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Abstract—Prostate cancer is the 3rd most diagnosed cancer
overall. Current screening methods such as the prostate-specific
antigen test could result in overdiagonosis and overtreatment
while other methods such as a transrectal ultrasonography are
invasive. Recent medical advancements have allowed the use of
multiparametric MRI — a noninvasive and reliable screening
process for prostate cancer. However, assessment would still vary
from different professionals introducing subjectivity. While con-
volutional neural network has been used in multiple studies to ob-
jectively segment prostate lesions, due to the sensitivity of datasets
and varying ground-truth established used in these studies, it is
not possible to reproduce and validate the results. In this study,
we executed a repeatable framework for segmenting prostate
cancer lesions using annotated apparent diffusion coefficient maps
from the QIN-PROSTATE-Repeatability dataset — a publicly
available dataset that includes multiparametric MRI images of
15 patients that are confirmed or suspected of prostate cancer
with two studies each. We used a main architecture of U-Net
with batch normalization tested with different encoders, varying
data image augmentation combinations, and hyperparameters
adopted from various published frameworks to validate which
combination of parameters work best for this dataset. The best
performing framework was able to achieve a Dice score of 0.47
(0.44-0.49) which is comparable to previously published studies.
The results from this study can be objectively compared and
improved with further studies whereas this was previously not
possible.
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I. INTRODUCTION

Prostate cancer (PCa) is the 3rd most diagnosed and the
8th leading cause of death among all cancers; this constitutes
to a 7.3% incidence rate and 3.8% mortality rate from 2020
worldwide cancer cases [1].

While the Prostate-Specific Antigen (PSA) test remains to
be an effective test at detecting prostate cancer [2], approx-
imately 40% from this screening method were found to be
an occurrence of overdiagnosis [3]. This increases the risk of
overtreatment leading to unnecessary procedures which yielded
conflicting results in terms of benefit [4].

Recent developments in multiparametric magnetic reso-
nance imaging (mpMRI) have provided a reliable non-invasive
screening process for detecting clinically significant cancer
with great specificity [5], [6] while being non-inferior to a

systematic biopsy [7]. This allows the lesion to be classified in
a more specific manner through objective metric scoring mea-
sures such as the Prostate Imaging and Reporting Archiving
Data System (PI-RADS) [8]. However, the process for scoring
requires a qualified professional to observe various images and
manually assess the presence and severity of the lesion. It is
also worth noting that due to the subjectivity of the assessment,
results may vary for different professionals.

Various convolutional neural network (CNN) algorithms
have allowed applications in MRI images specific to PCa
through prostate organ segmentation and volume estimation,
lesion detection, and lesion segmentation [9]. These studies
explore the viability of creating an aid for professionals to use
as basis and potentially lessen the subjective component of the
assessment. But in training and comparing results, the ground-
truth is set forth by the professionals’ assessment which poses
the problem of a standardized ground-truth.

The QIN-PROSTATE-Repeatability (QPR) Dataset [10] is
a publicly available annotated dataset. This dataset includes
mpMRI images of 15 patients of two studies each with
confirmed or suspicion of prostate cancer. These images can
be utilized as input and ground-truth.

This study aims to create a pipeline to execute the task of
prostate lesion detection and segmentation from an ensemble
of frameworks from recent CNN studies to be applied on the
QPR dataset for validation.

II. STATEMENT OF THE PROBLEM

Results from mpMRI images need to be assessed by a
qualified professional (e.g. trained radiologist). The procedure
remains to be subjective [6] and may vary from person-to-
person. The Prostate Imaging and Reporting Archiving Data
System (PI-RADS) provides a systemic scoring for image
interpretation and lesion detection [8] but does not completely
eliminate the subjectivity of human interpretation.

There have been various studies involving the implemen-
tation of CNN to prostate mpMRI images [9]. However, most
of the datasets used are not publicly available. Moreover, the
ground-truth for various studies involving CNN applications
for PCa also varies depending on the qualified professional
assigned for the assessment. This results in a lack of stan-

www.ijacsa.thesai.org 819 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

dardization. The results from these studies also could not be
objectively compared, reproduced, nor improved.

III. SCOPE AND LIMITATIONS

The study focused on PCa specifically found in the pe-
ripheral zone (PZ) only. About 70% of all PCa are found to
be in the PZ having the most amount of prostatic glandular
tissue [11]. Patients whose lesions were not found within the
PZ were not considered. For sequences and views, only the
apparent diffusion coefficient (ADC) map was considered. In
PI-RADS scoring for PZ PCa, ADC along with diffusion-
weighted imaging (DWI) images are used as references for
scoring while dynamic contrast-enhanced (DCE) images are
used to distinguish between PI-RADS 3 and 4 having T2-
Weighted images used as a supplementary [12]. The DICOM
files acquired from the QPR dataset for this study is limited
to the ADC map only as the DWI images do not contain
any available annotated lesion segmentation. However, these
images are closely related wherein the ADC map removes the
T2-weighting aspect inherent to the DWI. T2-Weighted images
were also not considered as these are used as supplementary
in PZ PI-RADS scoring.

IV. REVIEW OF RELATED LITERATURE AND STUDIES

PCa biomedical images are not only scarce and hard to
obtain, but they require a lot of resources to manually annotate.
While this is the avenue that most studies implement, this in-
troduces variability among datasets. “An overview of publicly
available patient-centered prostate cancer datasets” is a paper
that summarizes all of publicly available patient-centered PCa
datasets with the goal of providing researchers an avenue to
select the appropriate dataset needed for their specific field of
study [13]. Among the list of datasets within the article, under
the imaging category, only the QIN-PROSTATE Repeatability
(QPR) dataset had annotated images.

Data image augmentation is a technique used to expand the
quantity of images by altering existing images from a dataset.
This has been shown to prevent over-fitting and improve
the overall accuracy while also being more advantageous to
weight decay and dropout which both require fine-tuning of
parameters [14]. Isensee et al. achieved the highest score
among participants that utilized the U-Net architecture and 2nd

place overall for the multi-class brain-tumor segmentation from
MRI in the Brain Tumor Segmentation (BraTS) 2018 challenge
[15] . This was achieved by using the baseline U-net model
while focusing on aggressive data augmentation.

For training modern deep neural networks, it was shown
that best results were consistently obtained through smaller
batch sizes (2,32) [16]. This was further validated with an ex-
periment on the effects of different batch sizes on a histopathol-
ogy dataset [17]. Kandel and Castelli ran their model on both
Adam and SGD optimizers with a learning rate (LR) set to
1× 10−4 and 1× 10−3. The best AUC was achieved with a
batch size of 16, Adam optimizer, and LR set at 1× 10−4.

The U-Net architecture showcased in a paper published
in 2015 by Ronneberger et al. proposed a model that can
be trained with limited images offset by data augmentation
[18]. It tackled the main issues presented with working with
medical data such as scarcity of an annotated dataset and the

importance of proximal location assessment. Advancements
in CNN have allowed the option of combining U-Net with
a different backbone for the encoder such as ResNet as well
as the inclusion of batch normalization.

Multiple studies have applied U-Net on prostate-related
tasks. Three U-Net models were applied to prostate MRI in a
study by Bardis et al. in segmenting the prostate, PZ, and TZ
separately [19]. The ground-truth was set by a radiologist and
achieved Dice scores of 0.94, 0.91, and 0.76 for the prostate,
TZ, and PZ segmentation respectively. A paper published in
2019 by Yoon et al. [20] used a CNN pipeline for segmenting
the prostate organ, lesion detection, and then make a PI-RADS
scoring. The study utilized U-Net for prostate organ segmenta-
tion then used R-CNN for lesion detection and segmentation.
Moreover, a single board-certified radiologist was used as the
ground truth for the manual lesion segmentation. The study
achieved lesion segmentation with a Dice score of 0.76. The
study by Sanford et al. published in 2020 was a development
study that used CNN with the goal of predicting PI-RADS
classification [21]. The lesions were segmented and bounded
by a professional radiologist which was then the input for the
CNN model. A study by Youn et al. published in 2021 [22]
explored the viability of using deep learning algorithms for PI-
RADS scoring. The study reaffirmed that at varying levels of
experience of professional radiologists, the assessment would
also vary. The study utilized a deep-learning based software
called Prostate AI version 1.2.1 which is currently not available
for commercial use.

Specific to lesion segmentation, Liu et al. implemented
fuzzy Markov random fields and attained a Dice score of 0.62.
A pathologist was used as the baseline for ground-truth and
the PZ was manually outlined to be used for segmentation
[23]. Kohl et al. used U-Net implemented with adversarial
network and achieved a Dice score of 0.41. They used a
radiologist for this study to establish their ground-truth. [24].
Dai et al. implemented Mask R-CNN and achieved a Dice
score of 0.46 while using a clinician to establish their ground-
truth [25]. These studies all have varying ways of establishing
their ground-truth and the results show that lesion segmentation
remains to be an area with promise for improvement.

V. METHODOLOGY

A. Image Dataset

The relevant DICOM files were acquired through the QPR
dataset [10] which includes segmented mpMRI images of 15
patients with two studies per patient done two months apart.
Images extracted that appear to be completely black were
removed.

3D Slicer, an open source image computing platform
developed for image analysis and visualization [26], was used
to view the DICOM files. Within 3D Slicer, the ADC map with
their corresponding segmentations were extracted. For each
extracted image, the lesion segmentation was set to red within
3D Slicer. This is to maintain a high contrast of the lesion from
the original grayscale image to assist in creating the mask.

Even if the patient has a confirmed lesion in the PZ,
the lesion can only be seen during specific frames in the
ADC sequence. Specifically, only 14.98% of the total images
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have the lesion present in them. Only images with the lesion
showing was used. The summary of images with lesion and
the distribution from the total images can be seen in Table I.

TABLE I. PERCENT DISTRIBUTION OF IMAGES WITH LESION

Total Images With Lesion Distribution
434 65 14.98%

The ADC maps are available in grayscale of dimensions
272x672 and was cropped into 256x256. Using OpenCV and
HSV threshold, the grayscale images with red lesion segmenta-
tions were transformed to images with binary masking having
a white mask for the lesion on top of a black background.
These masks served as the ground-truth for model training.

The Albumentations library [27] was used to implement
the various data augmentations. To assess the effect of vary-
ing augmentation techniques for the segmentation model, we
trained the model with varying levels of augmentation. The
augmentations are categorized as the Isensee et al., and ex-
tended realistic augmentations.

The following augmentations were adopted from the
Isensee et al., (2018) paper:

1) Horizontal Flip - This flips the image horizontally
on the y-axis. This particular augmentation is appli-
cable for the prostate as the original MRI scans are
symmetric in nature as opposed to medical images
wherein regional location is critical (e.g. images with
the heart on the left side of an image).

2) Rotate - This rotates the image randomly in degrees
within a lower and upper threshold. The threshold
was set at -45 to 45 as to maintain realistic scenarios
for mpMRI prostate scans (e.g. It would be unlikely
to have a scan that would be 90 degrees).

3) Random Sized Crop - This crops the image and scales
it back to its original dimensions. The minimum
height was set at 162 and the maximum at 192. This
allowed the PZ to be captured regardless of where
the cropping would occur. This would then be scaled
back to 256x256.

4) Random Gamma - This applies a random gamma
pixel-wise adjustment on the image. This augmen-
tation technique is viable for the prostate mpMRI
scans caused by varying equipment used by different
hospitals.

5) Elastic Transform - This applies a more liberal distor-
tion to the image. This can simulate the varying trans-
formations that naturally occur within the prostate.

Other realistic augmentation techniques were implemented
to the dataset. These are augmentations that are realistic
scenarios for variations in mpMRI scans.

1) Brightness, (BC) - This alters the image’s brightness
and contrast. This accounts for the variation in the
equipment used.

2) Blur - This blurs the input image using a median filter
with a random aperture linear size. This accounts

for the variation in quality of scans from different
equipment.

3) Grid Distortion (GD) - Random distortions are ap-
plied per grid width and height with a maximum
magnitude. This accounts for the patient’s natural
movement during breathing as well as expansion and
contraction of body parts such as the rectum.

B. Segmentation

Due to similarities in the dataset and problem being tack-
led, we chose U-Net as the main architecture for this study. The
flexible architecture also allowed us to modify the encoder with
ResNet. The architecture comprises of two major segments:
the encoding path which consists of four down-convolutions of
2x2 max pooling and a decoding path which is a set of four 2x2
up-convolutions. Batch normalization was applied before each
activation. The γ and β initializers were set to their default
values of 1 and 0.

For the model parameters, we used an Adam optimizer
with batch size set to 16 and learning rate set at 1× 10−4.
The initial epoch was set at 300. For the image sampling, we
used a train-test-validation split of 70-15-15.

To avoid overfitting the model, EarlyStopping was added
to the training on the validation loss metric with a patience of
30 epochs. This meant that if validation loss did not decrease
for 30 straight epochs, training will prematurely terminate and
not continue to train for the remaining epochs.

A larger learning rate could possibly result in non-
convergence of the model. This was mitigated by adding
ReduceLROnPlataeu which decreases the learning rate if there
is no improvement on the validation loss with a patience of
20 epochs. The maximum decreased learning rate was set at
1× 10−7 with a reduction factor of 0.1.

Dice score (F1 Score) is a segmentation performance
metric that compares the similarity of the predicted mask with
the ground-truth mask. This is calculated by having double
the intersection of the pixels of the predicted and ground-truth
mask divided by the total number of pixels of the predicted
mask and the ground-truth mask as shown in (1). The lesion
segmentation performance of the model was measured with
the average Dice score for the test images.

Dice =
2 |A ∩B|
|A|+ |B|

(1)

VI. RESULTS AND DISCUSSION

Different encoders and model variations were applied to
the dataset with Isensee augmentations applied. The results
can be seen in Table II.

TABLE II. SUMMARY OF SCORES FOR DIFFERENT MODELS

Model + Backbone Dice
U-Net 0.39

U-Net + ResNet34 0.36
U-Net + SE-ResNet152 0.30
U-Net + SE-ResNet18 0.26
U-Net + ResNet152 0.26
U-Net + Attention 0.06
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The baseline U-Net still outperformed the other variations.
The addition of Attention was also not beneficial to this
dataset. The decrease in scores when the model gets more
complicated could be attributed to the low quantity of images
in the dataset. This further validated the statement from the
Isensee et al. paper that the generic U-Net architecture can be
competitive in segmentation given a proper framework [15].

The model was trained on all possible combinations of
Isensee (base augmentation), random brightness and contrast
(BC), blur, and grid distortion (GD) augmentations to the base
U-Net. The effects of adding augmentations to the base U-Net
can be seen in Table III.

TABLE III. SUMMARY OF SCORES FOR DIFFERENT AUGMENTATIONS

Augmentations Dice
Isensee 0.392

Isensee + BC 0.411
Isensee + Blur 0.466
Isensee + GD 0.467

Isensee + BC + Blur 0.416
Isensee + BC + GD 0.411
Isensee + Blur + GD 0.256

Isensee + BC + Blur + GD 0.403

Adding realistic augmentations improved the overall score
compared to the baseline. However, the combination of using
blur and GD together did not result in an increase in score. We
believe that the generated training set from the combination
of blur and GD augmentations became too distant from the
features that were present within the original images while the
BC augmentations were not enough to significantly alter them.

The highest Dice score of 0.467 was achieved with Isensee
+ GD augmentations followed closely by the Isensee + blur
augmentations with a Dice score of 0.466. To verify the
performance of the framework with Isensee + GD and Isensee
+ Blur augmentations, each model was trained thrice. Each
cycle had new sets of training augmentations with randomized
rotations and distortion values fit within the range and tested
on the same test images. Dice scores from the Isensee + GD
and Isensee + blur runs can be seen in Table IV and Table
V, respectively. The results show that the Isensee + GD runs
were more consistent than the Isensee + blur runs and implies
that the more aggressive augmentation works better for this
particular dataset.

TABLE IV. COMBINATION OF ISENSEE AND GD DICE SCORE

Dice 1 Dice 2 Dice 3 Average
0.47 0.44 0.49 0.47

TABLE V. COMBINATION OF ISENSEE AND BLUR DICE SCORE

Dice 1 Dice 2 Dice 3 Average
0.47 0.37 0.40 0.41

The average Dice score of the Isensee + GD model was
then compared to previously done studies. This can be seen in

Table VI. For this comparison, only the segmentation results
that had a similar approach and methodology were considered.
The result from the Liu et al. paper [23] was not considered
since the their methodology included a preliminary process of
manually outlining the PZ while only considering said pixels
for segmentation.

TABLE VI. SUMMARY OF SCORES COMPARED TO LITERATURE

Model Dice
Mask R-CNN (Yoon et al., 2019) 0.76

U-Net in this study 0.47
Mask R-CNN (Dai et al., 2020) 0.46

U-Net (Kohl et al., 2017) 0.41

While this comparison involved studies that were estab-
lished using different ground-truths, the aim was to have
a more standardized comparison with this framework with
potential areas for improvement.

VII. CONCLUSION

In this study, we provided a repeatable framework for
prostate lesion segmentation that can be improved and com-
pared with future studies. We used the ADC map and isolated
the images that contained lesion as the input for the model
trained using various encoders and augmentation combina-
tions. The baseline U-Net with batch normalization trained on
images augmented with a combination of Isensee (horizontal
flip, random rotation, random sized crop, random gamma,
elastic transform) and grid distortion augmentations with batch
size of 16 and LR set at 1× 10−4 using Adam optimizer
for Dice loss performed best and achieved an average Dice
score of 0.47 (0.44-0.49). Furthermore, the QPR dataset shows
promise in being a viable standardized dataset for future testing
and benchmarking as shown by the comparison of results to
other published studies.

VIII. RECOMMENDATIONS FOR FUTURE WORK

Due to hardware limitations, the study only implemented
a hold-out method. However, it is worth considering to im-
plement a k-fold cross-validation technique for performance
metrics evaluation and fine-tuning of parameters. Moreover,
other models with different encoders could be considered.
For the dataset, new augmentation techniques and various
combinations may be further explored. Lastly, the use of other
mpMRI views aside from the ADC map could be looked into.
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