
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Alignment of Software System Level with Business
Process Level: Resolving Syntactic and Semantic

Conflicts
Samia Benabdellah Chaouni1

Department of Mathematics and Computer Science
Faculty of Sciences Ain Chock, Hassan II University

Casablanca, Morocco

Maryam Habba2, Mounia Fredj3
AlQualsadi Research Team

ENSIAS, Mohammed V University in Rabat
Rabat, Morocco

Abstract—Information systems help organizations manage
their entities with innovative technologies. These entities are
often very different in nature. In this paper, we consider a
business process level based on a set of Business Process Model
and Notation (BPMN) models and a software system level based
on a Unified Modeling Language (UML) class diagram. The
differences between these entities make them difficult to align. In
addition, an organization’s BPMN models may be designed by
different teams, which can cause syntactic and semantic
heterogeneities. We present the first step of our proposed
approach for aligning a software system level with a business
process level without conflict (redundancy and lost information).
Syntactic and semantic rules based on ontologies and other
resources for comparing BPMN models are described, as well as
a process for transforming BPMN models into UML model.

Keywords—Information system alignment; business process;
software system; Business Process Model and Notation (BPMN);
Unified Modelling Language (UML); class diagram; ontology;
semantic aspects

I. INTRODUCTION
As organizations increase in number, competition between

them intensifies. In order to compete, organizations adopt
innovative strategies, seek high quality human resources,
follow best practices, and use the most efficient technological
tools. Developing an efficient and cost-effective information
system is crucial for an organization’s ability to compete. For
this reason, alignment is vital for organizations. Indeed,
alignment can provide solutions to problems associated with
the diverse changes that may occur in an organization’s
entities. Business/IT alignment has been the topic of several
previous studies [1]–[5]. The approach proposed in this paper
is relevant in various situations. An information system with
aligned levels may experience changes in one of its levels due
to a revision of goals or other factors. This causes the levels to
become misaligned. In addition, different levels of an
organization’s information system may be modelled by
different teams. Each team perceives the system from a
different perspective, which can also result in misaligned
levels. Similarly, when two organizations with levels of
different natures merge, the levels of the resulting information
system will likely be misaligned as well. In this case, the
resulting information system will contain misaligned levels.

Further, most organizations include several BPMN models at
the business process level, all built independently of each
other. This can cause conflicts during alignment, due to
heterogeneities between the models. In fact, existing
approaches considering a set of BPMN models align models
syntactically. However, they only test identity. They do not
detect other correspondences, such as inclusions, abbreviations
and acronyms. Moreover, none of these studies takes semantic
aspects into account (synonymy, homonymy or hyponymy).
These heterogeneities can cause conflicts when models are
aligned and may introduce problems and inconsistencies in the
resulting UML model. Indeed, if alignment approaches based
on identity only consider two BPMN elements to be different
when they are equivalent, they will introduce a false difference
and, therefore, redundancy in the UML model. Worse,
considering two elements as equivalent when they are different
will introduce a false equivalence, resulting in information loss
in the resulting UML model. A generalisation relationship
between hyponymic elements is also missing in the UML
model.

In all these situations, an effective alignment approach is
required to obtain a successful information system.
Additionally, it is necessary to ensure that alignment is
achieved without conflicts (i.e. without loss or redundant
information).

The different approaches described in previous studies
concerning business process and software system levels are
analysed in this paper. Following that analysis, we propose an
alignment approach that resolves syntactic and semantic
conflicts. The first step of the proposed approach includes a set
of rules for comparing BPMN models to detect equivalencies
and differences as well as a transformation process for
converting a set of BPMN models into a UML class diagram
[6]. The second step provides a method for preserving software
system level information.

This paper is organised as follows: Section II presents the
background of the topic; it introduces the concept of alignment
and ontology. Section III provides a brief overview of related
work, while the proposed approach is presented in Section IV.
Section V presents a case study. Finally, the conclusion
outlines our objectives for future work.

251 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

II. BACKGROUND

A. The Concept of Alignment
In the literature, various expressions have been used to

describe the term alignment. Chan [7] refers to alignment by fit
and synergy. Henderson and Venkatraman [8] use the terms fit,
integration, and interrelationships. Reich and Benbasat [9] use
the word linkage. For Ciborra [10], alignment is defined as a
bridge. Smaczny [11] describes it as fusion. Luftman [12]
employs the term harmony, while Nickels [13] uses
congruence. Alignment between business and IT is defined by
Ullah and Lai [5], as “the optimized synchronization between
dynamic business objectives/processes and respective
technological services provided by IT”. According to Luftman
[12], business-IT alignment concerns the application of IT in a
timely and a suitable manner, in harmony with business
strategies, goals and needs. For Luftman [12], this definition
considers the way IT is aligned with the business, and the way
the business should or could be aligned with IT. In present
work, we define alignment of a target level with a source level
as a method that ensures the continued operation of the target
level, while remaining suitable to the source level.

B. Ontology
Ontology is defined as an “explicit specification of a

conceptualization” [14]. Domain ontologies are ontologies
built on a particular knowledge domain. There are many
domain ontologies such as MENELAS (in the medical domain)
[15] and TOVE (in the business management domain) [16].
The domain ontology is a semantically rich model (it can
express equivalence, inverse, disjunction, symmetry,
transitivity, etc.), and is defined as an exhaustive list of
concepts (ontology class) and relations between these concepts
describing a particular domain (e.g. Medicine, Business, E-
Government).

III. RELATED WORK
In a previous work [17], we proposed a pattern system as a

guideline, to help organizations apply the alignment. In
addition, a systematic literature review was conducted [18] to
present various approaches to the alignment of business
requirement, business process and software system levels, that
use different modelling languages.

In this study, we focus on UML and BPMN languages,
because they are standards defined by the Object Management
Group (OMG). More precisely, we focus on a business process
level modelled by BPMN and a software system level
modelled by a UML class diagram.

BPMN and class diagrams are subjects of interest in
different approaches. Amr et al. [19] propose an MDA
approach for transforming a BPMN source model into a UML
class diagram, using a set of transformation rules. Brdjanin et
al. [20] present an approach for the automated generation of a
conceptual database model represented by a UML class
diagram from a single BPMN model. Brdjanin et al. [21] take a
set of business process models into account. Khlif et al. [22]
describe an approach to transform a business process model
into a class diagram, based on aspects descriptions. Rhazali et
al. [23] suggest a set of rules for transforming a BPMN model

into a use case, state and class diagrams. Cruz et al. [24]
propose an approach to obtain a data model from a business
process model. Cruz et al. [25] present rules to transform a set
of business process models into a data model. Kriouile et al.
[26] describe an approach to transform a BPMN model into a
domain class model. Bousetta et al. [27] propose an approach
for building a domain class diagram based on a BPMN model,
using a set of business rules.

In organizations, models of both levels usually exist. An
analysis of existing approaches makes it clear that all existing
approaches propose transformation from the source level into
the target level. However, an approach-based transformation is
not always sufficient to apply alignment when business process
and software system models exist. In fact, these approaches can
cause a loss of information. Fig. 1 presents the result of
applying one of the existing approaches. M1 represents the
business process level model, while M2 represents the software
system level model.

Let X, Y and Z be three models belonging to business
process level (M1). X contains elements A, F, K and I. Y
contains elements B and J, while Z contains elements G and H.
Model M2 contains elements D and E. The existing approaches
can generate a new UML class diagram (M2’), containing
T(A), T(F), T(K), T(I), T(B), T(G) and T(H), which represent
the results of the transformation of elements A, F, K, I, B, G
and H respectively.

We note that M2’ differs from model M2. Therefore,
information D and E associated with the existing UML class
diagram, will be lost after alignment (TABLE I, column 2).
None of the existing approaches consider all BPMN elements
frequently used in organizations (complete metamodel), which
provide a detailed description of the models and which belong
to the latest BPMN 2.0.2 specification [28], such as all task
types or all data types (TABLE I, column 3). The majority of
approaches take a single model at the source level into
consideration. Only two existing approaches ([21] and [25])
have achieved transformation using a set of BPMN models as a
source (TABLE I, column 4).

Fig. 1. Application of Existing Transformation Approaches.

252 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

TABLE I. SYNTHESIS OF APPROACHES

Ref. Preserving information Complete BPMN MM Set of BPMN models
Syntactic aspect Semantic aspect

Id Inc Ab Ac S Hp Hm

[19] - - - - - - - - - -

[20] - - - - - - - - - -

[21] - - x x - - - - - -

[22] - - - - - - - - - -

[23] - - - - - - - - - -

[24] - - - - - - - - - -

[25] - - x x - - - - - -

[26] - - - - - - - - - -

[27] - - - - - - - - - -

Because models X, Y and Z are usually created
independently, they include many types of heterogeneity. All
approaches considering a set of BPMN models align models
elements syntactically. However, they only test identity: the
string equality of elements. They do not detect other
correspondences, such as inclusions (e.g. element A, “Medical
Office” in X and element B, “Office” in Y), abbreviations (e.g.
“Qty” and “Quantity”) and acronyms (e.g. "UOM" and "Unit
Of Measure") (TABLE I, column 5). Moreover, none of these
studies take semantic aspects into account (TABLE I, column
6). They do not detect synonymy (e.g. element F, "Doctor" in
X and element G, "Medical Practitioner" in Z), homonymy
(e.g. element I, "Invoice" (of Patient) in X, and element J
"Invoice" (of Supplier) in Y), or hyponymy (a semantic
relationship between terms where the meaning of one is
included in another, more general term) (e.g. element K,
“Patient” in X and element H, “Diabetic” in Z).

As shown in Fig. 1, these heterogeneities can cause
conflicts when models are aligned and may introduce problems
and inconsistencies in the resulting UML model. Indeed, if
alignment approaches based on identity only consider two
BPMN elements (belonging to X and Y) to be different when
they are equivalent, they will introduce a false difference and
therefore redundancy in the UML model. For example, we can
find both T(A) “Medical Office” and T(B) “Office” in the
UML model. Worse, considering two elements (belonging to X
and Y) as equivalent when they are different will introduce a
false equivalence, resulting in information loss in the resulting
UML model. For example, only T(I) “Invoice” (of Patient) can
be found in the UML model, and not “Invoice” (of Supplier). A
generalisation relationship between hyponymic elements is
also missing in the UML model. For example, the
generalisation relationship between element T(K) “Patient” and
element T(H) “Diabetic”.

We synthesize the existing approaches in TABLE I
according to the following criteria: preserving information,
considering complete BPMN metamodel (MM), considering a
set of BPMN models, considering syntactic aspects (we note
syntactic comparison, the comparison strings of model
elements’ letters. It indicates if the approach detects identity
(Id), inclusions (Inc), abbreviations (Ab) and acronyms (Ac)),

and considering semantic aspects (we note semantic
comparison, the comparison of the meaning associated with the
model’s elements). It indicates if the approach detects
synonymy (S), hyponymy (Hp) and homonymy (Hm). In
TABLE I, “x” indicates that a criterion is considered.

This analysis of existing approaches reveals the need for an
alignment approach that preserves existing information, uses a
set of BPMN models and considers most used BPMN
elements. Moreover, our objective is to propose how to find
real equivalences and real differences and how to get UML
result model without conflicts.

IV. PROPOSED APPROACH

A. Overview of the Proposed Approach
The aim of the proposed approach is to align the software

system level with the business process level, without losing
information and without conflict.

We present an alignment system in Fig. 2 that takes a set of
BPMN models as input and outputs the resulting UML model.
It encompasses two steps:

1) Step 1: Comparison and transformation
a) Comparison of BPMN models: Our goal is to provide

a semantic comparison approach that also integrates syntactic
aspects. The model comparison subsystem takes BPMN
models as input and returns (1) a comparison table containing
the correspondence between elements (equivalent, different
and hyponymic elements) and (2) isolated elements (those
without equivalent, homonym or hyponym in another model).
It is a syntactic and semantic rules-based system (presented in
section IV.C.1), driven by a comparison process. We use
strategies based on semantic properties to take semantic
aspects into account. Therefore, our system refers to a domain
ontology that will provide semantically relevant information
for decision-making during the comparison (example: two
ontology classes are semantically equivalent, two elements are
hyponyms presented by an ontology class and its ontology
subclass, etc.).

253 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 2. Representation of Our Alignment Approach.

In addition, our system relies on several other resources to
complete these comparisons. We use an acronym dictionary1,
an abbreviation dictionary2, and a dictionary of synonyms3.

b) Transformation of BPMN models into a UML model:
This subsystem consists of the application of rules to
transform a set of BPMN models (M1) into a generated UML
class diagram (M2’), based on a comparison table and
following a transformation process. Transformation rules
based on MDA are presented in our previous work [29]. In the
present work, we update the transformation process from
BPMN models into a UML model, considering syntactic and
semantic aspects (presented in section IV.C.2)).

By applying the rules of syntactic and semantic
comparison, we can detect real equivalences and real
differences, and thus obtain a UML result model without
conflicts (Fig. 3). By identifying F and G as semantically
equivalent, we are left with only one element, T(F), and
therefore do not have redundancy in UML diagram M2'.
Additionally, identifying A and B as syntactically equivalent
results in only one element T(A), and thus no redundancy in
M2'. Identifying I and J as homonyms produces two result
elements, T(I) and T(J), in M2'. Finally, identifying K and H as
hyponyms produces a generalisation relationship between the
two resulting elements T(K) and T(H) in M2'.

2) Step 2: Fusion: This step consists of creating a fusion
between the UML class diagram (M2’) generated in step 1 and
the existing UML class diagram (M2). We have previously
demonstrated the results of this phase; the comparison and
fusion meta-models were published in [30]. This solution also
takes into account the syntactic and semantic aspects of the
two class diagrams elements.

The result is a final UML class diagram (M2”). By
applying the two steps illustrated in Fig. 3, the target level is
completed, as it contains the information related to the existing
class diagram (M2) as well as the information related to the
generated class diagram (M2’).

1 https://www.dictionary.com/e/acronyms/
2 http://theleme.enc.sorbonne.fr/dico.php
3 http://wordnet.princeton.edu/

B. Example of BPMN Models
This approach can be applied to several BPMN models

such us collaboration or process diagrams. In this section, we
present a set of BPMN collaboration diagrams. To illustrate
our approach, we use an example representing the business
process level of a medical field.

A collaboration diagram can contain several elements:
pool, lane, event, task, gateway, message flow, message,
sequence flow, data, data association, artifact and association.
A pool can refer to a process or can be a black box. A lane is a
sub-partition within a pool; it can contain a set of events (facts
that occur during the process), tasks (atomic work performed in
a process), or gateways (controlling the convergence or
divergence of flows in a process). A task can appear as a send
task, a receive task, a service task, a user task, a manual task, a
business rule task, or a script task. A message flow may
contain a message (in the present work, we suppose that a
message flow contains a message), and links source and target
elements (pools, events, or tasks). A sequence flow connects a
source and a target element (events, tasks, or gateways). Data
provides information about what tasks need to be performed
and/or what they produce. There are four types of data: data
object, data store, data input or data output. A data association
links source data or target data to a task. An artifact can be in
the form of a group or a text annotation. It aims to provide
more clarity to the process. An association links an artifact
with a BPMN element.

Fig. 3. Result Model without Conflicts or Information Loss.

254 | P a g e
www.ijacsa.thesai.org

https://www.dictionary.com/e/acronyms/
http://theleme.enc.sorbonne.fr/dico.php
http://wordnet.princeton.edu/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 4. Model X - Patient Consultation in a Medical Office.

Fig. 4 can illustrate the collaboration diagram (model X)
for a patient consultation in a medical office. It is composed of
two pools: “Patient”, which is a black box and “Medical
Office”, which contains the lanes “Receptionist” and “Doctor”.
The diagram begins when a patient arrives at the medical
office. The receptionist performs the first task, “Display
Appointment”, which has a data object “Appointment” as
output. The receptionist then searches for the patient in a
patient list. If a patient file exists, the receptionist displays the
patient’s information. If not, the receptionist initiates the
patient file, adds details and saves the file. The doctor then
displays the patient file and initiates a prescription. The date of
the prescription is identified. Then, the doctor enters details,
saves the file, and sends the prescription. Next, the receptionist
initiates an invoice, and its date is identified. The receptionist
then enters details, saves the file, and sends the invoice.

Fig. 5 can represent the second collaboration diagram
(model Y) placing orders with suppliers. It contains two pools:
“Supplier”, represented as a black box, and “Office” which
contains two lanes (“Assistant” and “Doctor”). The first task is
“Initiate Purchase Order” performed by the assistant. It has as
an output the data object “Purchase Order”. Then the date of
the purchase order is identified. Next, the assistant adds details,
and saves the purchase order. Then, the doctor displays,
modifies and validates the purchase order. Next, the assistant
sends the purchase order and then receives the invoice from the
supplier.

Fig. 6 can illustrate the third collaboration diagram (model
Z), for monitoring patients with diabetes. It contains two pools:
“Diabetic”, represented as a black box, and “Medical Office”,
which contains two lanes (“Assistant” and “Medical
Practitioner”). The first task is “Search Patient File” executed
by the assistant. Its input is the data store “Patient File”. If the
patient is diabetic, the patient file is exposed. If the patient
needs an appointment, the assistant initiates the appointment,
adds details, saves and sends the appointment to the diabetic.
Then the medical practitioner exposes the appointment.

Fig. 5. Model Y - Ordering from Suppliers.

Fig. 6. Model Z - Monitoring Diabetics.

C. Comparison and Transformation Subsystems
In this section, we present the details of our approach. We

first present the comparison of BPMN models, then the
transformation of those BPMN models into a UML class
diagram.

1) Comparison of BPMN models: Our goal is to compare
BPMN models syntactically and semantically. To do so, we
follow the model comparison process detailed in
Section IV.C.1)a), which applies the BPMN element
comparison rules described in Section IV.C.1)b).

a) Comparison process: We apply a comparison
between each two models. To create a UML class diagram, we
create classes before their operations. To do this, we first
compare BPMN elements that will be transformed into
classes: 1) Pools, 2) lanes, 3) messages and 4) data of non
manual task and direct object (DO) of all types of task (except
manual task) without data, send task that have a data in its

255 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

input and receive task that have a data in its output). We call
the fourth category of elements: “selected elements”. Next, we
compare BPMN elements that will be transformed to
operations: tasks related to equivalent selected elements.

The BPMN elements that will be transformed to
associations, aggregations, attributes, and multiplicities
[presented in Section IV.C.2)] are not concerned by
comparison, because they are not named elements and
therefore cannot be compared syntactically and semantically.
The elements events, gateways, manual tasks, data related to
manual tasks, sequence flows, and artifacts are not considered
also in this comparison, because they will not appear in the
resulting UML model (they do not have an equivalent in the
UML class diagram).

In order to compare BPMN models, we follow the steps of
the comparison process (Fig. 7), in this order: search equivalent
pools, search hyponym pools, search equivalent lanes
belonging to equivalent or hyponym pools, search hyponym
lanes belonging to equivalent or hyponym pools, search
equivalent messages, search homonym messages, search
equivalent selected elements belonging to equivalent or
hyponym pools, search homonym selected elements, and
finally search equivalent tasks related to equivalent selected
elements.

Pools are not concerned with homonymy because BPMN
models are designed for the same domain. For example, if
“office” is found in the first model meaning medical office, and
"office" is also found in the second model, it will refer to a
medical office there as well, and not, for example, a lawyer's
office. The same is true for lanes: two homonymic lanes cannot
belong to equivalent pools.

b) Comparison rules: We define a mathematical
framework to express formally our approach. We present the
comparison rules by the predicate language. So, we needed to
express, in predicate logic, BPMN model (representing input
of system), ontology and other resources (representing the
system references). For that, we realised transformations, in
the Model Driven Architecture (MDA) context:

i) The first transformation concerns BPMN model into
logical model that generates a set of predicates representing
BPMN elements to compare:

• Element(e,M): The element Pool or Lane “e” belonging
to the model “M”.

• Pool(P,M): The pool “P” belonging to the model “M”.

• Lane (L,P,M) : The Lane “L” belonging to the pool
“P”and the model “M”.

• Message (m, SourceP, TargetP,M): The message “m”
relating the source Pool “SourceP” and the target Pool
“TargetP”, belonging to the model “M”.

• SelectedElement(E, P, M) : The selected element “E”,
belonging to the pool “P” and the model “M”.

• Task (T, in, out, L, P, M) : The task “T”, with the input
data “in”, and the output data “out”, belonging to the
Lane “L”, the pool “P” and the model “M”.

ii) The second transformation concerns OWL ontology
(conform to an extract of OWL metamodel [31]) into logical
model. The transformation generates a set of predicates
representing OWL ontology, such as:

• equivalentOntoClass(C1, C2): The ontology classes
“C1” and “C2” are equivalent.

• OntoSuperClassOf(C1, C2): The ontology class “C1” is
subclass of the ontology class “C2”.

Other system references are presented as follows:

• DicAcronyms(elt1,elt2): “elt1” and “elt2” are
acronyms.

• DicAbbreviation(elt1,elt2) :“elt1” and “elt2” are on
abbreviation relation.

• DicSynonymy(elt1,elt2) :“elt1” and “elt2” are
synonyms.

To complete rules expression, we define a set of facts from
programming languages, such as equality of two strings, and
inclusion of two strings:

• String(elt) : “elt” is a character string.

• InclusionString(s1,s2) : means that the character string
“s1” is included in the character string “s2”.

• EqualString(s1,s2): The two strings “s1” and “s2” are
equal.

Fig. 7. Comparison Process.

256 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Our system is based on a set of comparison rules which are
characterized by a name and it is composed of a set of
parameters (e.g. elements to compare, first model and second
model) that have a name. A rule can call one or more other
rules.

We present the comparison rules of models below.

• CR1 : Rule of syntactic identity of elements
Syntactic_Identity�elti , eltj� ⇔ EqualString (elti , eltj)

Two elements elti and eltj are syntactically identical if and
only if they have the same name.

Example: The pool “Medical office” in X and the pool
“Medical office” in Z.

• CR2: Rule of syntactic equivalence of elements

Equivalence_Syntactic_Elts�elti , eltj� ⇔ [Syntactic_Identity (elti , eltj) ∨
 InclusionString �elti , eltj� ∨ InclusionString �eltj , elti� ∨
DicAcronyms�elti , eltj� ∨ DicAbbreviation(elti , eltj)]

Two elements elti and eltj are syntactically equivalent if
and only if they are identical, or if there is a relationship of
inclusion, acronym or abbreviation of them (according to
dictionaries).

Example: The pools “Medical Office” in X and “Office” in
Y.

• CR3: Rule of semantic equivalence of elements
Equivalence_Semantic_Elements(elti , eltj) ⇔

[(DicSynonymy�elti , eltj� ∨ (∃e String(e) ∧
Equivalence_Syntactic_Elts(elti , e) ∧ DicSynonymy�e, eltj�) ∨
(∃c String(c) ∧ Equivalence_Syntactic_Elts�eltj , c� ∧
DicSynonymy(c, elti)) ∨ (∃e String(e) ∧ ∃c String(c) ∧
Equivalence_Syntactic_Elts�eltj , e� ∧ Equivalence_Syntactic_Elts(elti , c) ∧
DicSynonymy(e, c)))

∨ (equivalentOntoClass�elti , eltj� ∨ (∃e String(e) ∧
Equivalence_Syntactic_Elts(elti , e) ∧ equivalentOntoClass(e, elt)) ∨
(∃c String(c) ∧ Equivalence_Syntactic_Elts�eltj , c� ∧
equivalentOntoClass(c, elti)) ∨ (∃e String(e) ∧ ∃c String(c) ∧
Equivalence_Syntactic_Elts�eltj , e� ∧ Equivalence_Syntactic_Elts(elti , c) ∧
equivalentOntoClass(e, c)))]

Two elements elti and eltj are semantically equivalent if and
only if one of these conditions is satisfied:

o elti (or a character string syntactically equivalent to
elti) is synonymous with eltj (or a character string
syntactically equivalent to ej), according to a
synonym dictionary.

o there are two classes in the domain ontology with
the same names of elti and eltj (or a character string
syntactically equivalent to elti and eltj), which are
equivalent.

Example: The lanes “Receptionist” in X and “Assistant”
in Y.

• CR4: Rule of hyponyms of elements (Pool or Lane)
Hyponym_Elements(elti , eltj, Mi, Mj) ⇔ [Element(elti , Mi) ∧
Element(eltj, M2) ∧ (OntoSuperClassOf�elti , eltj� ∨ (∃e String(e) ∧
Equivalence_Syntactic_Elts(elti , e) ∧ OntoSuperClassOf�e, eltj�) ∨
(∃c String(c) ∧ Equivalence_Syntactic_Elts�eltj , c� ∧
OntoSuperClassOf(elti, c)) ∨ (∃e String(e) ∧ ∃c String(c) ∧
Equivalence_Syntactic_Elts(elti , e) ∧ Equivalence_Syntactic_Elts�eltj, c� ∧
OntoSuperClassOf(e, c)))]

An element (Pool or Lane) elti is a hyponym of an element
eltj if and only if, in a domain ontology, one ontology class
with the same name of elti (or a character string syntactically
equivalent to elti) is an ontology subclass of eltj (or a character
string syntactically equivalent to eltj).

Example: The pool “Diabetic” in Z is a hyponym of the
pool “Patient” in X.

• CR5: Rule of Equivalent Pools
Equivalence_Pools�Pi, Pj, Mi, Mj� ⇔ [Pool(Pi, Mi) ∧ Pool�Pj, Mj� ∧
(Equivalence_Syntactic_Elts�Pi, Pj� ∨
Equivalence_Semantic_Elements(Pi, Pj))]

Two pools Pi and Pj are equivalent if and only if they are
syntactically or semantically equivalent.

Example: The pool “Medical Office” in X and the pool
“Medical Office” in Z.

• CR6: Rule of Equivalent lanes
Equivalence_Lanes�Li, Lj, Mi, Mj� ⇔ [Lane(Li, Pi, Mi) ∧ Lane�Lj, Pj, Mj� ∧
(Equivalence_Syntactic_Elts�Li, Lj� ∨
Equivalence_Semantic_Elements(Li, Lj))]

Two lanes Li and Lj are equivalent if and only if they are
syntactically or semantically equivalent.

Example: The lane “Doctor” belonging to the pool
“Medical Office” in X and the lane “Medical Practitioner”
belonging to the pool “Medical Office” in Z.

• CR7: Rule of Equivalent messages
Equivalence_Messages�mi, mj, Mi, Mj� ⇔
[Message(mi SourcePi, TargetPi, Mi) ∧
Message�mj, SourcePj, TargetPj, Mj� ∧
(Equivalence_Syntactic_Elts�mi, mj� ∨
Equivalence_Semantic_Elements(mi, mj)) ∧
((Equivalence_Pools�SourcePi, SourcePj, Mi, Mj� ∨
Equivalence_Pools�SourcePi, TargetPj, Mi, Mj� ∨
(Hymonym_Elements(SourcePi, SourcePj, Mi, Mj) ∨
Hymonym_Elements(SourcePj, SourcePi, Mi, Mj)) ∨
(Hymonym_Elements(SourcePi, TargetPj, Mi, Mj) ∨
Hymonym_Elements(TargetPj, SourcePi, Mi, Mj))) ∧
(Equivalence_Pools�TargetPi, SourcePj, Mi, Mj� ∨
Equivalence_Pools�TargetPi, TargetPj, Mi, Mj� ∨
(Hymonym_Elements(TargetPi, SourcePj, Mi, Mj) ∨
Hymonym_Elements(SourcePj, TargetPi, Mi, Mj)) ∨
(Hymonym_Elements(TargetPi, TargetPj, Mi, Mj) ∨
Hymonym_Elements(TargetPj, TargetPi, Mi, Mj))))]

257 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 8. Representation of Two Messages Mi and Mj.

Two messages mi and mj (Fig. 8) are equivalent if and only
if:

o they are syntactically or semantically equivalent.

o and their source and target pools are equivalent or
hyponyms.

Example: The message “Appointment” connecting the
pools “Medical Office” and “Patient” in X and the message
“Appt” connecting the pools “Medical Office” and “Diabetic”
in Z.

• CR8: Rule of homonym message
Homonym_Messages�mi, mj, Mi, Mj�

⇔ [Message(mi SourcePi, TargetPi, Mi)
∧ Message�mj, SourcePj, TargetPj, Mj�
∧ Equivalence_Syntactic_Elts�mi, mj�
∧ (¬Equivalence_Pools�SourcePi, SourcePj, Mi, Mj�
∨ ¬Equivalence_Pools�SourcePi, TargetPj, Mi, Mj�
∨ ¬Equivalence_Pools�TargetPi, SourcePj, Mi, Mj�
∨ ¬Equivalence_Pools�TargetPi, TargetPj, Mi, Mj�)]

Two messages mi and mj (Fig. 8) are homonyms if and only
if:

o they are syntactically equivalent.

o if at least one of their source or target pools are not
equivalent.

Example: The message “Invoice” in X and the message
“Invoice” in Y.

• CR9: Rule of equivalent selected elements.
Equivalence_SelectetElements�ei, ej, Mi, Mj� ⇔
[SelectedElement(ei, Pi, Mi) ∧ SelectedElement�ej, Pj, Mj� ∧
(Equivalence_Syntactic_Elts�ei, ej� ∨
Equivalence_Semantic_Elements(ei, ej)) ∧
(∄miMessage(mi, SourcePi, TargetPi, Mi) ∧
Equivalence_Syntactic_Elts(ei , mi) ∧
∄mjMessage�mj, SourcePj, TargetPj, Mj� ∧
Equivalence_Syntactic_Elts�ej , mj� ∧
Homonym_Messages�mi, mj, M1, M2�)]

Two selected elements ei and ej are equivalent if and only if:

o they are syntactically or semantically equivalent.

o and there is no homonyms messages with the same
name of selected elements.

Examples: The selected element “Patient” in X and the
selected element “Patient File” are equivalent.

• CR10: rule of Homonyms selected elements
Homonym_SelectetElements�ei, ej, Mi, Mj� ⇔
[SelectedElement(ei, Pi, Mi) ∧ SelectedElement�ej, Pj, Mj� ∧
((∃miMessage(mi, SourcePi, TargetPi, Mi) ∧
Equivalence_Syntactic_Elts(ei , mi) ∧
∃miMessage�mj, SourcePj, TargetPj, Mj� ∧
Equivalence_Syntactic_Elts�ej , mj� ∧
Homonym_Messages�mi, mj, Mi, Mj�) ∨
((Equivalence_Syntactic_Elts�ei, ej� ∧
(¬Equivalence_Pools�Pi, Pj, Mi, Mj�) ∨
¬Hymonym_Elements(Pi, Pj, Mi, Mj))]

Two selected elements ei and ej are homonyms if and only
if:

o there are homonyms messages with the same name
of selected elements.

o or, they are syntactically equivalent and belong to
non-equivalent and non-hyponym pools.

Example: The selected element “Invoice” in X and the
selected element “Invoice” in Y.

• CR11: Rule of Equivalent tasks
Equivalence_Tasks�Tj, Tj, Mi, Mj� ⇔ [Task(Ti, typeti, dINi, dOUTi, Li, Pi, Mi)

∧ Task�Tj, typetj, dINj, dOUTj, Lj, Pj, Mj�
∧ (Equivalence_Syntactic_Elts�Ti, Tj)�
∨ Equivalence_Semantic_Elements(Ti, Tj)]]

Two tasks Ti and Tj are equivalent if and only if are
syntactically or semantically equivalent.

Example: The task “Display Appointment” in X and the
task “Display Appt” in Z.

c) Comparison table: We apply the process and the
comparison rules on the examples of BPMN models presented
in section IV.B, by referring to an ontology of the medical
field as well as dictionaries. We choose OWL (Ontology Web
language) ontology because it is a W3C4 recommendation, and
the metamodel OWL was defined by Ontology Definition
Metamodel specification of OMG. To compare these models,
we can find in ontology of medical domain several
information. For a reason of space, we present bellow two
information: Two equivalent ontology OWL classes, and the
ontology OWL class “Patient” and its sub class “Diabetic”:
<owl:Class rdf:ID="Doctor">
<owl:equivalentClass rdf:resource="#Medical Practionnar"/>

 </owl:Class>

<owl:Class rdf:ID="Diabetic">

 <rdfs:subClassOf rdf:resource="#Patient"/>

</owl:Class>

4 www.w3.org

258 | P a g e
www.ijacsa.thesai.org

http://www.w3.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

TABLE II. COMPARISON TABLE

 X Y Z Equiv
syn/sem Hypo Hom Decision RCX RCY RCZ

Pools
Medical Office Office Medical Office Yes - - Equivalent Medical Office Medical

Office Medical Office

Patient - Diabetic - Yes - Hyponymy Patient Diabetic -

Lanes
Receptionist Assistant Assistant Yes - - Equivalent Receptionist Receptionist Receptionist

Doctor Doctor Medical Practitioner Yes - - Equivalent Doctor Doctor Doctor

Messages
Appointment - Appt Yes - No Equivalent Appointment Appointment -

Invoice Invoice - Yes - Yes Different Invoice_Patient Invoice_
Supplier -

Selected
Elements

Invoice Invoice - Yes - Yes Different Invoice_Patient Invoice_
Supplier -

Appointment - Appt - - Equivalent Appointment Appointment -

Patient - Patient File Yes - No Equivalent Patient - Patient

Tasks

Display
Appointment - Expose Appt - - - Equivalent Display

Appointment - Display
Appointment

Display Patient - Expose Patient File - - - Equivalent Display Patient - Display Patient

Search Patient - Search Patient File - - - Equivalent Search Patient - Search Patient

We obtain the comparison table (TABLE II), after the
elimination of duplicate elements. The first four columns
present the elements of the models X, Y and Z to be compared,
the fifth column presents whether or not the elements are
syntactically or semantically equivalent. The sixth column
shows whether or not the elements are hyponyms. The seventh
column presents whether or not the elements are homonyms.
The eighth column presents the final decision (equivalence,
hyponymy or difference).

In order to choose the appropriate name of UML result
elements (in the second subsystem of transformation), we base
on the decision of column 8 to rename elements in the three
last columns called RCMi (Mi represents X, Y or Z), as
following: (1) If the decision is “Equivalent”, we rename the
elements of model X, Y and or Z using the name of the first
column. (2) If the decision is “Hyponymy”, we keep the same
name of the elements of the model. (3) If the decision is
“Different”, we use the name of the element and we add “_the
name of the pool that is different to the pool of the other
element”.

2) Transformation of BPMN models into UML class
diagram: In order to transform BPMN models into a UML
class diagram we apply a transformation process (Fig. 9)
based on the comparison table presented in section IV.C.1)c).
This process is based on 18 transformation rules presented in
detail in our previous work [29]. This process is presented in
the form of a series of steps based on BPMN notation as
follow (Fig. 9):

• Transformation of task: this sub-process is based on 12
rules related to tasks (considering their types and if they
are linked to data or not) and call one other rule

related to data. At the end of this step, the UML class
diagram can be constituted of classes, attributes,
operations, associations and multiplicities.

• Transformation of pool and/or lane: this sub-process
generates classes, attributes, and aggregations after this
step.

• Transformation of relationship between (pool or lane)
and task: it generates associations and multiplicities.

• Transformation of message: it generates classes and
attributes.

• Transformation of relationship between message and
element (pool, task or event): it generates associations
and multiplicities.

For those first fifth sub process, we:

• Identify an element “i” of a model Mi

• Apply the corresponding rule (according to the element
identified). If the element belongs to the column Mi in
the comparison table, the name of the element (class or
operation) that will be used corresponds to the RCMi
column. In addition, a check is performed to determine
whether an element (class, operation or association) of
the class diagram has already been created by another
rule. If it has:

o All the instructions associated with that rule are
applied, except creation of the element.

o If an association already exists, such that the
multiplicities are different, the existing association
is kept, and the union of multiplicities is applied
for each end of the association.

259 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 9. The Transformation Process.

• Creation of a generalisation relationship between
hyponymic elements. In this sub-process, we:

o Identify hyponymic elements.

o Create a generalisation relationship between
elements. When transforming an element “i” of
model Mi, if the element belongs to the column Mi
in the comparison table, the name of the element
class that will be used corresponds to the RCMi
column.

V. CASE STUDY
In order to illustrate the application of the first step of our

proposed approach, the three BPMN models represented in
section IV.B, are transformed into a UML class diagram (Fig.
10) by applying our transformation process and rules and by
referring to the comparison table. Resulted model represents
the output of step 1 (M2’ UML model).

We note that there is no redundancy in the classes. Indeed,
for example, we find only the class "Medical Office" instead of
having in addition the class "Office", only the class "Doctor,
instead of having in addition the class "Medical Practitioner",
only the class "Receptionist" instead of having in addition
another class "Assistant", a single class "Appointment" instead

of having in addition the class "Appt". Moreover, we don’t find
redundancies in class operations. In fact, for example, we find
a single "displayAppointment()" operation, and not a second
"exposeAppt()", we also found a single "displayPatient()"
operation, and a single "searchPatient()" operation. Also, we
don’t find a loss information by finding the two classes
"Invoice_Patient" and "Invoice_Supplier". Finally, we find a
generalisation relationship between the "Diabetic" and
"Patient" classes.

We present the resulted elements of the first step of
transformation process (classes, attributes, associations,
multiplicities) by black color. At the second step, the resulted
elements (classes, attributes, aggregations, multiplicities) are
illustrated using blue color. The resulted elements (associations
and multiplicities) after the third step are mentioned using
green color. After the fourth step, we didn’t add new element
because they were created in the previous steps. After the fifth
step, the added or modified elements (associations,
multiplicities) are illustrated by red color. Finally, we illustrate
the resulted generalisation relationship, using yellow color.

To create the result UML model M2", we merge (by
applying the fusion subsystem, already developed in our
previous works), M2 model which can represent the existing
software level in medical field and this M2’ resulted model.

Fig. 10. Resulted Class Diagram UML Model M2’.

260 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

VI. CONCLUSION
In this paper, we propose a method for aligning software

system level with business process level without conflicts, by
considering a set of models at the source level.

We responded to the limitations of existing work. In fact,
by applying the rules of syntactic and semantic comparison, we
can detect real equivalences and real differences, and thus
obtain a UML result model without conflicts. Indeed, by
identifying two elements as semantically equivalent, we are left
with only one element, and therefore do not have redundancy
in UML diagram; additionally, identifying two elements as
syntactically equivalent results in only one element, and thus
no redundancy in result model. Identifying two elements as
homonyms produces two result elements in UML model.
Finally, identifying two elements as hyponyms produces a
generalisation relationship between the two resulting elements
in result model.

We have implemented a first version of our approach,
which allows us to facilitate and automate the transformation
phase. This was accomplished using the Java programming
language in the Eclipse development environment. The tool
takes a set of xpdl files as input. Each file is a representation of
a BPMN model. An xmi file is generated from this input,
which is later converted into a UML class diagram. It is tested
through a case study in the field of telecommunications. Our
intent is to update this module by considering syntactic and
semantic aspects. We aim also proposing the alignment of
BPMN models with UML model to realise a more complete
alignment.

The syntactic and semantic comparison of BPMN models
resulted in our work can be used in the first step of a research
theme, which is the fusion of the BPMN models, in the context
of organizations’ merge.

REFERENCES
[1] T.Wasiuk, F.P.C.Lim, “Factors Influencing Business IT Alignment,”

International Journal of Smart Business and Technology, vol.9, no.1,
pp.1-12, Mar. 2021.

[2] H. Darii, J. Laval, V. Botta-Genoulaz, and V. Goepp, “Measurement of
the business/IT alignment of information systems,” in ILS 2020-8th
International Conference on Information Systems, Logistics and Supply
Chain, pp. 228-235. 2020.

[3] P. Gajardo and L. P. Ariel, “The business-it alignment in the digital
age,” In The 13th Mediterranean Conference on Information Systems
(ITAIS & MCIS), Naples, Italy. 2019.

[4] M. Zhang, H. Chen, and A. Luo, “A systematic review of business-IT
alignment research with enterprise architecture,” IEEE Access, vol. 6,
pp. 18933–18944, 2018.

[5] A. Ullah and R. Lai, “A systematic review of business and information
technology alignment,” ACM Trans. Manag. Inf. Syst., vol. 4, no. 1, pp.
1–30, 2013.

[6] O. M. G. UML, “OMG (2017) Unified Modeling Language®(OMG
UML®) Version 2.5. 1 https://www. omg. org/spec,” 2017.

[7] Y. E. Chan, “Business Strategy, information system strategy, and
strategic fit: Measurement and performance impacts,” p. 362, 1992.

[8] J. C. Henderson and H. Venkatraman, “Strategic alignment: Leveraging
information technology for transforming organizations,” IBM Syst. J.,
vol. 38, no. 2.3, pp. 472–484, 1999.

[9] B. H. Reich and I. Benbasat, “Measuring the linkage between business
and information technology objectives,” MIS Q., pp. 55–81, 1996.

[10] C. U. Ciborra, “Deconstructing the concept of strategic alignment,”
Scand. J. Inf. Syst., vol. 9, no. 1, pp. 67–82, 1997.

[11] T. Smaczny, “Is an alignment between business and information
technology the appropriate paradigm to manage IT in today’s
organisations?,” Manag. Decis., 2001.

[12] J. Luftman, “Assessing business-IT allignment maturity,” in Strategies
for information technology governance, Igi Global, pp. 99–128, 2004.

[13] D. W. Nickels, “IT-Business Alignment: what we know that we still
don’t know,” in Proceedings of the 7th Annual Conference of the
Southern Association for Information Systems, vol. 79, pp. 79-84. 2004.

[14] T. R. Gruber, “A translation approach to portable ontology
specifications,” Knowl. Acquis., vol. 5, no. 2, pp. 199–220, 1993.

[15] P. Zweigenbaum, “MENELAS: an access system for medical records
using natural language,” Comput. Methods Programs Biomed., vol. 45,
no. 1–2, pp. 117–120, 1994.

[16] T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing?,” Int. J. Hum. Comput. Stud., vol. 43, no. 5–6, pp.
907–928, 1995.

[17] M. Habba, M. Fredj, and S. B. Chaouni, “Towards an operational
alignment approach for organizations,” in Proceedings of the 9th
International Conference on Information Management and Engineering,
pp. 29–34, 2017.

[18] M. Habba, M. Fredj, and S. Benabdellah Chaouni, “Alignment between
Business Requirement, Business Process, and Software System: A
Systematic Literature Review,” J. Eng. (United Kingdom), vol. 2019,
2019, doi: 10.1155/2019/6918105.

[19] M. F. Amr, N. Benmoussa, K. Mansouri, and M. Qbadou,
“Transformation of the CIM Model into A PIM Model According to The
MDA Approach for Application Interoperability: Case of the" COVID-
19 Patient Management" Business Process,” iJOE, vol. 17, no. 05, p. 49,
2021.

[20] D. Brdjanin, G. Banjac, and S. Maric, “Automated synthesis of initial
conceptual database model based on collaborative business process
model,” in International Conference on ICT Innovations, pp. 145–156,
2014.

[21] D. Brdjanin, A. Vukotic, G. Banjac, D. Banjac, and S. Maric,
“Automatic Derivation of Conceptual Database Model from a Set of
Business Process Models,” in 2020 International Conference on
INnovations in Intelligent SysTems and Applications (INISTA), pp. 1–
8, 2020.

[22] W. Khlif, N. Elleuch, E. Alotabi, and H. Ben-Abdallah, “Designing BP-
IS Aligned Models: An MDA-based Transformation Methodology,” pp.
258– 266, 2018.

[23] Y. Rhazali, Y. Hadi, and A. Mouloudi, “A methodology of model
transformation in MDA: From CIM to PIM,” Int. Rev. Comput. Softw.,
vol. 10, no. 12, pp. 1186–1201, 2015, doi: 10.15866/irecos.v10i12.8088.

[24] E. F. Cruz, R. J. Machado, and M. Y. Santos, “From business process
modeling to data model: A systematic approach,” in 2012 Eighth
International Conference on the Quality of Information and
Communications Technology, pp. 205–210, 2012.

[25] E. F. Cruz, R. J. Machado, and M. Y. Santos, “Deriving a Data Model
from a Set of Interrelated Business Process Models.,” in ICEIS (2), pp.
49–59, 2015.

[26] A. Kriouile, N. Addamssiri, T. Gadi, and Y. Balouki, “Getting the static
model of PIM from the CIM,” in 2014 Third IEEE International
Colloquium in Information Science and Technology (CIST), pp. 168–
173, 2014.

[27] B. Bousetta, O. El Beggar, and T. Gadi, “A methodology for CIM
modelling and its transformation to PIM,” Journal of Information
Engineering and Applications, vol. 3, no. 2, pp. 1–21, 2013.

[28] B. P. M. OMG, “Notation (BPMN) Version 2.0. 2, Object Management
Group, 2013,” 2016.

261 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

[29] M. Habba, S. B. Chaouni, and M. Fredj, “Aligning Software System
Level with Business Process Level through Model-Driven Architecture,”
International Journal of Advanced Computer Science and Applications,
vol. 12, no. 10, pp. 174–183, 2021, doi:
10.14569/IJACSA.2021.0121020.

[30] S. B. Chaouni, M. Fredj, and S. Mouline, “Metamodels for models
complete integration,” in 2011 IEEE International Conference on
Information Reuse & Integration, 2011, pp. 496–497.

[31] Ontology Definition Metamodel, OMG Adopted Specification, OMG
Document Number: ptc/2008-09-07, 2008.

262 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Background
	A. The Concept of Alignment
	B. Ontology

	III. Related Work
	IV. Proposed Approach
	A. Overview of the Proposed Approach
	1) Step 1: Comparison and transformation
	a) Comparison of BPMN models: Our goal is to provide a semantic comparison approach that also integrates syntactic aspects. The model comparison subsystem takes BPMN models as input and returns (1) a comparison table containing the correspondence between e�
	b) Transformation of BPMN models into a UML model: This subsystem consists of the application of rules to transform a set of BPMN models (M1) into a generated UML class diagram (M2’), based on a comparison table and following a transformation process. Tran�

	2) Step 2: Fusion: This step consists of creating a fusion between the UML class diagram (M2’) generated in step 1 and the existing UML class diagram (M2). We have previously demonstrated the results of this phase; the comparison and fusion meta-models wer�

	B. Example of BPMN Models
	C. Comparison and Transformation Subsystems
	1) Comparison of BPMN models: Our goal is to compare BPMN models syntactically and semantically. To do so, we follow the model comparison process detailed in Section IV.C.1)a), which applies the BPMN element comparison rules described in Section IV.C.1)b).�
	a) Comparison process: We apply a comparison between each two models. To create a UML class diagram, we create classes before their operations. To do this, we first compare BPMN elements that will be transformed into classes: 1) Pools, 2) lanes, 3) messag�
	b) Comparison rules: We define a mathematical framework to express formally our approach. We present the comparison rules by the predicate language. So, we needed to express, in predicate logic, BPMN model (representing input of system), ontology and othe�
	i) The first transformation concerns BPMN model into logical model that generates a set of predicates representing BPMN elements to compare:
	ii) The second transformation concerns OWL ontology (conform to an extract of OWL metamodel [31]) into logical model. The transformation generates a set of predicates representing OWL ontology, such as:

	c) Comparison table: We apply the process and the comparison rules on the examples of BPMN models presented in section IV.B, by referring to an ontology of the medical field as well as dictionaries. We choose OWL (Ontology Web language) ontology because it�

	2) Transformation of BPMN models into UML class diagram: In order to transform BPMN models into a UML class diagram we apply a transformation process (Fig. 9) based on the comparison table presented in section IV.C.1)c). This process is based on 18 transfo�

	V. Case Study
	VI. Conclusion

