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Abstract—According to the anti-control principle of chaos,
a combined control method is proposed based on a class of
asymptotically stable linear systems with multiple controllers.
A higher-dimensional hyperchaotic system is investigated by the
Lyapunov exponents method and equilibrium points analysis,
and it exists the largest number of positive Lyapunov exponents.
The chaotic pseudo-random sequences of the higher-dimensional
hyperchaotic system can pass all NIST tests after preprocess-
ing, and behave better chaotic characteristics. Meanwhile, a
new encryption algorithm of image information with position
scrambling, sequential diffusion and reverse diffusion is designed
based on the chaotic pseudo-random sequences. The experiments
of image information are given to verify the effectiveness and
feasibility of the encryption algorithm. Finally, the security
analyses are also discussed by the key sensitivity, differential
attack and statistical analysis. It is shown that the encryption
algorithm has large enough key space and can be applied to
secure communication.

Keywords—Hyperchaotic system; positive lyapunov exponent;
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I. INTRODUCTION

With the rapid development of computer network technol-
ogy and intelligent equipment, the digital information may be
stolen or even destroyed by the attacker when it is transmitted
through the public network, such as the personal privacy infor-
mation, images and videos. In particular, some information is
used in military, medical, political and other important fields,
so it is very necessary to protect the integrity and confidential-
ity of the information transmission process. Information hiding
and information encryption are two important information pro-
tection technologies. Information hiding is to hide information
in another information carrier and transmit it through public
channel, and it includes information hiding algorithm, digital
watermarking, hidden channel technology and anonymous
communication technology, etc. The information encryption
is to design encryption algorithms to improve the security and
efficiency by the characteristics of digital information. Usually,
the image encryption includes uncompressed and compressed
image encryption [1].

The chaos-based image encryption is one of widely used
security method. It can not only prevent the loss of image
information, but also convert original image into unrecognized
encrypted image. The chaos-based image encryption gener-
ally includes two important steps: scrambling and diffusion
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encryption. The scrambling method can scramble the position
of the plaintext image without changing the pixel value of
the image, and it reduces the correlation between adjacent
pixels of the image. The diffusion method changes the pixel
value of the image through XOR operation, which makes the
distribution of the encrypted image information more uniform
and random. Therefore, the combination of scrambling and
diffusion encryption is very effective for the image encryption.

Since Lorenz found the chaos from the mathematical
model of meteorology, chaos theory has attracted extensive
attention of scientists. Chaotic system is usually generated
from a nonlinear dynamic system, and the characteristics
of initial condition sensitivity, non-periodicity, long-term un-
predictability and pseudo-randomness are very suitable for
image encryption and other information encryption [2]–[7].
Moreover, some of the chaos-based encryption algorithms are
analysed and may be not resist the chosen-plaintext attacks
[8]. In [9], the security loopholes of an image encryption
algorithm based on random walk and hyperchaotic systems
are found, and the attack method is proposed to successfully
break the encryption scheme. Therefore, the security of en-
cryption algorithm based on chaotic system is one of the
most important factors for information secure communication,
and more secure chaos-based encryption algorithm need to be
analysed and proposed. Compared with the lower-dimensional
chaotic system, the higher-dimensional hyperchaotic system
has more positive Lyapunov exponents, and the pseudo-random
sequences generated by iteration are more complex chaotic
characteristics. The encryption algorithm based on the higher-
dimensional hyperchaotic system can be used for information
secure communication [10]. The positive Lyapunov exponent is
one of useful methods to show whether the nonlinear dynamic
system exists chaos or not. Generally, the chaotic system
has one positive Lyapunov exponent, while the hyperchaotic
system has two or more positive Lyapunov exponents [11]. The
number and size of positive Lyapunov exponents can reflect
the chaotic characteristics of the system, and the hyperchaotic
system with multiple positive Lyapunov exponents has more
complex dynamic characteristics.

In recent years, the research on higher-dimensional hyper-
chaotic systems with multiple positive Lyapunov exponents has
attracted much attention [12]–[14]. In [15], an effective image
encryption algorithm of confusion and diffusion encryption is
proposed based on chaotic system, and it is very sensitive
to the initial variables. A new chaos-based image encryption
algorithm is investigated in [16], and the security test shows

www.ijacsa.thesai.org 869 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

that the algorithm has good security performance and can resist
a variety of special attacks. An image encryption algorithm
based on chaotic system and DNA sequence operation is
proposed, which not only has good encryption effect, but also
can resist various typical attacks [17]. A S-box encryption
algorithm based on chaotic system is designed for secure and
fast image encryption, and NIST tests are used to verify the
randomness of the sequences [18]. A color image encryption
scheme is proposed based on non-uniform cellular automata
and hyperchaos, the security analysis shows that the scheme
has a very large key space and can resist various attacks [19]. A
new image encryption algorithm is proposed by the confusion
and diffusion based on chaos and SHA-256, and it can resist
the chosen-plaintext attack and overcome the difficulty of key
management in the “one-time password” encryption scheme
[20]. A modified logistic chaotic map are created to designed
encryption technique with better security and efficiency [21].
An image encryption algorithm is designed by combining
fractional Fourier transform, DNA sequence operation and
chaos theory, and the algorithm has good encryption effect,
large key space and high key sensitivity [22]. A technique
for encrypting RGB image components by using nonlinear
chaotic function and DNA sequence is presented in [23]. In
[24], the theoretical security of a medical privacy protection
scheme based on DNA encoding and chaotic maps is rean-
alyzed, and the scheme is rigorously proven to be insecure
against the chosen-plaintext attack. Based on a combination
of multidimensional chaotic systems, an cryptosystem for the
color image encryption is described in [25], and the level of
security and the computational complexity is improved. By
using higher-dimensional chaotic maps and some conventional
cryptographic techniques, a class of chaotic cryptosystems is
designed to enhance the security of cryptosystems [26].

The research of higher-dimensional hyperchaotic systems is
one of hot topic. Some criteria and methods for constructing
higher-dimensional hyperchaotic systems are proposed [27],
[28]. In this paper, a higher-dimensional hyperchaotic system
is investigated by the combination of multiple controllers, and
a new 11-dimensional hyperchaotic system with nine positive
Lyapunov exponents is designed. The main contributions of
this paper are as follows: (1) Through the combination of mul-
tiple controllers, a class of higher-dimensional hyperchaotic
systems with the largest number of positive Lyapunov expo-
nents is studied; (2) Based on the chaotic sequences generated
by the iteration of higher-dimensional hyperchaotic system, an
encryption algorithm is proposed by combining the position
scrambling, sequential diffusion and inverse diffusion. (3) The
feasibility and security of the new encryption algorithm based
on 11-dimensional hyperchaotic system are verified through
the simulation experiments.

The rest of this paper is organized as follows. Section II
is the design method of hyperchaotic system. Section III is
the design of encryption algorithm. The security analysis of
the encryption algorithm is given in Section IV. Section V
concludes the paper.

II. CONSTRUCTION OF HIGHER-DIMENSIONAL
HYPERCHAOTIC SYSTEMS

A. Chaotic Anti-Control System with Combined Controllers

According to the anti-control method of higher-dimensional
hyperchaotic systems, a nominal asymptotically stable linear
dynamical system is given by [29]

Ẋ = PAP−1X (1)

where X = (x1, x2, · · · , xn), the matrix A and the
similarity transformation matrix P are given as follows:

A =


A1 0 0 0 0
0 A2 0 0 0
...

...
. . .

...
...

0 0 · · · Am−1 0
0 0 · · · 0 Am


n×n

if n is even,m =
n

2

A =


A1 0 0 0 0
0 A2 0 0 0
...

...
. . .

...
...

0 0 · · · Am 0
−1 −1 · · · −1 τ


n×n

if n is odd,m =
n− 1

2

P =


0 1 · · · 1 1
1 0 · · · 1 1
...

...
. . .

...
...

1 1 · · · 0 1
1 1 · · · 1 0


n×n

and Ai =

(
λi ψi1

ψi2 λi

)
is a block matrix, where ψi1 × ψi2 < 0, τ < 0.

Next, a uniformly bounded controller f(σX, ε) and control
matrix C are designed for the system (1), such that

Ẋ = PAP−1X + Cf(σX, ε) (2)

The combination of controllers f(σX, ε) and the control
matrix C are given by

f(σX, ε) =


ε1 sin(σ1x1 + φ1) + ε2 cos(σ2x1 + φ2)
ε1 sin(σ1x2 + φ1) + ε2 cos(σ2x2 + φ2)

...
ε1 sin(σ1xn−1 + φ1) + ε2 cos(σ2xn−1 + φ2)
ε1 sin(σ1xn + φ1) + ε2 cos(σ2xn + φ2)



C =


0 0 · · · 0 0
0 0 · · · 0 0
...

... 1(i,j)
...

...
0 0 · · · 0 0
0 0 · · · 0 0


n×n

where ε1, σ1, φ1, ε2, σ2, φ2 are controller parameters, 1(i,j)
denotes that the element in row i and column j is equal to 1,
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i.e., the controller is in the state of working.

When the dimension n = 11, the matrices Ai (i =
1, 2, 3, 4, 5) are given by

A1 =

(
−0.01 1.00
−6.00 −0.01

)
, A2 =

(
−0.01 18.00
−2 −0.01

)
A3 =

(
−0.01 15.00
−1.00 −0.01

)
, A4 =

(
−0.01 22.00
−2.50 −0.01

)
A5 =

(
−0.01 3.00
−20.00 −0.01

)
and τ = −0.01, ε1 = 76, σ1 = 8, φ1 = 6, ε2 = 68, σ2 =

5, φ2 = 4, the control position (i, j) = (11, 10), therefore, the
controlled system is given as follows:

Ẋ = PAP−1X +


0
0
...
0

f(x10)


11×1

(3)

where the combined controller

f(x10) = 76 sin(8x10 + 6) + 68 cos(5x10 + 4)

and it is shown in Fig. 1.
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Fig. 1. The Function of Combined Controller f(x10) (x Denotes x10)

B. Chaotic Attractors and Lyapunov Exponent

By the calculation on the software of Matlab R2021a, the
Lyapunov exponents of system (3) are given by

LE1 = 4.37,LE2 = 0.49,LE3 = 0.41

LE4 = 0.35,LE5 = 0.29,LE6 = 0.26

LE7 = 0.22,LE8 = 0.16,LE9 = 0.02

LE10 = 0.00,LE11 = −6.68

Obviously, the 11-dimensional hyperchaotic system has 9
positive Lyapunov exponents, so it has strong chaotic charac-
teristics.

Furthermore, the initial values

X(0) = (0.2, 0.1, 0.3, 0.1, 0.2, 0.1, 0.5, 0.6, 0.7, 0.4, 0.2)

then the phase diagrams of chaotic attractor are shown in
Fig. 2.
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Fig. 2. Attractor of the Controlled Hyperchaotic System (3)

C. Equilibrium Point Analysis of the Controlled System

Obviously, the only one equilibrium point of the system
(1) is

Xe = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and the corresponding eigenvalues of Jacobi matrix at the
equilibrium point Xe are given by

λ1,2 = −0.01± 7.7460i

λ3,4 = −0.01± 7.4162i

λ5,6 = −0.01± 6.0000i

λ7 = −0.01

λ8,9 = −0.01± 3.8730i

λ10,11 = −0.01± 2.4495i

Since all eigenvalues are negative, so the system (1) is
asymptotically stable.

However, the controlled system (3) has multiple equi-
librium points, and the equilibrium points of the controlled
system (3) can be obtained by Eq. (4).

Therefore, the corresponding solutions can be obtained by
the Cramer rule [11]:

xi =
|Ei|
|D|

= (−1)(11+i)−f(x10)
|D|

|M11,i|

(i = 1, 2, · · · , 11)

where D = PAP−1, Ei is the matrix that the ith column
of the matrix D is replaced by the controller vector in right-
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2.74 −0.25 22.75 −19.25 5.25 −12.25 3.75 −15.25 4.75 1.75 8.75
3.75 1.74 4.75 −17.25 7.25 −10.25 5.75 −13.25 6.75 3.75 10.75
1.45 2.45 22.44 −19.55 4.95 −12.55 3.45 −15.55 4.45 1.45 8.45
2.00 0.00 23.00 −19.01 3.00 −12.00 4.00 −15.00 5.00 2.00 9.00

−0.45 −2.45 20.55 0.55 3.04 −14.45 1.55 −17.45 2.55 −0.45 6.55
1.85 −0.15 22.85 −19.15 5.35 −12.16 2.85 −15.15 4.85 1.85 8.85
0.25 −1.75 21.25 −20.75 3.75 1.25 2.24 −16.75 3.25 0.25 7.25
1.95 −0.05 22.95 −19.05 5.45 −12.05 3.95 −15.06 2.95 1.95 8.95

−0.05 −2.05 20.95 −21.05 3.45 −14.05 1.95 0.95 2.94 −0.05 6.95
2.35 0.35 23.35 −18.65 5.85 −11.65 4.35 −14.65 5.35 2.34 3.35
1.65 −0.35 22.65 −19.35 5.15 −12.35 3.65 −15.35 4.65 2.65 8.64





x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11


=



0
0
0
0
0
0
0
0
0
0

f(x10)


(4)

hand side of the Eq. (4), and M11,i is the algebraic cofactor
of Ei, i.e., the solutions xi of the controlled system (3) are
given by

x1 =
11339f(x10)

−106923
, x2 =

10152750f(x10)

106923

x3 =
10156849f(x10)

106923
, x4 =

10155828f(x10)

106923

x5 =
10160590f(x10)

106923
, x6 =

10155606f(x10)

106923

x7 =
10167011f(x10)

106923
, x8 =

10155721f(x10)

106923

x9 =
10161661f(x10)

106923
, x10 =

10252559f(x10)

106923

x11 =
10157933f(x10)

106923

(5)

Hence, one has
106923

10252559
x10 = −76 sin(8x10 + 6)− 68 cos(5x10 + 4)

if one lets
y1 =

106923

10252559
x10

and
y2 = −76 sin(8x10 + 6)− 68 cos(5x10 + 4)

then the intersection points (x10, y1) of y1 = y2 are shown
in Fig. 3, and the equilibrium points of the controlled system
are given by Eq. (5).

III. DESIGN OF ENCRYPTION ALGORITHM

A. Data Preprocessing

An image encryption scheme is designed based on 11-
dimensional hyperchaotic system. Firstly, the 4th-order Runge-
Kutta method is used to discretize the 11-dimensional hyper-
chaotic system, where the Runge-Kutta formula is given by

Xi+1 = Xi +
h

6
(K1 + 2K2 + 2K3 +K4)

K1 = f(ti, Xi),K2 = f(ti +
h

2
, Xi +

h

2
K1)

K3 = f(ti +
h

2
, Xi +

h

2
K2),K4 = f(ti + h,Xi + hK3)

(i = 1, 2, · · ·n, · · · )

-2 -1 0 1 2 3 4

-150

-100

-50

0

50

100

150

200

250

Fig. 3. The Intersection Points of y1 and y2 in Equation (4)

The initial values of the hyperchaotic system X(0), and
the step h = 0.001, then the image encryption algorithm are
given as follows:

Step 1: The number of pre-iterations is equal to
(
2000 +

mod(sum, σ1 × ε1 × φ1)
)

and it is used to counteract the
transient effect of chaotic iteration, where sum is sum of
pixel values of original image, mod is the modular function,
and σ1, ε1, φ1 are controller parameters. The pseudo-random
sequences generated by the iteration of 11-dimensional hyper-
chaotic system are X = (X1, X2, · · · , X11).

Step 2: The operations of rounding, modulo and shifting
are used to generate the pseudo-random sequences Z =
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(Z1, Z2, · · · , Z11), i.e.,

Z1 = fix(mod(mod(X1, 1)× 1012, 1)× 109)

Z2 = fix(mod(mod(X2, 1)× 1014, 1)× 109)

Z3 = fix(mod(mod(X3, 1)× 1013, 1)× 109)

Z4 = fix(mod(mod(X4, 1)× 1013, 1)× 109)

Z5 = fix(mod(mod(X5, 1)× 1012, 1)× 109)

Z6 = fix(mod(mod(X6, 1)× 1013, 1)× 109)

Z7 = fix(mod(mod(X7, 1)× 1012, 1)× 109)

Z8 = fix(mod(mod(X8, 1)× 1014, 1)× 109)

Z9 = fix(mod(mod(X9, 1)× 1011, 1)× 109)

Z10 = fix(mod(mod(X10, 1)× 1013, 1)× 109)

Z11 = fix(mod(mod(X11, 1)× 1015, 1)× 109)

where the function fix represents the rounding operation,
and the pseudo-random sequences Z can pass most tests of
NIST.

Step 3: In order to ensure that the encryption algorithm has
better encryption effect, the pseudo-random sequences Z are
further obtained by

W1 = mod((Z1 − Z2 + Z3),MN) + 1

W2 = mod((Z4 + Z5), 256)

W3 = mod((Z6 + Z7 + 1), 256)

W4 = mod((Z8 + Z9 + 1), 256)

W5 = mod((Z10 + Z11), 256)

Then the new pseudo-random sequences W =
(W1,W2, · · · , W5) can pass the NIST test, and they
are given in Section V.

B. Encryption Algorithms

The encryption algorithms include scrambling encryption,
sequential diffusion encryption and reverse diffusion encryp-
tion. The image information is chosen as an example, and the
flow chart of information encryption is shown in Fig. 4.

Original 

Information

NIST Tests

Encrypted 

Information

Pseudorandom 

Sequences X

Preprocessing 

Sequences W

Scrambling 

Encryption

Diffusion 

Encryption 1

Diffusion 

Encryption 2

No

Yes

Initial Conditions

Higher-

Dimensional 

Hyperchaotic 

System

Fig. 4. The Flow Chart of Information Encryption

a) Position Scrambling Encryption

The original image P1 is in the size of M × N , and the
pixel position of P1 is scrambled based on the pseudo-random
sequence W1, then the scrambled image P2 is obtained by

P2(i) = P1(W1(i)), (i = 1, 2, · · · ,MN)

b) Sequential Diffusion Encryption

The scrambled image P2 is encrypted by using pseudo-
random sequences W3 and W4, and the steps of encryption
are as follows:

Step 1: The first pixel value P2(1) of the scrambled image
is encrypted by the first value W3(1) of the random sequence
via the XOR operation, i.e.,

P3(1) = P2(1)⊕W3(1)

Step 2: Add the pseudo-random sequence W2(i) to the
pixel values of scrambled image P2(i), and subtract the integer
part of P2(i − 1)/φ, then the encrypted information P ′

3(i) is
obtained by the modulus of 256, i.e.,

P ′
3(i) = mod((P2(i) +W2(i)− fix(P2(i− 1)/φ)), 256)

(i = 2, 3, · · · ,MN)

Step 3: The sequence P
′

3 is encrypted with the random
sequence W3 by the XOR operation, and the encrypted image
is given by

P3(i) = P ′
3(i)⊕W3(i), (i = 2, 3, · · · ,MN)

c) Reverse Diffusion Encryption

Use the random sequence W4 and W5 to perform reverse
diffusion encryption on the sequential diffusion encrypted
image P3, and the encryption steps are given as follows:

Step 1: The P3(MN) is encrypted by the pseudo-random
sequence W5(MN), i.e.,

P4(MN) = P3(MN)⊕W5(MN).

Step 2: Through subtraction, multiplication and modulo
operations, the pixel values of P3 are encrypted from the
pseudo-random sequence W4, i.e.,

P ′
4(i) = mod(W4(i)− P3(i) + P3(i+ 1), 256)

(i =MN − 1,MN − 2, · · · , 1)

Step 3: Similarly, the P ′
4 is encrypted by the pseudo-

random sequence W5 by the XOR operation, one has

P4(i) = P ′
4(i)⊕W5(i), (i =MN − 1,MN − 2, · · · , 1)

C. Decryption Process

The decryption is the inverse operation of the encryption,
and it is given in follows:

Step 1: The P4(MN) and W5(MN) is used to obtain the
value P3(MN) of sequential diffusion encryption, i.e.,

P3(MN) = P4(MN)⊕W5(MN)

Step 2: By addition, subtraction, multiplication and mod-
ulo operations, the P3 is decrypted by the pseudo-random
sequences W4 and W5, and it is given by

P3(i) = mod(W4(i) + P4(i+ 1)− (P4(i)⊕W5(i)), 256)

(i =MN − 1,MN − 2, · · · , 1)
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Step 3: Similarly, the P2 (1) of scrambled encrypted image
is obtained by the XOR operation of P3 (1) and W3 (1), i.e.,

P2(1) = P3(1)⊕W3(1)

Step 4: By the XOR, addition, division, subtraction and
modulo operation, the scrambled encrypted image P2 is de-
crypted by the pseudo-random sequences W2 and W3, and it
is given by

P2(i) = mod((P3(i)⊕W3(i) + fix(P3(i− 1)/φ)

−W2(i)), 256), (i = 2, 3, · · · ,MN)

Step 5: The pixel value P2(i) of the scrambled image is
exchanged with the pseudo-random sequence W1(i), and then
one can get the original imageP1, i.e.,

P1(i) = P2(W1(i)), (i =MN,MN − 1, · · · , 1)

Therefore, the decryption process is completed, and the
receivers can get the recovered information from the ciphertext.

IV. EXPERIMENTAL RESULTS

Based on the 11-dimensional hyperchaotic system in Eq.
(3), the numerical simulation results are given by the proposed
encryption and decryption algorithm in Section III. The en-
cryption algorithm is tested by the Lena image in Fig. 5 (a)
with the size of 512× 512 and the Cameraman image in Fig.
5 (e) with the size of 256×256 based on the Matlab software,
and the sum of pixel values of Lena image and Cameraman
image are 32515895 and 7780728, respectively. By the initial
values

X(0) = (0.2, 0.1, 0.3, 0.1, 0.2, 0.1, 0.5, 0.6, 0.7, 0.4, 0.2)

and other parameters of controlled system in Eq. (3), the
results of encryption and decryption are shown in Fig. 5. The
encrypted images Fig. 5 (b) and (f) are chaotic and disordered,
and the original information can not be distinguished, so the
encryption algorithm is effective.

In the encryption algorithm, the sum of image pixel values
is used to obtain the key of the encryption. Obviously, the
sum of pixel values of different images is different, so the
different images will generate different keys to the encryption,
i.e., the cryptosystem has the effect of “one-time-pad”. Hence,
one cannot get any information of the plaintext image from
the encrypted image, and the encryption algorithm is effective
for secure communication.

Meanwhile, the error images in Fig. 5 (d) and (h) show that
the errors between the recovered image and the original image
are equal to zero, and Fig. 5 (c) and (g) show the original
information can be recovered successfully by the decryption
algorithm.

The hyperchaotic system is highly sensitive to the initial
values X(0), A, P, εi, σi (i = 1, 2), etc., and the initial values
are used as the encryption keys. If one of the keys is wrong,
the ciphertext image cannot be successfully recovered, because
the different initial values will generate different chaotic se-
quences. For example, if the value of the controller parameter
is changed from ε1 = 76 to ε1 = 75, then the Lena image

is encrypted by the corresponding pseudo-random sequences
W , but the experiments show that the Lena image cannot be
recovered successfully. Similarly, if the initial values X(0) are
changed to

X(0) = (0.1, 0.1, 0.3, 0.1, 0.2, 0.1, 0.5, 0.6, 0.7, 0.4, 0.2)

the experimental results show that the Lena image cannot
be recovered successfully, so the encryption algorithm is also
sensitive to the initial values X(0).
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Fig. 5. Experiments Results of Image Encryption and Decryption

V. SECURITY ANALYSIS

A. Analysis of Key Sensitivity

A good encryption algorithm must be sensitive to the small
change of the key, i.e., if there is a small change of the key,
then the ciphertext image can not recovered completely. The
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key space is depended on the sensitivity of matrix A, similar
transformation matrix P , controller parameter ε1, σ1, φ1 and
the initial values X(0) of controlled system. As there are 121
elements in matrix A and similar transformation matrix P ,
one needs to keep other keys unchanged but change only
one key with small error, and then the experimental results
of decipher images are given in Fig. 6. Fig. 6 (a) shows the
decrypted image obtained by using the correct keys, and the
ciphertext image can be recovered successfully. Fig. 6 (b)-(d)
shows the decrypted image with the small error key, but the
ciphertext image cannot be recovered successfully. Through
experimental tests, Table I shows the ciphertext can not be
decrypted successfully when the errors of key is greater than
or equal to the minimum values.

TABLE I. TEST RESULTS OF KEY SENSITIVITY

Error of key Recovered successfully
|x1 − x′1| ⩾ 10−16 No
|x2 − x′2| ⩾ 10−15 No
|x3 − x′3| ⩾ 10−16 No
|x4 − x′4| ⩾ 10−17 No
|x5 − x′5| ⩾ 10−16 No
|x6 − x′6| ⩾ 10−16 No
|x7 − x′7| ⩾ 10−16 No
|x8 − x′8| ⩾ 10−15 No
|x9 − x′9| ⩾ 10−16 No
|x10 − x′10| ⩾ 10−16 No
|x11 − x′11| ⩾ 10−15 No
|σ1 − σ′

1| ⩾ 10−15 No
|ε1 − ε′1| ⩾ 10−14 No
|φ1 − φ′

1| ⩾ 10−15 No
|A(i, j)−A(i, j)′| ⩾ 10−15,

(i, j = 1, 2, · · · , 11) No

|P (i, j)− P (i, j)′| ⩾ 10−15,
(i, j = 1, 2, · · · , 11) No

The experimental results show that the image can not be
decrypted successfully by using the key with small error. In
Table I, it can be estimated that the key space of the encryption
algorithm is

KS = 1014 × (1015)5 × (1015)121 × (1015)121 × (1016)7

× 1017

= 103848 ≫ 2210

B. Histogram and Chi-Square Test

Histogram describes the distribution of image pixel value.
The more uniform the distribution of pixel value, the better the
effect of the encryption algorithm. Fig. 7 shows the histograms
of the plaintext image and the encrypted image, respectively.

In addition, the Chi-square test is used to illustrate that
the cryptosystem has very good confusion characteristics [30].
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Fig. 6. Decryption Results of Encrypted Image with Different Keys
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Fig. 7. Histogram of Lena and the Corresponding Encrypted Image

The grayscale level of a grayscale image is 256, and then

χ2 =

255∑
i=0

(fi − gi)

gi
, (i = 0, 1, 2, · · · , 255)

where fi is the frequency of each 0 to 255 pixel level in
the histogram of the encrypted image, gi is the ideal frequency
of uniform distribution, i.e.,

gi =
MN

256
, (i = 0, 1, · · · , 255)

where M and N are the length and width of the image,
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respectively. If the χ2 distribution with a degree of freedom
of 255 and the significance level is 0.05, then χ2

0.05(255) =
293.25. In Table II, the χ2 test of original images is signif-
icantly greater than 293.25, but the encrypted images are all
less than 293.25. Therefore, the distribution of the histogram
of the encrypted image is uniform, and it do not disclose any
information by the statistical analysis.

TABLE II. χ2 TESTS

Image Lena Cameraman Barbara
Original Image 158350 110970 144100

Encrypted Image 223.64 238.89 215.80

C. Information Entropy

Information entropy is used to describe the randomness of
image information, and it’s defined as follows [31]:

H = −
n∑

i=1

pi log2(pi)

where pi is the probability of the i-th gray value. For gray-
scale images, the expected entropy of image information is
equal to 8. The entropy of three different images and encrypted
images are shown in Table III. The entropy of encrypted
images is close to 8, so the encryption algorithm is suitable to
encrypt the plaintext information and it has good encryption
effect.

TABLE III. INFORMATION ENTROPY

Image Plaintext Image Encrypted Image
Lena 7.4456 7.9915

Cameraman 7.0097 7.9902
Barbara 7.4664 7.9916

Lena in Ref. [32] 7.4456 7.9907
Lena in Ref. [33] 7.4456 7.9768

D. Analysis of Correlation Coefficient

The high correlation between the pixels of the plaintext
image makes the image look clear and one may distinguish the
image information. The correlation coefficient of unencrypted
image is usually large, and the encryption algorithm will
reduce the correlation between pixels to zero or close to zero.
If N pairs of adjacent pixels are taken from the image and
their gray value is (ei, fi) (i = 1, 2, · · · , N), the formula of
correlation coefficient for vectors e = {ei} and f = {fi} is
given as follows [34]:

ref =
cov(e,f)√
D(e)

√
D(f)

cov(e,f) =
1

N

N∑
i=1

(ei − E(e))(fi − E(f))

D (e) =
1

N

N∑
i=1

(ei − E(e))
2
, E (e) =

1

N

N∑
i=1

ei

If the ei denotes the pixel value in position (ki, li), and
the fi denotes the pixel value in position (ki+1, li), then the
calculation result is the correlation coefficient in the horizontal
direction. Similarly, 1000 pairs of pixel points of Lena are
randomly selected in the vertical, horizontal, diagonal and
anti-diagonal directions, and the corresponding correlation
coefficients are shown in Table IV. Meanwhile, the correlations
of Lena and the encrypted images are given in Fig. 8, the
correlation coefficient of the encrypted image of proposed
algorithm has been close to 0.
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Fig. 8. Correlation Analysis of Lena Image

E. Differential Analysis

A secure cryptographic system should be highly sensitive to
small changes in the key or plaintext image during encryption
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TABLE IV. CORRELATION COEFFICIENTS OF PLAINTEXT AND
CIPHERTEXT

Image Horizontal Vertical Diagonal Average
Lena 0.9831 0.9737 0.9666 0.9745

Encrypted −0.0092 −0.0116 0.0114 0.0086
Ref. [35] 0.0141 0.0296 0.0054 0.0164
Ref. [36] −0.0253 0.0026 0.0091 0.0123

and decryption. Especially, if the small changes in the plaintext
image will produce completely different encrypted images,
then it will be more effectively to resist chosen-plaintext
attacks. NPCR and UACI are often used to analyze whether
the encryption algorithm has a good encryption effect and
security. NPCR is the proportion of different pixel numbers in
all pixel points. UACI represents the average difference of the
pixel values of the encrypted image when the original image is
with one pixel (or some pixels) different in pixel values. The
calculation formulas are given as follows [37]:

NPCR =

M∑
i=1

N∑
j=1

D(i,j)

M ×N
× 100%

D(i,j) =

{
1, x (i, j) ̸= x′ (i, j)
0, x (i, j) = x′ (i, j)

UACI =

M∑
i=1

N∑
j=1

x(i,j)−x′(i,j)
255

M ×N
× 100%

where x is the encrypted image, and x′ is the new encrypted
image when the plaintext is changed by one pixel or some
pixels. If the 97 in 99-th pixel value of Lena image is changed
to 98, the 132 in 99-th pixel value of Barbara image is changed
to 133, and the 156 in 99-th pixel value of Cameraman image is
changed to 157, then the NPCR and UACI of corresponding
encrypted images are shown in Table V, and they are very
close to the expected values (NPCR ≈ 99.6094%, UACI ≈
33.4635%). So the encryption algorithm can resist plaintext
attacks and has significant encryption effect.

TABLE V. NPCR AND UACI OF ENCRYPTED IMAGE(%)

Image NPCR UACI
Lena 99.6174 33.5231

Cameraman 99.6323 33.3901
Barbara 99.6281 33.3537

Ref. [38] 99.8700 33.2900
Ref. [39] 99.2402 33.3873

F. NIST Test

NIST test is used to verify the random characteristics of
random sequences, and it includes 15 tests, such as single bit
frequency, longest-run-of-ones and non-overlapping template
matching [40]. If the random sequence can pass all NIST
test, i.e., the p-values are greater than 0.01, then the random
sequence has good randomness. The pseudo-random sequences

Z are obtained by the chaotic sequences X , and the results of
NIST test for pseudo-random sequences Z are shown in Table
VI, i.e., most tests of NIST are passed. Similarly, the results
of NIST test for pseudo-random sequences W are shown in
Table VII, and all the p-values are greater than 0.01, so the
NIST test is passed.

VI. CONCLUSION

Through the combined controllers of trigonometric func-
tion, a class of asymptotically stable nominal linear systems
are controlled to be hyperchaotic system, and a 11-dimensional
hyperchaotic systems with 9 positive Lyapunov exponents is
constructed. Meanwhile, an encryption algorithm of scram-
bling, sequential diffusion and inverse diffusion is designed
based on the new hyperchaotic system. The encryption algo-
rithm has many key parameters and initial values, and the key
is related to plaintext information. To some extent, it has a large
enough key space and can resist exhaustive attack and chosen-
plaintext attack, etc. An example of image encryption is given
by the simulation experiments, and it shows that the encryption
algorithm based on higher-dimensional hyperchaotic system is
feasible, effective and secure. Therefore, the chaos-based en-
cryption algorithm can be applied to the secure communication
in the near future, such as the encryption of images, video and
other multimedia information.
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