
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Exploring Regression-based Approach for Sound
Event Detection in Noisy Environments

Soham Dinesh Tiwari
Department of Computer Science & Engineering

Manipal Institute of Technology
Manipal, India 576104

Karanth Shyam Subraya
Department of Computer Science & Engineering

Manipal Institute of Technology
Manipal, India 576104

Abstract—Sound-event detection enables machines to detect
when a particular sound event has occurred in addition to
classifying the type of event. Successful detection of various sound
events is paramount in building secure surveillance systems and
other smart home appliances. However, noisy events and environ-
ments exacerbate the performance of many sound event detection
models, rendering them ineffective in real-world scenarios. Hence,
the need for robust sound event detection algorithms in noisy
environments with low inference times arises. You Only Hear
Once (YOHO) is a purely convolutional architecture that uses
a regression-based approach for sound-event-detection instead
of the more common, frame-wise classification-based approach.
The YOHO architecture proved robust in noisy environments,
outperforming convolutional recurrent neural networks popular
in sound event detection systems. Additionally, different ways to
enhance the performance of the YOHO architecture are explored,
experimenting with different computer vision architectures, dy-
namic convolutional layers, pretrained audio neural networks and
data augmentation methods to help improve the performance
of the models on noisy data. Amongst several modifications to
the YOHO architecture, the Frequency Dynamic Convolution
Layers helped improve the internal model data representations
by enforcing frequency-dependent convolution operations, which
helped improve YOHO performance on noisy audios in outdoor
and vehicular environments. Similarly, the FilterAugment data
augmentation method and Convolutional Block Attention Module
helped improve YOHO’s performance on the VOICe dataset
containing noisy audios by augmenting the data and improving
internal model representations of the input audio data using
attention, respectively.

Keywords—Sound Event Detection (SED); sound event clas-
sification; frequency dynamic convolution; audio processing; Fil-
terAugment; data augmentation; vision transformers; Pretrained
Audio Neural Networks (PANN); Convolutional Block Attention
Module (CBAM)

I. INTRODUCTION

In machine learning, sound event detection (SED) identifies
the different sounds in an audio file and identifies the start
and end time of a particular sound event in the audio. Vari-
ous applications use SED, such as speech recognition, audio
surveillance [1], and context-based indexing and data retrieval
in a multimedia database [2].

Most of the research and development in SED today is
focused on building sound event detection systems that can
be trained using weakly labelled data, i.e., audios without
timestamps for the occurrence of each event or unlabelled data
[3]–[5]. Hence, there is an increased focus on using models
that employ semi-supervised learning [4], [6], [7] to learn from

weakly labelled and unlabelled data. Moreover, most of these
works use sequential models or transformer architectures to
leverage the sequential nature of audio data [8]–[10].

However, the consequence of using sequential and
transformer-based architectures is increased model complexity,
machine computation requirements, and inference times. In
addition, the audios from various sources are seldom devoid of
any interfering noise or disturbance in real-life. Consequently,
this makes such models unsuitable for deployment in smart
devices, which have constraints on the compute available and
often are required to make inferences in real-time, in addition
to often operating in noisy environments. Architectures with
short inference times, low model parameters, and high accu-
racy enable smart devices to deliver accurate insights more
quickly.

The You Only Hear Once (YOHO) architecture proposed
by S. Venkatesh et al. draws inspiration from the famous
computer vision architecture - You Only Look Once (YOLO)
[11] and only makes use of different forms of convolutions,
with no sequential layers. The YOHO algorithm matches
the performance of the various state-of-the-art algorithms on
datasets such as Music Speech Detection Dataset [12], TUT
Sound Event [13], and Urban-SED datasets [14] and at lower
inference times. The fast inference can be ascribed to YOHO’s
regression-based approach, which takes the entire audio stream
as input and predicts each audio event’s start and end time us-
ing regression instead of performing framewise classification.

Hence, this work tests the performance of the You Only
Hear Once (YOHO) [15] algorithm on noisy audio data from
different acoustic environments like indoors, outdoors, and
in vehicles. The experiments show that the standard YOHO
architecture is better than other popular sound event detection
architectures when tackling noisy audios. Thus, we used the
regression-based sound event detection approach from YOHO
and combined it with other computer vision architectures,
pretrained audio neural networks and methods like attention,
data augmentation and dynamic convolutions to increase model
performance in noisy environments. However, it was difficult
to improve on the standard YOHO architecture’s F1 scores. In
the end, we were able to improve the performance of YOHO
on the VOICe dataset by replacing the standard convolutional
layers in the architecture with frequency dynamic convolution
layers which helped mitigate translational invariance along the
frequency axis of the log-Mel spectrograms. We also made use
of the FilterAugment data augmentation method and Convolu-
tional Block Attention Module (CBAM) to improve YOHO’s

www.ijacsa.thesai.org 880 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

F1 scores for specific noise environments. Hence, in the end
we modified the novel, purely convolutional, regression-based
architecture proposed by S. Venkatesh et al. [15] to use atten-
tion, better internal data representations and data augmentation
to further improve YOHO’s SED performance on noisy data
with a negligible increase in the model parameters.

The first section, “Introduction” explains the motivation
for undertaking this work. The second chapter, “Background
Theory and Literature Review”, deals with the different con-
cepts used in this work and discusses relevant research. The
third chapter, “Methodology and Implementation Details”,
elaborates on the architecture designs and the steps undertaken
in the experiments. The fourth chapter, “Results and Analysis”
delineates and analyses the results. The fifth and ultimate chap-
ter, “Conclusion and Future Work” provides a gist of the future
scope of the research and possible technical improvements.

II. BACKGROUND THEORY AND LITERATURE REVIEW

This section discusses the current state of research in sound
event detection. It also elaborates on the different architectures
and techniques in addition to the dataset and various attention
and activation functions used in this work.

A. State of Research in SED

Early approaches for SED had adapted techniques from
music information retrieval and speech recognition, such as
Hidden Markov Models (HMMs) and Gaussian Mixture Mod-
els (GMMs) [16]. However, HMMs could not deal with
polyphonic audio containing co-occurring sound events.

The advent of deep learning demonstrated the adeptness
of deep neural networks in multi-label sound event classi-
fication and dealing with polyphonic audio. While a simple
feed-forward neural network (FFN) could perform multi-label
classification, it was limited in its ability to model the temporal
information in signals. Consequently, plain FNNs did not gain
popularity for use in SED applications.

In 2017, Cakir et al. showed that the Convolutional Re-
current neural networks (CRNNs) [8] architectures were well
suited for the SED task. The recurrent neural networks (RNNs)
combined with convolutional neural networks (CNNs) could
capture the audio’s local and global context.

The following aspects helped the CRNN architecture per-
form well in the SED task:

• Using successive blocks of convolutional layers and
non-linear transformations, the architecture learned
distinguishing characteristics in the input log-Mel
spectrograms and generated feature embeddings.

• The recurrent layers would then model the temporal
dependencies in the feature embeddings from the
convolutional layers.

• The framewise classification approach was used to
predict the existence of audio events in each audio
frame.

However, a drawback of the CRNN architecture was that
processing times were higher, resulting from the sequential

layers preventing the architecture from fully utilising GPUs’
parallel computation.

To shorten inference durations without compromising high
precision and recall, S. Venkatesh et al. introduced the You
Only Hear Once (YOHO) architecture for SED [15]. The
You Only Look Once (YOLO) algorithm, which is popular in
Computer Vision, served as an inspiration for the YOHO algo-
rithm. YOLO significantly reduced the processing durations for
the input images and enabled real-time object recognition by
changing the prediction of object bounding boxes from a clas-
sification problem to a regression problem. Similarly, YOHO
transforms the frame-based, multi-label classification problem
of acoustic boundary detection into a regression problem. To
achieve this, multiple sets of three different output neurons
were used, one for each class. The presence of an event class
is detected by one neuron, and its start and endpoints are
predicted by the other two in each set for the particular class.
As a result, on numerous datasets, the YOHO article showed
a higher F-measure and lower error rate than CRNNs [15].

The current focus of the majority of SED research and
development is building sound event detection systems that
can be trained using weakly labelled data (audios without
timestamps for the occurrence of each event) or unlabelled
data [3]–[5] As a result, semi-supervised learning models are
being used more frequently [4], [6], [7] to learn from weakly
labelled and unlabelled data. Additionally, the majority of these
works take advantage of the sequential aspect of audio data
by using sequential models or transformer architectures [7]–
[9]. However, this work aims to explore the regression-based,
supervised learning approach for SED; hence, semi-supervised
learning approaches for SED are not a focus of this work.

B. VOICe Dataset

VOICe is a new dataset for developing and evaluating
generalizable sound event detection and domain adaptation
methods. VOICe is offered for sound event detection domain
adaptation from one acoustic scene to another or between
sound events with background and without background noise
[17]. The VOICe dataset consists of 207 different audio
mixtures containing audios with three different sound event
labels:

1) babycry
2) gunshot
3) glassbreak

These audio events are then superimposed with audios from
the following 3 acoustic scenes:

1) outdoor
2) indoor
3) vehicle

The noisy audios are mixed at 2 different sound-to-noise-
ratio (SNR) levels:

1) -3 dB
2) -9 dB

The dataset also consists of 207 audio mixtures devoid
of background noise. Consequently, there are a total of 1449
audio mixtures - 207 mixtures x 3 acoustic scenes x 2 SNRs

www.ijacsa.thesai.org 881 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

= 1242 noisy audios + 207 clean audios. These audio files are
divided into “training”, “testing”, and “validation” sets. The
testing and validation audio files are 60 seconds long, whereas
the training audio files last about 180 seconds.

We used the noisier SNR -9 dB audios from the VOICe
dataset [17] to assess the performance of YOHO and other
architectures in this work on noisy audio. It is a dataset
that has been artificially constructed utilising noise from var-
ious acoustic scenes and sound events from the TAU Urban
Acoustic Scenes 2019 development set and TUT Rare Sound
Events 2017 development set, respectively. We would have
an algorithm that is resilient to noise and performs sound
event recognition considerably faster than other contemporary
algorithms if it can perform well on noisy data and provide
scores at least matching the CRNN algorithm. Consequently,
it would become a candidate model for portable sound event
detection devices used in natural, noisy environments.

C. YOHO Algorithm

Instead of using the conventional, bigger YOLO architec-
ture, S. Venkatesh et al. modified the final layers of the Mo-
bileNet [15] architecture to implement the YOHO architecture.
As can be seen in Table I, YOHO is purely a convolutional
neural network. The initial MobileNet architectural layers are
retained in the initial half of the table. Layers adjusted for the
target dataset are in the latter half.

Consequently, YOHO has faster inference times than de-
signs with sequential layers like CRNNs because it is built as
a solely convolutional neural network with no recurrent layers.
The probability and the beginning and ending times of each
event label are output from the neural network, which takes as
input log-Mel spectrograms of the audios. In addition, because
this end-to-end method directly predicts acoustic boundaries,
it takes lesser time for post-processing and smoothing [18].

Log-Mel spectrograms are used as the YOHO model’s
input. Next, a 3x3 2D convolution with a stride of 2 is
performed after reshaping the input, halving the time and
frequency dimensions. The MobileNet design uses depth-wise
separable convolutions [19] with 3x3 filters, followed by point-
wise convolutions [20] with 1x1 filters. All convolutions except
the final layer were followed by batch normalisation [21] and
ReLU activations [22]. Every time a stride of two is used, the
time and frequency dimensions are halved.

D. PANNs: Large-scale Pretrained Audio Neural Networks for
Audio Pattern Recognition

It is common practice in computer vision and natural
language processing for systems to be pretrained on large-
scale datasets. The pretrained systems then generalise well to
several downstream tasks. However, the research on building
pretrained neural networks trained on large-scale audio datasets
is limited. Pretrained audio neural networks (PANNs) [23] are
trained on the large-scale AudioSet dataset [24]. These PANNs
are transferred to other downstream audio-related tasks. The
best PANN system achieved mean average precision (mAP) of
0.439 on AudioSet tagging, outperforming the previous state-
of-the-art result of 0.392 [23].

E. ViT: Vision Transformer

The Vision Transformer, or ViT [25], is a transformer-based
model architecture for image classification. Each image is split
into fixed-size patches. The patches are then converted to linear
embeddings using a linear transformation. The linear embed-
dings are then added to the positional embedding, and the
resulting sequence of vectors is fed to a standard Transformer
encoder. Finally, an extra learnable “classification token” in the
output sequence is used to perform image classification [25].

F. CoAtNet: Marrying convolution and Attention for All Data
Sizes

Vanilla Vision Transformers lack the inductive biases that
traditional convolutional networks possess. However, Vision
transformers have the advantage of utilising attention over
their input [26]. Hence, a model which uses convolution and
attention in machine learning benefits from two fundamental
aspects – higher generalisation and higher model capacity.
Convolutional layers have better generalisation, while attention
in the transformer layer yields higher model capacity. Hence
CoAtNet [26] is a hybrid model based on two key insights:

1) By using simple relative attention, depth-wise convo-
lution and self-attention can be naturally fused.

2) By stacking convolution layers and attention layers
in a principled manner, generalisation, capacity, and
efficiency are dramatically improved.

CoAtNet has the best of both convolution networks and
Transformers. CoAtNet not only has the generalisation ability
of convolution networks because of favourable inductive bi-
ases but also has the advantage of superior scalability from
transformers resulting in faster convergence and improved
efficiency [26].

G. KNNs: Kervolutional Neural Networks

KNNs [27] are an effort to establish convolution in non-
linear space. Existing CNN architectures primarily leverage
activation layers which only provide point-wise non-linearity.
Kervolution (kernel convolution) was introduced to approx-
imate complex behaviours of human perception systems by
leveraging the kernel trick. It claims that using the kernel
trick helps it generalise convolution, capture higher-order
interactions of features via patch-wise kernel functions, and
enhance the model capacity without introducing additional
parameters. Extensive experiments showed that kervolutional
neural networks (KNN) achieve higher accuracy and faster
convergence than baseline CNN [27].

H. CBAM: Convolutional Block Attention Module

Convolutional Block Attention Module (CBAM) [28] is an
attention module designed for convolutional neural networks.
The module sequentially computes attention maps along the
channel and spatial dimensions given an intermediate feature
map. The input feature maps are then multiplied by the
attention maps to refine the adaptive features [28].

www.ijacsa.thesai.org 882 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

I. Frequency Dynamic Convolutions

When a pattern moves along the time axis in the time-
frequency domain, it sounds the same because the frequency
components are the same, but the timing is different. On
the other hand, because the frequency component that makes
up the acoustic properties of the sound event changes as it
moves along the frequency axis, it would sound different [29].
The Frequency Dynamic Convolutions paper [29] highlights
that due to its nature, the standard 2D convolution operation
wrongly enforces translational invariance along both the time
and frequency dimensions of an input log-Mel spectrogram. In
contrast, log-Mel spectrograms exhibit invariance only along
the time axis but not the frequency axis.

Frequency dynamic convolution [29] uses a frequency-
adaptive kernel to enforce frequency-dependency on 2D con-
volution and improve the physical consistency of the model
with sound events’ time-frequency patterns. The inputs have
three axes - the frequency axes, the time axes and the parallel
channels. From the input, it first derives frequency-adaptive
attention weights. Average pooling along the time axis is
followed by two 1D convolution layers which are applied
along the channel axis the input. 1D convolution was used
rather than fully-connected (FC) layers to take into account
neighbouring frequency components. Batch normalisation and
ReLU are applied between two 1D convolution layers. The
channel dimension is compressed into the number of basis
kernels using 1D convolution layers. The softmax activation
function is then used to normalise the values of the frequency-
adaptive attention weights between zero and one.

Additionally, Softmax sets each frequency bin’s weight
sum to one. A temperature of 31 was applied to the softmax
to achieve stable training and homogeneous learning of basis
kernels. Then, using frequency-adaptive attention weights, a
weighted sum of basis kernels is used to produce frequency-
adaptive convolution kernels. The obtained kernel is used for
frequency dynamic convolution operation just like a regular
2D convolution.

J. FilterAugment Data Augmentation

FilterAugment [30] is an improved version of frequency
masking compared to SpecAugment [31]. SpecAugment in-
volved simply masking a small time and frequency range
of Mel spectrograms. While the simplicity of the time and
frequency masking makes it easily adoptable during model
training, they are unforgiving as they completely remove
portions of information from the spectrogram.

FilterAugment was proposed to regularize acoustic models
over various acoustic environments by mimicking acoustic
filters. It approximates acoustic filters by applying random
weights on randomly determined frequency bands, i.e., ran-
domly increasing or decreasing the energy of these random
frequency ranges of the log Mel spectrograms.

Hence, FilterAugment is an effective regularization ap-
proach for acoustic models as it extracts sound information
from a wider range of frequencies and it proved that general-
ising the SED model over a broader frequency range enhances
SED performance by a significant margin.

K. Mish Activation Function

f(x) = x · tanh(softplus(x)) (1)

softplus(x) = ln(1 + ex) (2)

The Mish activation function outperforms ReLU [22].
The advantages of the Mish activation function are: It has
unbounded upper limit and bounded lower limit. It is a non-
monotonic, self-regularized function and a self-gated function.
It is continuously differentiable with infinite order. It falls
under the class of C∞. In contrast, ReLU falls under the
class of C0. However, a disadvantage of Mish is that it is
computationally expensive [32].

L. SERF Activation Function

Serf, or Log-Softplus ERror activation Function, is a type
of activation function which is self-regularized and nonmono-
tonic in nature.

f(x) = x · erf(softplus(x)) (3)

erf is the error function. SERF outperforms Mish and ReLU
on a variety of tasks like image classification, object detection,
machine translation and sentiment classification on multiple
datasets [33].

III. METHODOLOGY AND IMPLEMENTATION DETAILS

The following section describes the different modification
made to each architecture for the downstream tasks as well as
the different hyperparameters set for different aspects of model
training. The codes have been made available on Github1.

A. Audio Processing

The following steps are performed to process the audio
files and corresponding annotations:

1) Convert stereo audio with SNR -9 dB into mono
audio.

2) Read mono audio at a sample rate of 44,100 Hz, then
segment it into windows, where the window length
is set to 2.56s and hop length is set to 1.96s.

3) Generate model compatible output format for each
window’s annotations.

4) Generate log-Mel spectrograms for each window us-
ing the following parameters:

a) Number of Mel bins = 40
b) Number of Fast Fourier Transform compo-

nents = 2048
c) Window length for generating spectrograms

= 1764 sample points
d) Hop length for generating spectrograms =

441 sample points
e) Minimum frequency fmin of 0 Hz
f) Maximum frequency fmax of 22,050 Hz

5) Save the log-Mel spectrograms and the model com-
patible outputs using the .npy file format for use
during model training and validation.

1https://github.com/sohamtiwari3120/YOHO-on-VOICe

www.ijacsa.thesai.org 883 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

6) At the time of model training, FilterAugment [30]
is optionally used to augment the existing dataset. It
randomly increases or decreases the energy of ran-
dom frequency regions of the log-Mel spectrogram.

B. Model Training Settings

The random seed was fixed at 0. The batch size for training
the model was set at 32. We used the -9 dB audios from the
VOICe dataset for training.

While training, the Adam [34] optimiser with the default
learning rate set to 10−3, epsilon value set to 10−7 and default
weight decay set to 0. Moreover, a call-back was used to
reduce the learning rate of the model by half during training
whenever the validation loss during training did not decrease
for 5 epochs. Gradient clipping was used to clip/keep the global
norm values of the gradients less than or equal to 0.5.

The number of epochs was not fixed, and Early Stopping
[35] regularization was utilised to stop model training if the
validation loss would not decrease for 10 or more epochs.

C. Working Changes to YOHO Architecture

Each audio file is first segmented into overlapping windows
with a window length of 2.56s and a hop length of 1.96s. The
model input dimensions are determined by the length of the
audio example and the number of Mel bins. For the VOICe
dataset, the input log-Mel spectrogram shape is (257, 40),
where 257 is the number of time steps and 40 is the number
of Mel bins.

As shown in Table I, the output of the last 2D convolu-
tion layer is reshaped by flattening the last two dimensions.
The final 1D convolution layer consisting of nine filters of
unit length yields an output matrix of shape 9x9. The first
dimension of the output corresponds to the time axis, and the
second dimension corresponds to three neurons for each of the
three classes in the VOICe dataset. The input spectrogram is
divided into nine bins along the time axis. Every row in the
output matrix represents the audio events’ start and end times
in the input spectrogram’s corresponding bin.

As seen in Fig. 1, the first, fourth and seventh neurons
perform binary classification at each time step to detect the
presence of the respective audio events. The second and third
neurons use regression to predict the start and end times of the
first audio-event class. Similarly, for the fifth, sixth, eighth and
ninth neurons and their respective second and third audio-event
classes.

Table I describes the YOHO architecture for the VOICe
dataset. Each convolution layer in the architecture makes use
of ’same’ padding to keep the shape of the output of the
convolution layer same as that of its input.

D. Working Changes to CoAtNet + CBAM Architecture

The CoAtNet architecture expects input images which
have equal height and width and three channels. Since the
size of the log-Mel spectrograms of the VOICe dataset was
(257, 40) , i.e., (number of time frames, number of mel
bins), a learnable transposed convolution layer [36] is included
before the CoAtNet architecture. The transposed convolution

TABLE I. YOHO’S ARCHITECTURE MODIFIED FOR VOICE DATASET

Layer type Filters Kernel Shape; Stride Output shape
Reshape - - (257, 40, 1)
Conv2D 32 (3, 3); 2 (129, 20, 32)

Conv2D-dw - (3, 3); 1 (129, 20, 32)
Conv2D 64 (1, 1); 1 (129, 20, 64)

Conv2D-dw - (3, 3); 2 (65, 10, 64)
Conv2D 128 (1, 1); 1 (65, 10, 128)

Conv2D-dw - (3, 3); 1 (65, 10, 128)
Conv2D 128 (1, 1); 1 (65, 10, 128)

Conv2D-dw - (3, 3); 2 (33, 5, 128)
Conv2D 256 256 (1, 1); 1 (33, 5, 256)
Conv2D-dw - (3, 3); 1 (33, 5, 256)
Conv2D 256 256 (1, 1); 1 (33, 5, 256)
Conv2D-dw - (3, 3); 2 (17, 3, 256)

Conv2D 512 (1, 1); 1 (17, 3, 512)
5x (Conv2D-dw;

Conv2D)
-

512
(3, 3);
(1, 1);

(17, 3, 512)
(17, 3, 512)

Conv2D-dw - (3, 3); 2 (9, 2, 512)
Conv2D 1024 (1, 1); 1 (9, 2, 1024)

Conv2D-dw - (3, 3); 1 (9, 2, 1024)
Conv2D 1024 (1, 1); 1 (9, 2, 1024)

Conv2D-dw - (3, 3); 1 (9, 2, 1024)
Conv2D 512 (1, 1); 1 (9, 2, 512)

Conv2D-dw - (3, 3); 2 (9, 2, 512)
Conv2D 256 (1, 1); 1 (9, 2, 256)

Conv2D-dw - (3, 3); 1 (9, 2, 256)
Conv2D 128 (1, 1); 1 (9, 2, 128)
Reshape - - (9, 256)
Conv1D 9 (1); 1 (9, 9)

layer would then reshape the input spectrogram to (257, 257)
followed by a 2D convolutional layer which would increase
the number of channels to 3. To this transformed input CBAM
attention (with reduction factor of 2 and kernel size of 3) is
applied before passing it onto the CoAtNet architecture. The
“CCTT” variant [26] of CoAtNet architecture is used, i.e., two
MobileNet Convolution Layers along with two Transformer
layers. Finally, the output of the CoAtNet architecture is passed
through a 1D Convolution layer to increase the number of
channels to 9. The changes are described in Table II.

TABLE II. WORKING CHANGES TO COATNET + CBAM ARCHITECTURE

Name Type Output Shape
input log-Mel spectrogram (1, 257, 40)
make input square ConvTranspose2d(...) (1, 257, 257)
increase channels to 3 Conv2d(...) (3, 256, 256)
cbam CBAMBlock(...) (3, 256, 256)
cn CoAtNet(...) (1, 9)
increase 1d channels Conv1d(...) (9, 9)

E. Working Changes to ViT Architecture

The Vision Transformer (ViT) expects input images with
three channels and height and width of even values since it
splits each image into fixed-size patches. In our code, the patch
size for ViT was set to 8. The depth of the transformer layer
was set to 6, the number of heads to 16, the dimension of
transformer tensors to 1024 and that of the feed-forward neural
network layer to 2048.

Table III shows that the input log-Mel spectrogram is
passed through a 2D Convolutional layer. This layer increases
the number of channels to 3 and reduces the height of the
image to an even value. The ViT layer outputs a 1D vector
of 1024 values and 161 channels. Consequently, the output
is passed through two successive 1D convolutional layers to
obtain the final output in the desired shape (9, 9).

www.ijacsa.thesai.org 884 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 1. Visualisation of Output Layer of YOHO for VOICe Dataset.

TABLE III. WORKING CHANGES TO VIT ARCHITECTURE

Name Type Output Shape
input log-Mel spectrogram (1, 257, 40)
increase channels to 3 and reduce height Conv2d(...) (3, 256, 40)
ViT ViT(...) (161, 1024)
head.0 Conv1d(...) (9, 512)
head.1 Conv1d(...) (9, 9)

F. Working Changes to YOHO + KNN Architecture

The YOHO architecture was modified by replacing every
standard 2D convolution layer in the architecture by a 2D
kervolution layer with a linear kernel.

G. Working Changes to YOHO + PANN Architecture

The CNN10 [23] variant of the PANN architecture expects
log-Mel spectrograms with 64 Mel bins as input. Hence as
described in Table IV, the input is processed and made com-
patible with PANN. PANN’s output is then passed through a
couple of transpose convolution layers followed by a couple of
convolution layers to make the output compatible for YOHO.
During training and inference, the weights of PANN pretrained
on the large-scale AudioSet dataset were used for the CNN10
architecture.

TABLE IV. WORKING CHANGES TO YOHO + PANN ARCHITECTURE

Name Type Output Shape
input log-Mel spectrogram (1, 257, 40)
transpose input.transpose(0, 2) (40, 257, 1)
increase channels to 64 Conv2d(...) (64, 257, 1)
transpose input.transpose(0, 2) (1, 257, 64)
PANN CNN10(...) (512, 16, 4)
transpose conv2d 1 ConvTranspose2d(...) (256, 16, 40)
transpose conv2d 2 ConvTranspose2d(...) (128, 257, 40)
reduce channels 1 Conv2d(...) (64, 257, 40)
reduce channels 2 Conv2d(...) (1, 257, 40)
YOHO YOHO(...) (9, 9)

H. Working Changes to YOHO + CBAM Architecture

The YOHO architecture is modified by inserting a Convo-
lutional Block Attention Module (CBAM) before the input to
every 2D depth wise convolution layer. The reduction factor
was set to 2 and the kernel size set to 3 for every CBAM layer.
The number of channels for each cbam layer was set to the
number of channels of the output from the previous layer.

I. Working Changes to YOHO + Custom Rectangular Kernel
Architecture

In an attempt to mitigate the problem of convolutional
neural networks wrongly enforcing translational invariance
along the frequency axis of the log-Mel spectrograms, a custom
convolutional layer with “rectangular kernels” was applied
before being input to the YOHO architecture. Fig. 2 shows
that the layer consisted of 4 parallel 2D convolution layers:

1) Conv2D layer with filter size (3, 3)
2) Conv2D layer with filter size (log-Mel height//4, 3)
3) Conv2D layer with filter size (log-Mel height//2, 3)
4) Conv2D layer with filter size (log-Mel height*3//4,3)

J. Working Changes to YOHO + FilterAugment Architecture

The YOHO architecture remains the same. The difference
is during training, FilterAugment data augmentation is used.
The decibel range was set to (-6, 6), the band number range
to (3, 6), minimum bandwidth to 6 and a linear filter type
was used. The same set of hyperparameters are used for all
experiments using FilterAugment data augmentation.

K. Working Changes to YOHO + FDY Architecture

The YOHO architecture was modified by replacing every
standard 2D convolutional layer in the architecture by a 2D
frequency dynamic convolution layer with the number of basis

www.ijacsa.thesai.org 885 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 2. Visualisation of Rectangular Kernel Layer Preceeding YOHO.

kernels set to 4 and the temperature set to 31 in every such
layer. The same hyperparameters are used in all experiments
using frequency dynamic convolutions.

L. Working Changes to YOHO + FDY + FilterAugment Ar-
chitecture

The architecture is same as that described in the previous
section, the difference being that the FilterAugment data
augmentation method was being used during the training of
the above architecture.

M. Working Changes to YOHO + FDY + FilterAugment +
CBAM Architecture

The architecture is same as that described in the previous
section, the difference being that the CBAM attention module
(with reduction factor of 2 and kernel size of 3) is inserted
before the input to every depth wise frequency dynamic
convolutional layer.

IV. RESULTS AND ANALYSIS

The results of all the experiments have been tabulated in
Table V. More detailed results have been made available on
Weights and Biases2.

The results illustrate the following points:

1) YOHO, with an average F1 score of 0.8738, outper-
forms the CRNN architecture, which has an average
F1 score of 0.7603, as given in [17].

2) The larger and more complex architectures, such as
CoAtNet, ViT and PANN (with YOHO) with average
F1 scores of 0.7589, 0.7966 and 0.8594 respectively
are unable to match standard YOHO architecture’s
0.8738 F1 score. This is surprising as these architec-
tures are currently one of the best performing models

2https://wandb.ai/sohamtiwari3120/YOHO-on-VOICe?workspace=user-
sohamtiwari3120

in the multiple applications of Computer Vision and
audio processing.

3) On average, the best performing architecture was
the YOHO + CBAM architecture, with an average
F1 score of 0.874. This architecture entailed adding
attention to YOHO, which benefits from the inductive
biases of a convolutional network. This is again
surprising as the CoAtNet architecture, which com-
bines the global attention of transformers and the
inductive biases of the convolutional networks could
not perform as well.

4) The proposed rectangular kernels layer (average F1
score of 0.8676), a simplistic approach to improve in-
ternal model representation of audio log-Mel spectro-
grams performed better than larger architectures like
CoAtNet (average F1 score 0.7589), CRNN (average
F1 score 0.7603), ViT (average F1 score 0.7966) and
YOHO + PANN (average F1 score 0.8594) on the
dataset.

5) YOHO modified with Kervolutional layers reported
the lowest F1 scores in the Outdoor - 0.7883 and
Vehicle - 0.8167 noise environments compared to all
other variants of YOHO.

6) YOHO + FilterAugment reported the best F1 scores
in the outdoor and the vehicle noise environments
- 0.879 and 0.8918, respectively. In contrast, it per-
formed the worst out of all architectures in the indoor
noise environment, with an F1 score of 0.3871.

7) YOHO + FDY + FilterAugment reported very high
scores in the outdoor and noise environments - 0.8746
and 0.8903, respectively. Moreover, frequency dy-
namic convolution layers seemed to counteract to
some extent the drop in performance when using
FilterAugment for indoor audios with an F1 score
of 0.7681.

8) Combining YOHO + FDY + FilterAugment + CBAM
did not perform as expected. Its F1 scores (0.8668,
0.8815 and 0.4534) are lesser than its individual

www.ijacsa.thesai.org 886 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

TABLE V. RESULTS OF ALL EXPERIMENTS

Architecture Outdoor F1 Vehicle F1 Indoor F1 Average F1
CoAtNet 0.7566 0.7719 0.7483 0.7589
CRNN 0.7500 0.8004 0.7305 0.7603
ViT 0.7902 0.8223 0.7774 0.7966
YOHO 0.8714 0.8884 0.8615 0.8738
YOHO + KNN 0.7883 0.8167 0.7732 0.7927
YOHO + PANN (cnn10) 0.8598 0.8712 0.8472 0.8594
YOHO + Rectangular Kernels 0.8670 0.8792 0.8567 0.8676
YOHO + CBAM 0.8724 0.8905 0.8591 0.8740
YOHO + FDY 0.8674 0.8864 0.8607 0.8715
YOHO + Filt Aug 0.8790 0.8918 0.3871 0.7193
YOHO + FDY + FILT AUG 0.8746 0.8903 0.7681 0.8443
YOHO + FDY + FILT AUG + CBAM 0.8668 0.8815 0.4534 0.7339

components - YOHO, YOHO + CBAM, YOHO +
FilterAugment and YOHO + FDY + FilterAugment.

Table V shows that the standard YOHO architecture is
adept at handling noisy audios, and few architectures and
other variants of YOHO could improve upon the standard
architecture’s scores. It seems that complex architectures with
a large number of parameters performed worse than standard
YOHO on the VOICe dataset. One reason could be less
training data, which large architectures usually require. The
VOICe dataset could be sufficient for YOHO but insufficient
for the more complex architectures.

Furthermore, architectures with sequential layers and trans-
formers like CRNN and ViT performed worse than the purely
convolutional YOHO architecture and its variants. Purely con-
volutional architectures can better utilise GPUs and hence train
faster and longer. In addition, convolutional neural networks
possess inductive biases, which help them generalise to unseen
datasets. Hence, another reason sequential layer-based archi-
tectures did not perform well on noisy audios could be the
lack of inductive biases and poor generalizability compared to
YOHO. However, the reason why CoAtNet, which combines
the inductive biases of convolutional layers and the attention
of transformers, performed poorly on the dataset is unknown.
The poor performance of CoAtNet is confounding, especially
since YOHO combined with attention in the form of CBAM
performed very well on audios from all three noise environ-
ments.

On the other hand, the experiments using convolutional
block attention module (CBAM), FilterAugment and Fre-
quency Dynamic Convolution (FDY) layers hint that improving
internal model representations of the input audio data and data
augmentation hold the key to achieving robust sound event
detection on noisy audios.

V. CONCLUSION AND FUTURE WORK

The standard YOHO architecture is resilient to noise in
audios, and its lightweight architecture with low inference
times makes it a candidate model for use in portable sound
event detection applications. Furthermore, this work found that
combining the YOHO architecture with Frequency Dynamic
Convolutions, Convolutional Block Attention Module, and Fil-
terAugment data augmentation, helped obtain high F1 scores
in specific noisy environments. This increase in performance
can be attributed to improved internal model representations
of the input audios with the help of data augmentation, which

entailed a negligible increase in the number of parameters and
model inference times.

The results suggest that improving audio representations
in the model and data augmentation could help obtain better
performance of SED models in noisy environments. Hence,
future research can explore better representations for audios
and research ways to mitigate the translational invariance
along the frequency axis enforced by standard convolutional
neural networks. This could involve improving the proposed
rectangular kernels layer. Additionally, the models could be
trained with representations from Google LEAF [37], which
was one of the experiments we wanted to conduct. However,
at the time of writing this paper, we could not find links to
pretrained weights for the Google LEAF architecture and our
compute and data were inadequate to train the architecture
from scratch.

Another possible avenue of research could be to determine
why the FilterAugment data augmentation method adversely
affects only the audios containing noise from indoor environ-
ments while showing the opposite, helpful effects in audios
containing vehicular and outdoor noise. This study could help
unlock insights about noise in indoor environments and could
help in the development of intelligent home audio devices.

Another direction of research would be to first train the
larger and more complex architectures with more data to try
and determine the ceiling for their performance in noisy en-
vironments. Furthermore, these experiments could help assess
whether their performance can be improved using additional
data or other factors that govern the model performance.

Finally, to determine why YOHO with convolutional block
attention module performs so well and why CoAtNet does not.
This could help us understand why CoAtNet’s architecture,
which benefits from inductive biases of convolutional networks
and the global attention mechanism of transformer architec-
tures, did not perform well in audios from noisy environments.

This work showed that the promising new regression-based,
purely convolutional sound event detection architecture called
You Only Hear Once can be effectively used in noisy environ-
ments. Furthermore, the regression-based approach was exper-
imented with and used with other architectures and methods
to find ways to better improve robustness to noise. The results
indicate that better audio representations for the model and
data augmentation techniques can help boost the performance
of SED systems. Hopefully, this work will encourage more
research in developing better audio representations and making

www.ijacsa.thesai.org 887 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

audio-related models more robust to noise.

ACKNOWLEDGMENT

We want to thank the faculty of the Computer Sci-
ence Department at Manipal Institute of Technology, Mani-
pal, India, for their continued support and guidance. Spe-
cial appreciation for Dr. Manjunath Mulimani (Email man-
junath.mulimani@tuni.fi), who, during his tenure at Manipal
Institute of Technology, guided us and helped us navigate
various technical difficulties and advised possible research
directions throughout the lifetime of this work. The authors
would also like to thank Dr. Chng Eng Siong, Andrew Koh
and Tanmay Khandelwal, part of the Speech Lab at Nanyang
Technological University, Singapore.

REFERENCES

[1] S. Ntalampiras, “Audio surveillance.” [Online]. Available:
www.witpress.com,

[2] “Sound Event Detection - Toni Heittola.” [Online]. Available:
https://homepages.tuni.fi/toni.heittola/research-sound-event-detection

[3] “Sound Event Detection in Domestic Environments - DCASE.” [On-
line]. Available: https://dcase.community/challenge2022/task-sound-
event-detection-in-domestic-environments

[4] H. Dinkel, X. Cai, Z. Yan, Y. Wang, J. Zhang, and
Y. Wang, “Detection and Classification of Acoustic Scenes
and Events 2021 A LIGHTWEIGHT APPROACH FOR
SEMI-SUPERVISED SOUND EVENT DETECTION WITH
UNSUPERVISED DATA AUGMENTATION.” [Online]. Available:
https://github.com/pytorch/pytorch

[5] A. Cheung, Q. Tang, C.-C. Kao, M. Sun, and C. Wang, “Detection and
Classification of Acoustic Scenes and Events 2021 IMPROVED STU-
DENT MODEL TRAINING FOR ACOUSTIC EVENT DETECTION
MODELS.”

[6] R. Serizel, N. Turpault, H. Eghbal-Zadeh, and A. P. Shah,
“Large-Scale Weakly Labeled Semi-Supervised Sound Event
Detection in Domestic Environments,” 7 2018. [Online]. Available:
https://arxiv.org/abs/1807.10501v1

[7] K. Miyazaki, T. Komatsu, T. Hayashi, S. Watanabe, T. Toda, and
K. Takeda, “Detection and Classification of Acoustic Scenes and Events
2020 CONFORMER-BASED SOUND EVENT DETECTION WITH
SEMI-SUPERVISED LEARNING AND DATA AUGMENTATION.”

[8] E. Cakir, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen,
“Convolutional Recurrent Neural Networks for Polyphonic Sound Event
Detection,” IEEE/ACM Transactions on Audio Speech and Language
Processing, vol. 25, no. 6, pp. 1291–1303, 6 2017.

[9] D. De Benito-Gorron, D. Ramos, and D. T. Toledano, “A Multi-
Resolution CRNN-Based Approach for Semi-Supervised Sound Event
Detection in DCASE 2020 Challenge,” IEEE Access, vol. 9, pp. 89 029–
89 042, 2021.

[10] K. Miyazaki, T. Komatsu, T. Hayashi, S. Watanabe, T. Toda, and
K. Takeda, “Detection and Classification of Acoustic Scenes and Events
2020 CONVOLUTION-AUGMENTED TRANSFORMER FOR SEMI-
SUPERVISED SOUND EVENT DETECTION Technical Report.”

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only
Look Once: Unified, Real-Time Object Detection,” Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2016-December, pp. 779–788, 6 2015. [Online].
Available: https://arxiv.org/abs/1506.02640v5

[12] “2018:Music and/or Speech Detection -
MIREX Wiki.” [Online]. Available: https://music-
ir.org/mirex/wiki/2018:Music and/or Speech Detection

[13] “Acoustic scene classification - DCASE.” [Online].
Available: http://dcase.community/challenge2017/task-acoustic-scene-
classification

[14] “URBAN-SED - Home.” [Online]. Available:
http://urbansed.weebly.com/

[15] S. Venkatesh, D. Moffat, and E. Reck Miranda, “You Only
Hear Once: A YOLO-like Algorithm for Audio Segmentation and
Sound Event Detection.” [Online]. Available: https://github.com/satvik-
venkatesh/you-only-hear-once

[16] A. Mesaros, T. Heittola, T. Virtanen, and M. D. Plumbley, “Sound Event
Detection: A Tutorial.”

[17] S. Gharib, K. Drossos, E. Fagerlund, and T. Virtanen, “VOICe: A
Sound Event Detection Dataset For Generalizable Domain Adaptation.”
[Online]. Available: https://doi.org/10.5281/zenodo.3514950

[18] S. Tiwari, K. Lakhotia, and M. Mulimani, “Evaluating
robustness of You Only Hear Once(YOHO) Algorithm on noisy
audios in the VOICe Dataset,” 11 2021. [Online]. Available:
https://arxiv.org/abs/2111.01205v1

[19] F. Chollet, “Xception: Deep Learning with Depthwise Separable
Convolutions,” Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, vol.
2017-January, pp. 1800–1807, 10 2016. [Online]. Available:
https://arxiv.org/abs/1610.02357v3

[20] “Pointwise Convolution Explained — Papers With Code.” [Online].
Available: https://paperswithcode.com/method/pointwise-convolution

[21] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift,”
32nd International Conference on Machine Learning, ICML
2015, vol. 1, pp. 448–456, 2 2015. [Online]. Available:
https://arxiv.org/abs/1502.03167v3

[22] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),”
3 2018. [Online]. Available: https://arxiv.org/abs/1803.08375v2

[23] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumbley,
“PANNs: Large-Scale Pretrained Audio Neural Networks for Audio
Pattern Recognition,” IEEE/ACM Transactions on Audio Speech and
Language Processing, vol. 28, pp. 2880–2894, 12 2019. [Online].
Available: https://arxiv.org/abs/1912.10211v5

[24] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio Set: An ontology and
human-labeled dataset for audio events,” ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings,
pp. 776–780, 6 2017.

[25] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale,” 10 2020. [Online].
Available: https://arxiv.org/abs/2010.11929v2

[26] Z. Dai, H. Liu, Q. V. Le, and M. Tan, “CoAtNet: Marrying
Convolution and Attention for All Data Sizes,” 6 2021. [Online].
Available: https://arxiv.org/abs/2106.04803v2

[27] C. Wang, J. Yang, L. Xie, and J. Yuan, “Kervolutional Neural Net-
works.”

[28] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, “CBAM: Convolutional
Block Attention Module,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 11211 LNCS, pp. 3–19, 7 2018.
[Online]. Available: https://arxiv.org/abs/1807.06521v2

[29] H. Nam, S.-H. Kim, B.-Y. Ko, and Y.-H. Park, “Frequency Dynamic
Convolution: Frequency-Adaptive Pattern Recognition for Sound Event
Detection.” [Online]. Available: https://github.com/frednam93/FDY-
SED

[30] H. Nam, S.-H. Kim, and Y.-H. Park, “FilterAugment: An Acoustic
Environmental Data Augmentation Method,” pp. 4308–4312, 10 2021.
[Online]. Available: https://arxiv.org/abs/2110.03282v4

[31] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “SpecAugment: A Simple Data Augmentation
Method for Automatic Speech Recognition,” Proceedings of the
Annual Conference of the International Speech Communication
Association, INTERSPEECH, vol. 2019-September, pp. 2613–
2617, 4 2019. [Online]. Available: http://arxiv.org/abs/1904.08779
http://dx.doi.org/10.21437/Interspeech.2019-2680

[32] D. Misra, “Mish: A Self Regularized Non-Monotonic Activation Func-
tion,” 8 2019. [Online]. Available: https://arxiv.org/abs/1908.08681v3

[33] S. Nag and M. Bhattacharyya, “SERF: Towards better training of
deep neural networks using log-Softplus ERror activation Function,” 8
2021. [Online]. Available: https://arxiv.org/abs/2108.09598v3

www.ijacsa.thesai.org 888 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

[34] D. P. Kingma and J. L. Ba, “Adam: A Method for
Stochastic Optimization,” 3rd International Conference on Learning
Representations, ICLR 2015 - Conference Track Proceedings, 12 2014.
[Online]. Available: https://arxiv.org/abs/1412.6980v9

[35] “Early Stopping Explained — Papers With Code.” [Online]. Available:
https://paperswithcode.com/method/early-stopping

[36] E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional

Networks for Semantic Segmentation,” 5 2016. [Online]. Available:
https://arxiv.org/abs/1605.06211v1

[37] N. Zeghidour, O. Teboul, F. de Chaumont Quitry, and M. Tagliasacchi,
“{LEAF}: A learnable frontend for audio classification,” in
International Conference on Learning Representations, 2021. [Online].
Available: https://openreview.net/forum?id=jM76BCb6F9m

www.ijacsa.thesai.org 889 | P a g e

