. 2017, doi:
10.1016/j.procs.2017.05.428.

[7] J.-E. Byun, H.-M. Noh, and J. Song, “Reliability growth analysis of k-
out-of-N systems using matrix-based system reliability method,”
Reliability Engineering & System Safety, vol. 165, pp. 410–421, Sep.
2017, doi: 10.1016/j.ress.2017.05.001.

[8] F. Febrero, C. Calero, and M. Ángeles Moraga, “Software reliability
modeling based on ISO/IEC SQuaRE,” Information and Software
Technology, vol. 70, pp. 18–29, Feb. 2016, doi:
10.1016/j.infsof.2015.09.006.

[9] A. Lanna, T. Castro, V. Alves, G. Rodrigues, P.-Y. Schobbens, and S.
Apel, “Feature-family-based reliability analysis of software product
lines,” Information and Software Technology, vol. 94, pp. 59–81, Feb.
2018, doi: 10.1016/j.infsof.2017.10.001.

[10] V. Ivanov, A. Reznik, and G. Succi, “Comparing the reliability of
software systems: A case study on mobile operating systems,”
Information Sciences, vol. 423, pp. 398–411, Jan. 2018, doi:
10.1016/j.ins.2017.08.079.

[11] S. Lazarova-Molnar and N. Mohamed, “Reliability Assessment in the
Context of Industry 4.0: Data as a Game Changer,” Procedia Computer
Science, vol. 151, pp. 691–698, Jan. 2019, doi:
10.1016/j.procs.2019.04.092.

[12] Q. Li and H. Pham, “NHPP software reliability model considering the
uncertainty of operating environments with imperfect debugging and

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8R
el

ia
bi

lit
y

pr
ed

ic
tio

n
ac

cu
ra

cy

Test data samples

Original

WeightedSGRM

Predicted

0

20

40

60

80

100

1 2 3 4 5 6 7 8

R
ec

al
l S

V
R

Test samples

Original

IWSGRM

Predicted

800 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

testing coverage,” Applied Mathematical Modelling, vol. 51, pp. 68–85,
Nov. 2017, doi: 10.1016/j.apm.2017.06.034.

[13] C. Mirchandani, “Adaptive Software Reliability Growth,” Procedia
Computer Science, vol. 140, pp. 122–132, Jan. 2018, doi:
10.1016/j.procs.2018.10.309.

[14] V. Nagaraju, V. Shekar, J. Steakelum, M. Luperon, Y. Shi, and L.
Fiondella, “Practical software reliability engineering with the Software
Failure and Reliability Assessment Tool (SFRAT),” SoftwareX, vol. 10,
p. 100357, Jul. 2019, doi: 10.1016/j.softx.2019.100357.

[15] P. Rani and G. S. Mahapatra, “A novel approach of NPSO on dynamic
weighted NHPP model for software reliability analysis with additional
fault introduction parameter,” Heliyon, vol. 5, no. 7, p. e02082, Jul.
2019, doi: 10.1016/j.heliyon.2019.e02082.

[16] S. W. A. Rizvi, V. K. Singh, and R. A. Khan, “Fuzzy Logic Based
Software Reliability Quantification Framework: Early Stage Perspective
(FLSRQF),” Procedia Computer Science, vol. 89, pp. 359–368, Jan.
2016, doi: 10.1016/j.procs.2016.06.083.

[17] B. B. Sagar, R. K. Saket, and Col. Gurmit Singh, “Exponentiated
Weibull distribution approach based inflection S-shaped software
reliability growth model,” Ain Shams Engineering Journal, vol. 7, no. 3,
pp. 973–991, Sep. 2016, doi: 10.1016/j.asej.2015.05.009.

[18] A. Vojdani and G. H. Farrahi, “Reliability assessment of cracked pipes
subjected to creep-fatigue loading,” Theoretical and Applied Fracture
Mechanics, vol. 104, p. 102333, Dec. 2019, doi:
10.1016/j.tafmec.2019.102333.

[19] J. Wang, Z. Wu, Y. Shu, and Z. Zhang, “An optimized method for
software reliability model based on nonhomogeneous Poisson process,”
Applied Mathematical Modelling, vol. 40, no. 13, pp. 6324–6339, Jul.
2016, doi: 10.1016/j.apm.2016.01.016.

[20] J. Wang and C. Zhang, “Software reliability prediction using a deep
learning model based on the RNN encoder–decoder,” Reliability
Engineering & System Safety, vol. 170, pp. 73–82, Feb. 2018, doi:
10.1016/j.ress.2017.10.019.

[21] J. Yang, Y. Liu, M. Xie, and M. Zhao, “Modeling and analysis of
reliability of multi-release open source software incorporating both fault
detection and correction processes,” Journal of Systems and Software,
vol. 115, pp. 102–110, May 2016, doi: 10.1016/j.jss.2016.01.025.

[22] O. Yazdanbakhsh, S. Dick, I. Reay, and E. Mace, “On deterministic
chaos in software reliability growth models,” Applied Soft Computing,
vol. 49, pp. 1256–1269, Dec. 2016, doi: 10.1016/j.asoc.2016.08.006.

[23] M. Zhu and H. Pham, “A two-phase software reliability modeling
involving with software fault dependency and imperfect fault removal,”
Computer Languages, Systems & Structures, vol. 53, pp. 27–42, Sep.
2018, doi: 10.1016/j.cl.2017.12.002.

[24] B. Zou, M. Yang, E.-R. Benjamin, and H. Yoshikawa, “Reliability
analysis of Digital Instrumentation and Control software system,”
Progress in Nuclear Energy, vol. 98, pp. 85–93, Jul. 2017, doi:
10.1016/j.pnucene.2017.03.006.

801 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	1) Difficult to predict the new reliability test data using machine learning approach.
	2) Traditional SVM require different hyper parameters in order to improve the classification optimization.

	III. Proposed Geometric Perturbation based Privacy Preserving Classifier
	IV. Experimental Results
	V. Conclusion
	VI. Future Work

