
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

A Model Driven Approach for Unifying User
Interfaces Development

Henoc Soude
Institut de Mathématiques et des

Sciences Physiques, BENIN

Kefil Koussonda
Epitech, FRANCE

Abstract—In this paper, we dealt with the rapid development
of client web applications (frontend) in a context where
development frameworks are legion. In effect with the digital
transformation due to the COVID-19 pandemic we are witnessing
an ever-increasing demand of the application development in a
relatively short time. To this is added the lack of skilled developers
on constantly evolving technologies. We therefore offer a low-code
platform for the automatic generation of client web applications,
regardless of the platform or framework chosen. First, we defined
an interface design methodology based on a portal. We then
implemented our model driven architecture which consisted of
defining a modeling and templating language, centered on user
data, flexible enough to not only be used in various fields but
also be easily used by a citizen developer.

Keywords—Model driven; user interface; modeling language;
templating language; low code; citizen developer

I. INTRODUCTION

Over the past two decades, web applications have evolved
and are now used in all areas of everyday life: medical,
transport, e-commerce and social networks. One of the reasons
for their success is that they can be used on all our
devices like laptops, smart phones, tablets and desktops. The
interfaces are determining elements in the acceptance of a
web application [1], [2]; their development is therefore of
paramount importance hence the multiplicity of frameworks
in the market. For some years the frameworks javascript have
spread widely to the point of becoming indispensable in the
development of modern applications. By the way Sacha Greif
et al. [3] have launched an annual survey since 2016 to analyze
developments and trends in javascript frameworks by focusing
on based data from more than 20,000 developers spread over
more than 100 country. This study shows us, among other
things, the most used frameworks (react, angular, vue) but
doesn’t give us any information on how they choose, knowing
that they have different learning curves more or less complex.
Indeed, the COVID-19 pandemic requires us to rapidly develop
more and more complex applications, in the context of a global
shortage of developers [4], [5].

Model-based development (MDD) has been used in the
literature [6]–[8] in order to simplify the development of
applications and increase productivity. It is a development
paradigm which according to Stephen et al. [9], consists in
building the model of a system and then generate a real
instance of this system from the obtained model. MDD was
quickly adopted by the Object Management Group (OMG)
which standardized model-based architecture (MDA) and is
composed of several levels, two of which are essential in our

development context of web application: platform independent
model (PIM); used to describe the system and platform specific
model (PSM); used to generate an instance actual system. The
PIM and PSM models are described using languages that are
either standardized or domain-specific (DSL). Most of these
languages are neither suitable, nor flexible enough and too
complex [10], in terms of learning curve.

One of the solutions to address the problems related to
developer shortage is the use of low-code platforms [11], which
in addition to using model-based approaches, use graphical or
high-level languages to make development accessible to all.
According to a Gartner report more than 50% of companies
will adopt them as a solution strategic by 2023 [12]. There
are many low code [13]–[15] which agrees with generating
interfaces from models. They have the particularity of either
generating code for their own platform or to use languages
specific to their domain wich most of the time are difficult to
handle. Added to this is the fact that the adoption of low-code
platforms by citizen developers is conditioned by the simplicity
and accessibility of the underlying models.

This work is part of a more global project to implement a
low code [16] platform to automate the development of tasks
in various fields. For the sake of consistency, all projects share
not just the same development languages: c/c++ and exchange
data: json, but also the same automation system; the generator
must generate codes in several domains without requiring the
intervention of expert developers.

The general research question of our work is: How can we
unify user interface (UI) development?. Whatever framework
used: Mithril, React, Vue, the development process must be
identical and the learning curve should be as simple as possible
even for a person without any developing skills (citizen
developer). The solution we propose is to automatically
generate the code for the different platforms from a single
model, defined by the user. It comes in the form of the
following contributions:

• the development of a portal and the definition of an
UI design methodology based on a portal. It allows to
gain in productivity and to make the implementation
of UI simpler since their navigation elements have to
be configured.

• the development of a cloud-based graphic editor for
UI modeling

• the definiton of a modeling language which has
simple structure; all its elements have the same basic,

www.ijacsa.thesai.org 919 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

and flexible structure; it can be extended for new
platforms.

• the development of a code generation system
consisting of an engine and a template language.

The rest of the document is organized as follows: Section
II presents state of the art. Then we described our model-based
approach to Section III. Our interface modeling language and
our template language are described in Sections IV and V. In
Section VI we presented a general discussion of work then we
concluded with the Section VII

II. RELATED WORK

Whatever platform or model-based approach used, they are
distinguished by the modeling language and the generation
system used.

A. UI Modeling Language

The principle of modeling a user interface consists in
finding an abstract representation of the constituent elements of
the interface. This representation usually contains information
relating to the organization, the description of the elements
in the interface and interactions with users. This explains the
multiplicity of modeling languages that differ depending on
the type and storage of the information they contain.

UIML [17] is the first universal modeling language
independent of the platforms and technologies used. It is an
XML dialect which describes an interface in five sections:
the description, the structure, the data, the style, and the
event. Subsequently the language was standardized by OASIS
group. USIXML [18] is another language based on XML
and standardized by the World Wide Web Consortium (W3C)
whose particularity is to describe the multimodal interfaces.
The proposed language in our work differs from the two
languages presented by the format of the definition of models;
we use the json format unlike the XML used in most templates
[19], [20].

Brambilla et al. [21] present interaction flow modeling
language (IFML) which was quickly adopted as a standard
by OMG. Language allows to describe the structure and
interactions with end users via a set of visual components
representing the different elements of an interface. This
concept of visual modeling has greatly appealed whether in the
academic world or that of industry [22]–[26]. The language has
introduced a high level of abstraction that makes an element of
the model we can match several components of an interface.
This ambiguity is resolved by the language when generating
the interface, since the user provides these correspondence
elements. This constitutes a real problem in the works as shown
where we have no idea of the interface that the end user wants
to generate: we cannot provide a mapping that will satisfy all
users.

More recently Moldovan et al. [27] presented a model-
based approach for developing user interfaces f’ or multi-
target applications. They first define their modeling language
(OpenUIDL) whose syntax is based on the JSON format. Then
they present the different stages of their approach for the
development of interfaces: the design, the generation and the
deployment of the interface. Although dealing with the same

problem with an almost identical approach, our work differs
mainly in the level of the semantics of the modeling language
and the process of generation. In order to improve the problem
of limited accessiblity to defintions of modeling languages (cf.
[27]), we propose a model of a simpler and more intuitive level
than the authors of [27]. Indeed in their model a node can be
of type static value, dynamic reference, element, conditional,
repeat, slot, nested-styled and its content is specified through
the attribute of the same name. So you need at least two objects
json nested to define an element of an interface then in our
model the equivalent of the node directly represents an element
of the interface. Their code generation model remains limited
to web interfaces and cannot allow ”citizen developers” to
generate code or data in specific areas contrary to what we
propose.

B. Code Generation

In the context of automatic web interface generation, two
approaches are often used: that based on the structures tree
abstracts [27] and that of the engines template. The major
drawback of the first approach is that it requires having
technical skills if you want to generate code in a language other
than the original one. We are indeed in need of a system that
allows seasoned users or not to generate code or documents
in various fields.

The second approach is more appropriate in our context
since the engines offer a template description language; the
user will only have to describe his new model through this
language. Most languages used for the development of java
web interfaces (freemaker [28]), python (jinja2 [29]) and
javascript(mustache [30]) all have template engines whose
languages does not tell us nor inhibit us from defining the
models of views whose structure is not known during design.
XSLT [31] is a language standardized by W3C which allows
you to transform XML documents into another format (HTML,
XML, js,etc.). It easily solves the problem mentioned above
thanks to these directivestemplate and apply; unfortunately
there remains a verbose language and very complex to handle.

III. MODEL BASED APPROACH

The objective of our work is to allow developers to
implement web applications without worrying about platforms
or frameworks available in the market. For this we propose,
as indicated in the Fig. 1 a three-step approach: design, build,
and refinement of the interface after deployment. Except for
the refinement, the other two steps are MDD classics. The
distinctiveness of our solution lies in the methodology, the
concepts, the languages and tools we use in the different stages.

A. UI Design

The first principle of our design approach is that the
user doesn’t waste time implementing common and recurring
concepts in web applications: menu navigation and operation
application on user data. For this we have implemented an
application portal which not only is an application receptacle
but also has mechanisms for specifying menu and application-
related actions. As shown, Figure 2, is divided into five parts:
(i) the main bar which indicates the name of the current
application and different menus drop-down such as the list

www.ijacsa.thesai.org 920 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 1. The Different Steps of our Model-based Approach.

Fig. 2. The Structure of our Application Portal.

of applications, (ii) represents the elements of menu of the
current application, (iii) represents the list of applications
related to the current application, (iv) represents the workspace
in which the different views of the application will be hosted
and (v) represents the action bar which indicates the possible
operations on a given view. The design of an application’s
interfaces therefore consists of identifying and declaring the
set of views or interfaces that compose it and for each of it to
define its content and its operations.

The second principle of our approach is that of the
separation of concerns that we have implemented in our editor
interface graphic: users of different level techniques will be
able to intervene on different parts as shown in Fig. 3 the
design is divided into six sections: view, template, variables,
functions, actions and lifecycle.

The view section describes the organization of a view in the
application portal. The form elements inside menu, role
and icon allow resp. to specify whether the view is accessible
or not in the application menu, the role needed to access the
view and view icon in the menu. The modal attribute indicates
that the view can be imported by another view.

The template section describes the contents of a view. The
user uses the different predefined elements to describe the
content of its view. The tag can be used to specify non-
predefined elements. Every Adding of an element, the user
can choose either to see the preview (tab interface) or to see
the generated model (tree tab). At any moment of the design
the user can select an element of the model and modify its
properties.

The variables section describes the variables used by the
different view elements. They are usually created by the user
which can also associate test values to then. The functions
section describes user-defined methods. The actions section
describes sight operations. The user must provide the icon
as well as the method to call. Finally the lifecycle section

Fig. 3. The Interface Confuguration of a View.

describes the mechanisms of javascript component status
notification.

B. UI Building

The user does not intervene in the process of generating
the views even if he is the instigator. As shown in Fig. 4, our
template takes as parameter the view model and the mapping
of the elements of the seen. The mapping of an element
corresponds to its html template for a support given. We have
therefore provided the mapping of all the predefined elements
of our editor for the following frameworks: mithril.js, react.js,
vue.js. An example of mapping is presented in Section V-B.

Fig. 4. Our Code Generation Process.

In addition to specificities related to the generation of web
applications our build system needs to be flexible enough to
not only allow generation in multiple domains but also allow
citizen developers to edit their own model for specific needs.
For this we have proposed a model language based on text and
simple substitution directives, intuitive and non-verbose. We
have also decided to limit the number of instructions to make
it easier to get started. We have implemented a simple and
adaptable algorithm to all situations. The algorithm consists
of traversing a tree structure (in json format) and each node of
the tree generates the corresponding code by retrieving the
associated template to its type. This implies that any json
object passed as a parameter must have the type attribute.

C. UI Refinement

After the generation of the interfaces, the user can deploy
the application on our beta server to be tested by all connected

www.ijacsa.thesai.org 921 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

users. This mechanism allows us to integrate the Agile
principles in our view generation process: the end users or team
members can make feedback that will be integrated during this
phase.

The positive point of our refinement mechanism associated
with principle of the separation of concerns developed during
the phase of design is that it is possible for a citizen developer
to design the organizational aspect of the views: positioning
of the different interface elements. Once his work has been
validated then a user with technical skills will be able to
finalize the views during the refinement phase.

IV. UI MODELING LANGUAGE

The most natural representation of an interface is that of a
tree in which a node corresponds to an element of the interface.
The Fig. 5 is a representation in the form of a tree of the
html component table: it has tr elements which, in turn,
have td elements. Our modeling therefore consists in defining
in a format json the structure of interfaces. The nodes of
the description tree are represented by the objectsjson whose
structures are defined via their json schema.

table

tr

td

span

td

input

. . .

. . .

Fig. 5. Representation of table Component as a Tree.

A. Syntax of Models

Fig. 6 presents the schema json of the basic structure of
elements of an interface. An element is described by its type
and by either its value or its descendants. All other properties
of the element are optional; our generator is able to generate
values for them by default. The type attribute is a character
string whose value is the name of the element with which
the object is associated. The children attribute is an array
that describes the children of an element. The attribute value
is a character string containing the value of an element. The
semantics of the value of an element depending on its type. For
example the value of a button is the text that accompanies
it while the value of a span represents its content.

The value of an element can either be literal or come from
a variable. For this reason we use a formatting which consists
of preceding the value of the attribute value by one of the
following characters: $, #, % . When the attribute value is
not prefixed for any of these characters then the value is used
as such. When preceded by the character# then it should be
treated as given json. When she is preceded by the character $
then the value of the element comes from a variable, defined
inside the html component, whose name is the value of the
attribute without the prefix character. When the attribute
value is preceded by the character % then the value of the
element comes from a variable passed as a parameter to

1 {
2 "$id": "schema/base",
3 "type": "object",
4 "properties": {
5 "type": {"type": "string"},
6 "value": {"type": "string"},
7 "children":{"type": "array",
8 "items": {"$ref": "#"}}
9 },
10 "required": ["type",
11 {"oneOf": ["value", "children"]}]
12 }
13

Fig. 6. The Basic Structure of an Element of our Model.

the html component. In the following example {‘‘a":
‘‘foobar", ‘‘b": ‘‘$foo", ‘‘c": ‘‘%bar",
‘‘d": ‘‘#{}"}, a, b, c, d have the respective value
foobar, the value of the variablefoo, the variable of the
variable bar passed as component parameter and an empty
json object.

1 {
2 "$id": "schema/view",
3 "type": "object",
4 "properties": {
5 "type": {"type": "string"},
6 "imports": {"type": "array",
7 "items": {"$ref": "#/$defs/keyval"}},
8 "variables":{"type": "array",
9 "items": {"$ref": "#/$defs/keyval"}},
10 "functions":{"type": "array",
11 "items": {"$ref": "#/$defs/keyval"}},
12 "template": {"type": "object",
13 "properties": {"$ref": "schema/base"}},
14 "oninit": {"type": "string"},
15 "oncreate": {"type": "string"},
16 "onupdate": {"type": "string"},
17 "onremove": {"type": "string"}
18 },
19 "required": ["type", "variables",
20 "modals", "functions", "template"],
21 "$defs": {"keyval":{
22 "type": "object",
23 "properties": {
24 "name" {"type":"string"},
25 "value" {"type":"string"}
26 }
27 }}
28 }
29

Fig. 7. Metamodel of the View Component.

1 {
2 "$id": "schema/input",
3 "type": "object",
4 "properties": {
5 "type": {"type": "string"},
6 "value": {"type": "string"},
7 "subtype": {"enum":["text", "password",
8 "date", "email", "number", "file"]}
9 "label": {"type": "string"},
10 "placeholder": {"type": "string"},
11 "class": {"type": "string"},
12 "style": {"type": "string"},
13 "onchange": {"type": "string"}
14 },
15 "required": ["type", "subtype", "value"],
16 "additionalProperties": true
17 }
18

Fig. 8. Metamodel of Input Component.

www.ijacsa.thesai.org 922 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

1 {
2 "$id": "schema/tag",
3 "type": "object",
4 "properties": {
5 "type": {"type": "string"},
6 "value": {"type": "string"},
7 "class": {"type": "string"},
8 "style": {"type": "string"},
9 "children": {"type": "array",
10 "items": {"$ref": "schema/base"}},
11 },
12 "required": ["type", "value", "children"]
13 }
14

Fig. 9. Metamodel of the Tag Component.

1 {
2 "$id": "schema/list",
3 "type": "object",
4 "properties": {
5 "type": {"type": "string"},
6 "data": {"type": "string"},
7 "root": {"type": "string"},
8 "class":{"type": "string"},
9 "style":{"type": "string"},
10 "iterator": {"type": "string"},
11 "children": {"type": "array",
12 "items": {"$ref": "schema/base"}},
13 },
14 "required": ["type", "data", "children"]
15 }
16

Fig. 10. Metamodel of List Component.

1 {
2 "$id": "schema/wizard",
3 "type": "object",
4 "properties": {
5 "type": {"type": "string"},
6 "done": {"type": "string"},
7 "data": {
8 "type": "array",
9 "items": {"$ref": "#/$defs/pagedef"}},
10 },
11 "required": ["data"],
12 "$defs": {"pagedef":{
13 "type": "object",
14 "properties": {
15 "name" {"type":"string"},
16 "content" {"type":"string"}
17 }
18 }}
19 }

Fig. 11. Metamodel of Wizard Component.

B. Components

We have predefined a number of interface elements which
we have organized into three categories:

• simple; they have no child elements. hr, hx,
img, span,radio, label, icon, input,
button, select, checkbox, textarea.

• container; they have child elements. nav, tab,
link, list, form, group, table,
accordion, dropdown, paragraph.

• widgets; these are non-standard html elements;
wizard, treeview, carousel, display.

We have not implemented all the elements of an interface

but rather those that come up regularly in web applications.
Nevertheless the tag element can be used to implement
elements not predefined.

In the rest of the document we present only the special
components (view and tag) and one component per category
due to the simplicity of the model.

a) view: An element of type view is a special element
allowing to model the organization of interfaces in the
application portal (see section III-A). As shown in its json
schema, in Figure 7, the attributes variables, imports,
functions and template are mandatory. The template
attribute is an object representing the content of sight. The
attributes variables, imports and functions represent
respectively the variables, the imported elements and the user-
declared functions.

b) input: Fig. 8 represents the model definition of a
input. The attributes value and subtype are required.
This model represents multiple types of input via the
subtype attribute; other attributes are added to the model
depending on the type chosen. The label and the placeholder
can also be specified via attributes of the same name. The user
can specify the action to perform when changing the value via
the onchange attribute.

c) tag: The tag type element is used to model dynamic
attribute (unknown at design time) or non-predefined elements.
As shown in Fig. 9 the attributes value and children are
mandatory. The children attribute contains the definition
of the element’s children given while the attribute value
represents the real no of the element. The element name can
be assigned literally or via a variable (cf. Section IV-A).

d) list: The list type element is used to model
components from a repetitive action; this is the case for
example of the elements dl, ul and table. As shown in
Fig. 10 the attributes data and children are required.
children contains the definition of the elements that are
repeated according to the data coming from the data attribute
which must be an array. The root attribute when present
becomes the parent element containing the repeated elements.
The iterator attribute represents the name of the iterator
to use in the code for traversing data in data.

e) wizard: Fig. 11 represents the model definition of a
wizard. The attribute data is mandatory and represents all
the pages of the wizard. Pages are defined by an object whose
attribute name represents the page name and the content
attribute represents the content of the page. The content of a
page is a reference that is resolved when generated. The action
to be performed after the process is completed is specified via
the done attribute.

V. TEMPLATE LANGUAGE

The language that we propose must not only make it
possible to write the model codes of our web interfaces but also
be sufficiently simple and flexible to allow a citizen developer
to write their own models in various areas. For this we have
chosen a language composed of texts: they are copied as such
by the template engine, and substitution directives: they are
replaced by the value of the variables or expressions they
represent.

www.ijacsa.thesai.org 923 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

In order to make the language simple and accessible, the
transformation of directives is solely based on user data; unlike
some languages [28], [31], ours does not allow for defining
variables or functions in our models.

User data is passed as a parameter to the template engine
as an object of json (see Fig. 12) whose attributes are the
variables used by the substitution directives. The language uses
the symbols {,},[,] as block delimiters, the character %
to escape special characters and the character $ to introduce
directives.

{
"string": "foobar", "number": 12.23,
"bool": false, "null": null,
"object": {"key": "val"},
"array": [10,20,30]

}

Fig. 12. An Example of User Data.

A. Directives

a) content: This directive is used to retrieve the value
of an attribute of the data passed as a parameter to the engine.

$ < attribut >< . < attribut1 >< · · · . < attributn >>> (1)

$ < attribut > [< index >] (2)

Its syntax is presented by the expression 1 where
< attribute > represents the attribute whose value we
are looking for. Considering the data of Fig. 12, the
directives $string, $number, $bool, $ull, $object and $array
respectively have the value foobar, 12.23, false, null,
an empty string and an empty string. The directives $object
and $array have the value of empty strings since we must
specify the element that is sought within them. With regard to
the directive $object we use the optional part of the expression
1 by preceding the name of the element with the character
.. The $object.key directive is used to retrieve the value of
the key. The expression notation 2 is used for arrays. The
pattern < index > indicates the position of the element of
the array that we are looking for; in our example $array[2]
and $array[$number] have the value 20 and an empty string
since $number is not an integer.

The evaluator of a directive returns the Boolean value
false which indicates that an error occurred while evaluating
and the value true in the opposite case. In case of error the
evaluator generates an empty string.

b) alternative: This directive allows you to choose
between two models. The expression 3 presents its syntax
where || represents the separator of the two patterns. The
model < model1 > is generated when it tests true while
model < model2 > is generated when it tests true when
the first shows false. In considering the Figure data 12 the
guidelines $string||$number and $foo||nothing have the
value foobar and nothing.

< model1 > || < model2 > (3)

c) test: This directive makes it possible to choose
between two models according to the value of a variable. The
expressions 4 and 5 present its syntax.

$ < attribut > {< model1 >}{< model2 >} (4)

$ < attribut >< CMP >< V AL > {< model1 >}{< model2 >} (5)

In the expression 4 the test is implicit; the model <
model1 > is generated if attribute attribute is true
else < model2 > is generated. The attribute is considered
true when it exists and value is neither false nor null.
In the expression 5 we specify the comparator as well as
the reference value. The comparator can be one of the
operators following: =, <,>,>=, <=, ! =. Considering the
data of Fig. 12 the directives $foo{found}{not found}
and $number = 12.23{equal}{not equal} have value not
found and equal.

d) repeat: This directive makes it possible to repeat the
generation of the model according to the number elements in
an array variable. The expression 6 presents its syntax where
< attribute > must be of type array.

$ < attribut > ∗{< model1 >} (6)

$$ < . < attribut >> (7)

The expression 7 presents the iteration variable notation
that represents an array element. When the element is an object
then we use the optional part of the expression in order to
specify the attribute to be to find the value. Considering the
data in Figure 12 the directive $array ∗ {$$} has the value
102030.

e) separator: This directive is used to automatically
generate separators in the context of the repeat directive. The
expression 8 presents its notation where < SEPATOR > is
the separator character. Considering the data of the Fig. 12 the
directive $array ∗ {$$$:} has the value 10:20:30.

$ < SEPATOR > (8)

f) only if: This directive is used to generate a model if
and only if all its directives evaluate to true. The expression
9 presents its notation. Considering the data in Fig. 12 the
directives [$string has $number] and [$name has $foo]
have for value foobar has 12.23 and an empty string.

[< model >] (9)

g) built-ins: These are language variables whose
notation is present by the expression 10 where < func >
represents the name of the variable and < argi > represent the
arguments associated with the variable. Arguments are optional
and allow to change the behavior of the variable.

$ < func ><,< arg1 >, ·, < argn >> $ (10)

The variable $index$ is used in a context of the directive
repeat and returns the iteration number. The directive $array∗

www.ijacsa.thesai.org 924 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

{$index$} has the value 012 if we consider the data of the
Fig. 12.

The variable $call$ is used in a context of the directive
repeat and allows recursively calling the template engine on
the elements of a table. Elements must be objects that have at
least one attribute type.

The variable $href$ is used when we want to retrieve
data on media different from the object passed as a parameter
to the engine. The data user must contain an urn attribute that
describes the exact location of the data. The urn is composed
of fragment separated by the character :. The first fragment
can take the value file, db, rest depending on whether
the data comes from a file, a database or a rest resource. The
variable $count$ is used in a context of the directive repeat;
it returns the number of elements in an array. The directive
$array ∗ {$count$} has the value 3 if we consider the data
of the Fig. 12.

The variable sum is used in a context of the directive
repeat; it returns the sum of the elements in an array. The
directive $array ∗ {$sum$} has the value 60 if we consider
the data of the Fig. 12.

h) Arithmetic operations: The language allows
performing arithmetic operations only on the user data
according to the syntax of the expression 11 where < OP >
Represents an operation among +,-,/,*,% and < V AL >
represents a whole value. Operations are only allowed for
attributes of type number Or string. Only the addition
operation is possible on strings; that is to reduce, from the
beginning, the size of the string by the number < V AL >.
The directives $string+3 and name+3 have the value bar
and name+2.

$ < attribut >< OP >< V AL > (11)

module.export= ()=>{
$modals*{var $$.name%=$href$;}
$variables*{var $$.name%=$$.value;}
var $name%_cls = function(){
return {

$functions*{$$.name:$$.code$,}
};}();
return {

oninit:(vnode)=>{
app.setActions($noaction{null}{

%[$actions*{$call$$,}%]
});
$oninit

},
[oncreate:(vnode)=>%{$oncreate%},]
[onupdate:(vnode)=>%{$onupdate%},]
view:(vnode)=>{
return $template*{$call$};
}
[,onremove: (vnode)=>{$onremove}]

};
}

Fig. 13. Mapping of view component for Mithril Framework.

<template>
$template*{$call$};

</template>
<script>
$modals*{import {$$.name} from "$vref+5";}
export default {
data() {

return {
$variables*{$$.name: $$.value$,}

}
},
computed: {

$functions*{$$.name$$.code$,}
},
beforeCreate(){

app.setActions($noaction{null}{
%[$actions*{$call$$,}%]

});
$oninit

},
[created(){$oncreate},]
[updated(){$onupdate},]
[destroyed(){$onremove}]

};
</script>

Fig. 14. Mapping of view Component for vue Framework.

B. Mapping

Mapping consists of using the language to describe the
structure of the code to be generated for each element of
our model. Here we present only the Mapping of the view
element, as an example. Fig. 13 and 14 present the code
structure of view For mithril and vue frameworks. Users can
provide their mapping during the init phase of the engine.

VI. DISCUSSION

How do we assess the learning curve of our modeling
method Views? We compared our modeling approach to the one
presented by Moldovan et al. [27] and that based on IFML. All
the three approaches use graphic elements in order to simplify
the Modelization. However, the other two approaches introduce
new concepts, in addition to the components of an interface.

Why are we talking about unification when we have
not limited ourselves on only three frameworks? We talk
about unification because our system allows you to add other
platforms or frameworks. Just provide the mapping (cf. section
V-B) of the predefined elements for the said platform.

Is our built system as simple as claimed? We submitted,
to fifteen students, the writing of templates in different fields
using our language and XSLT. After analyzing their return
from experience it appears that our work was preferred because
of its syntax compact and its low learning curve.

Is our build system flexible enough to be used in different
areas? Unlike the work of Moldovan and Al. [27] which
use one generator per target, we use the same generator
ourselves regardless of the target; only the mapping changes.
Furthermore our generator was used to generate unit tests in
some of our projects.

www.ijacsa.thesai.org 925 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

VII. CONCLUSION

In this work we presented a model-based approach for
the development of web interfaces, whatever the platform
and have implemented an application portal to simplify the
Modeling work. All elements common to interfaces are
implemented in the portal and configured during modeling.
Then we implemented a cloud-based graphic editor for
the modeling of interfaces. The elements of the interface
are described via our model json whose flexibility allows
implementing the abstraction of elements of different platforms
without introducing new concepts. Finally we implemented
an automatic code generation system for frameworks Mithril,
React, Vue. The system is composed of a template language,
with a low learning curve, and a template engine focused on
user data: the generator determines the model to generate based
on the type of the data. Their association make the generation
system suitable for different areas.

To further reduce interface development time, we would
like to generate them from their draft.

REFERENCES

[1] E. Yigitbas, I. Jovanovikj, K. Biermeier, S. Sauer, and G. Engels,
“Integrated model-driven development of self-adaptive user interfaces,”
Software and Systems Modeling, vol. 19, no. 5, pp. 1057–1081, 2020.

[2] M. Thomas, I. Mihaela, R. M. Andrianjaka, D. W. Germain, and
I. Sorin, “Metamodel based approach to generate user interface mockup
from uml class diagram,” Procedia Computer Science, vol. 184, pp.
779–784, 2021.

[3] (2022) State of javascript. [Online]. Available: https://stateofjs.com
[4] Daxx. (2022) Us and the global tech talent shortage in 2022.

[Online]. Available: httaps://www.daxx.com/blog/development-trends/
software-developer-shortage-us

[5] T. Sloyan. (2021) Is there a developer shortage? yes, but the
problem is more complicated than it looks. [Online]. Available:
https://www.forbes.com/sites/forbestechcouncil/2021/06/08/

[6] S. Abrahão, E. Insfran, A. Sluÿters, and J. Vanderdonckt, “Model-based
intelligent user interface adaptation: challenges and future directions,”
Software and Systems Modeling, vol. 20, no. 5, pp. 1335–1349, 2021.

[7] L. Alwakeel and K. Lano, “Model driven development of mobile
applications,” in Doctoral Symposium, ECOOP 2020, 2020.

[8] A. Sabraoui, A. Abouzahra, K. Afdel, and M. Machkour, “Mdd
approach for mobile applications based on dsl,” in 2019 International
Conference of Computer Science and Renewable Energies (ICCSRE),
2019, pp. 1–6.

[9] W. B. Frakes and S. Isoda, “Success factors of systematic reuse,” IEEE
Software, vol. 20, no. 05, pp. 14–19, sep 1994.

[10] J. S. Mittapalli and M. P. Arthur, “Survey on template engines in java,”
in ITM Web of Conferences, vol. 37. EDP Sciences, 2021, p. 01007.

[11] A. C. Bock and U. Frank, “Low-code platform,” Business & Information
Systems Engineering, vol. 63, no. 6, pp. 733–740, 2021.

[12] P. Vincent, K. Iijima, M. Driver, J. Wong, and Y. Natis, “Magic quadrant
for enterprise low-code application platforms,” Gartner report, 2020.

[13] (2022) Appian. [Online]. Available: https://appian.com/platform/
low-code-development/

[14] (2022) Mendix. [Online]. Available: https://www.mendix.com/
[15] H. Lourenço, C. Ferreira, and J. C. Seco, “Ostrich-a type-safe

template language for low-code development,” in 2021 ACM/IEEE 24th
International Conference on Model Driven Engineering Languages and
Systems (MODELS). IEEE, 2021, pp. 216–226.

[16] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting
the understanding and comparison of low-code development platforms,”
in 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), 2020, pp. 171–178.

[17] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J. E.
Shuster, “Uiml: an appliance-independent xml user interface language,”
Computer networks, vol. 31, no. 11-16, pp. 1695–1708, 1999.

[18] J. Vanderdonckt, Q. Limbourg, B. Michotte, L. Bouillon, D. Trevisan,
and M. Florins, “Usixml: a user interface description language
for specifying multimodal user interfaces,” in Proceedings of W3C
Workshop on Multimodal Interaction WMI, vol. 2004. sn, 2004.

[19] S. Berti, F. Correani, F. Paterno, and C. Santoro, “The teresa
xml language for the description of interactive systems at multiple
abstraction levels,” in Proceedings workshop on developing user
interfaces with XML: advances on user interface description languages,
2004, pp. 103–110.

[20] F. Paterno’, C. Santoro, and L. D. Spano, “Maria: A universal,
declarative, multiple abstraction-level language for service-oriented
applications in ubiquitous environments,” ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 16, no. 4, pp. 1–30, 2009.

[21] M. Brambilla and P. Fraternali, Interaction flow modeling language:
Model-driven UI engineering of web and mobile apps with IFML.
Morgan Kaufmann, 2014.

[22] M. Hamdani, W. H. Butt, M. W. Anwar, and F. Azam, “A systematic
literature review on interaction flow modeling language (ifml),” in
Proceedings of the 2018 2nd International Conference on Management
Engineering, Software Engineering and Service Sciences, 2018, pp.
134–138.

[23] A. Huang, M. Pan, T. Zhang, and X. Li, “Static extraction of ifml
models for android apps,” in Proceedings of the 21st ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings, 2018, pp. 53–54.

[24] N. Yousaf, F. Azam, W. H. Butt, M. W. Anwar, and M. Rashid,
“Automated model-based test case generation for web user interfaces
(wui) from interaction flow modeling language (ifml) models,” IEEE
Access, vol. 7, pp. 67 331–67 354, 2019.

[25] R. K. Cao and X. Liu, “Ifml-based web application modeling,” Procedia
Computer Science, vol. 166, pp. 129–133, 2020.

[26] N. Kharmoum, S. Ziti, Y. Rhazali, and F. Omary, “An automatic
transformation method from the e3value model to ifml model: An mda
approach,” Journal of Computer Science, vol. 15, no. 6, pp. 800–813,
2019.

[27] A. Moldovan, V. Nicula, I. Pasca, M. Popa, J. K. Namburu, A. Oros,
and P. Brie, “Openuidl, a user interface description language for runtime
omni-channel user interfaces,” Proceedings of the ACM on Human-
Computer Interaction, vol. 4, no. EICS, pp. 1–52, 2020.

[28] (2015) What is apache freemarker™? [Online]. Available: https:
//jonas-moennig.de/how-to-cite-a-website-with-bibtex/

[29] (2008) Template designer documentation¶. [Online]. Available: http:
//jinja.octoprint.org/templates.html

[30] mustache. [Online]. Available: https://mustache.github.io/
[31] xslt cover page. [Online]. Available: https://www.w3.org/TR/xslt/

www.ijacsa.thesai.org 926 | P a g e

