
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Multi-Task Reinforcement Meta-Learning in Neural
Networks

Ghazi Shakah
Software Engineering Department, Faculty of Information and Technology

Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan

Abstract—Artificial Neural Networks (ANN) is one of the
main and widespread tools for creating intelligent systems. And,
they are actively used for data analysis in many areas such as
robotics, computer vision, natural language processing, etc. The
learning process of ANN is one of the most labor-intensive stages
in ANN. There are many different modifications of ANNs and
methods for their training. Currently, deep neural networks are
becoming one of the most popular methods of machine learning
due to their effectiveness in areas such as speech recognition,
medical informatics, computer vision, etc. It is known that ANN
training depends on the type of input data. In this paper,
reinforcement learning is considered, as popular method used in
cases where information is reinforced by signals from the
external environment with which the model interacts. The
purpose of this paper is to develop a reinforcement meta-learning
algorithm that would be efficient in terms of quality and speed of
learning. However, despite the significant scientific progress in
deep learning, existing algorithms are not efficient enough to
solve problems in the real world. In addition, such algorithms
require a significant amount of learning time, which complicates
the development process. To solve these problems, the use of
meta-learning or “learning to learn” algorithms has recently
been especially relevant. The paper proposes an approach to
reinforcement meta-learning using a multitasking weight
optimizer. experimentally shown that the proposed approach is
more efficient than the known MAML (Model-Agnostic Meta-
Learning) algorithm. The proposed MAML SPSA-Track method
shows an improvement in efficiency by an average of 4%, and
MAML SPSA-Delta by 8%, respectively. Moreover, the last
algorithm spends on average 2 times less time on push-v2 and
pick-place-v2 tasks.

Keywords—Multitasking; meta-learning; reinforcement
learning; neural networks; optimization

I. INTRODUCTION
Humans have an innate ability to learn new skills quickly

and easily. For example, we can look at one instance of a knife
and distinguish all knives from other cutlery such as spoons
and forks. Our ability to learn new skills and quickly adapt to a
new environment based on a small number of examples is not
just limited to identifying new objects, learning a new
language, or figuring out how to use a new tool; our
possibilities are much more diverse. [1], [2]. In contrast,
machines—specifically, deep reinforcement learning
algorithms—generally learn quite differently [3]. They require
very large amounts of data and computational resources to
achieve acceptable performance. The reason why people can
learn quickly and adapt to a new environment is that they use
the knowledge gained from previous experience to solve new

problems. Similarly, meta-learning uses little experience
gained from data to solve new problems quickly and
efficiently. Through this method, it is possible to significantly
speed up the training of neural networks with reinforcement
significantly. Neural networks with reinforcement require quite
large amounts of training data and computational resources.
Creating such datasets is costly, especially when you need to
involve a domain expert. While pre-training is useful, these
approaches become less efficient for domain-specific
problems, which it still requires large amounts of task-specific
labeled data to achieve good performance. In addition, some
existing problems are characterized by a wide and unbalanced
distribution of data, which can make it difficult to collect
training examples [4]. On the other hand, it is possible to use a
pre-trained network from another task and then finish training
it on the current small training set. However, depending on the
specifics of the problem, this is not always possible, especially
if the task on which the neural network was trained is
significantly different. It is important to note that the ability to
quickly learn new tasks during model inference is something
traditional machine learning approaches do not attempt. This is
what makes meta-learning especially attractive. Meta-learning
is particularly interesting and can be used for the following
reasons [5].

• The ability to learn from just a few examples.

• Quick adaptation to new tasks.

• The ability to create more versatile systems.

Meta-learning is especially successful in situations where a
large amount of data is required; for example, robots are tasked
with learning new skills in the real world and often encounter
new environments [6].

Finally, the task was formally set to develop a meta-
learning algorithm with reinforcement of a machine learning
model that would be efficient in terms of learning.

II. LITERATURE REVIEW
Meta-learning tries to gain general knowledge about the

target area by learning the set of tasks belonging to it [7]. The
idea of meta-learning is to train the model by showing it only a
few examples for each class and [8] then test it on new
examples from the same classes that were taken from the
original dataset.

The author in [9] proposed a formal description of the few-
shot learning task as meta-learning. The data set of each class
is randomly divided into a support set and a query set. The

263 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

support set consists of labeled examples that are used to predict
classes of untagged examples from the query set. The set of
classes at the training stage does not intersect with the set of
classes at the testing stage.

The author in [10] introduced a multitasking loss function
based on maximizing the Gaussian likelihood with a task-
dependent uncertainty. The proposed single model for all tasks
outperformed separate models for each task.

Subsequently, a multitasking approach was applied in [11]
to solve the problem of character recognition from a small
number of examples, which led to an improvement in the
overall recognition efficiency compared to the base model.

The author in [12] established a close relationship between
the optimization problems of multitask learning and
optimization-based meta-learning. Different from existing
works, this paper focuses on improving the meta-learning
stage. Only inductive methods that use a meta-learning process
without prior training are considered. To do this, MAML was
chosen as an example of the use of optimization-based
learning, since the works describing this method are among the
most cited in this field.

III. MATERIAL AND METHOD

A. The Task of Reinforcement Meta-Learning
Reinforcement learning (RL) is one of the methods of

machine learning, the purpose of which is to find an optimal
strategy for the behavior of the model in the environment and
maximize the reward received from the environment
throughout the entire time the model interacts with the
environment. The main concepts in RL are the agent and the
environment: The environment represents the world in which
the agent lives and interacts. In Fig. 1, at each interaction step,
the agent observes (perhaps only partially) the state of the
environment [3]. While the agent then decides what action to
take. The environment changes when the agent acts on it, but it
can also change by itself. The agent also receives a reward
from the environment, a number that tells him how good or bad
the current state of the world is. Accordingly, the agent's goal
is to maximize his total reward, called profitability.
Reinforcement learning methods are approaches by which an
agent can learn the desired behavior to achieve a goal [13].

Reinforcement meta-learning is meta-learning in the field
of reinforcement learning. Usually, training and test problems
are different, but they are taken from the same family of
problems.

Let's we have a distribution of tasks, each of which is The
Markov Decision Process (MDP).

Fig. 1. The Cycle of Interaction between the Agent and the Environment [3].

Fig. 2. A Meta-RL representation Containing Two Optimization Loops [4].

𝑀𝑖 ∈ 𝑀 , where 𝑀𝑖 is defined by the set ⟨𝑆,𝐴,𝑃𝑖 ,𝑅𝑖⟩ . In
Fig. 2, at each iteration of the external cycle, a new
environment is selected and the parameters that determine the
behavior of the agent are adjusted using the metal earning
algorithm. In the inner loop, the agent interacts with the
environment and maximizes the reward using a reinforcement
learning algorithm [4], [14]. Note that the general state 𝑆 and
action space A, so the stochastic policy is:

𝜋𝜃: S × A → R+

Will receive input data that is compatible with different
tasks. Test items are selected from the same or slightly
modified distribution M. In general, reinforcement meta
learning is very similar to regular reinforcement learning,
except that the last reward 𝑟𝑡−1 and the last action 𝑎𝑡−1are also
included in the observation in addition to the current state. 𝑠𝑡:

• In reinforcement learning 𝜋𝜃(𝑠𝑡) → 𝑎

• In Reinforcement Meta-learning 𝜋𝜃(𝑎𝑡−1, 𝑟𝑡−1, 𝑠𝑡) → 𝑎

This is done so that the policy will learn the changes
between states, rewards and actions in the current MDP and
can adjust its strategy accordingly. This is done so that the
policy can assimilate the changes between states, rewards and
actions in the current MDP and can adjust its strategy
accordingly.

IV. DEVELOPMENT OF THE TRAINING METHOD

A. MAML Meta-Learning Algorithm
Reinforcement meta-learning uses two optimization loops:

external and internal. During the outer loop, a meta-learning
algorithm is applied. It is important to note that MAML is
compatible with any model that can be trained using gradient
descent, which is its main advantage. There aren’t any
restrictions on the loss function. The algorithm is applicable to
such a wide range of problems as regression, classification, and
reinforcement learning. MAML does not change the structure
of the learning model, but only changes the network
parameters in such a way that a small number of gradient
descent steps are required on a small training dataset of a new
problem to obtain a good generalization ability on this problem
[15]. However, this algorithm requires taking second-order
derivatives, which is the main disadvantage of this algorithm.

B. Method Formulation of the Problem
Despite the fact that there are a number of algorithms that

do a good job of this kind of task, the speed of learning these
algorithms, even on the most productive equipment, takes an

264 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

extremely long time. Moreover, due to the dynamism and
variety of tasks in the real world, the quality of the solution on
new test problems can be much worse than the quality of
training ones. So, the goal of this thesis is to develop a
reinforcement meta-learning algorithm that would be effective
in terms of quality and speed of learning. Also, during the
execution of the work, the following tasks were set:

• Modify the basic MAML (Model-Agnostic Meta-
Learning). An algorithm based on a multitasking
approach.

• The tasks of deep learning, reinforcement learning,
meta-learning, multitasking learning, and reinforcement
meta-learning have been described.

• The main approaches to meta-learning were analyzed -
based on models, metrics and optimization, and modern
meta-learning algorithms for each approach.

• Compare the efficiency of the modified and unmodified
algorithms.

• The common problem of low efficiency for these
methods was analyzed in terms of both data and time
resources spent on training the model.

• Formally, the task was to develop a meta-learning
algorithm with reinforcement of a machine learning
model that would be effective in terms of quality and
speed of learning.

V. SOFTWARE IMPLEMENTATION OF THE CONSOLE
APPLICATION

A. Architecture and Composition
 The console application was developed in the popular

Python programming language for further experiments. Fig. 3
describes the standard process for developing a strategy model,
along with the important modules associated with solving the
problem.

Meta-World's ML1 environment was used as an
environment for the agent. To implement the neural network of
the agent, the torch.nn module of the well-known PyTorch
framework was used. [16].

To realize the basic MAML algorithm and the proposed
SPSA-Delta and SPSA-Track algorithms, the modules were
optim and torch. Autograd was used, which presents various
standard optimization algorithms for training neural networks.
The training results were written to the hard disk using the
torch.utils.tensorboard module. PyTorch is one of the most
popular open-source machine learning frameworks in the
Python programming language.

The main PyTorch modules that are used in the software
implementation are: torch.nn, torch.optim, torch.autograd,
torch.utils.tensorboard. The torch.nn module defines
computational graphs and works with gradients, which makes
it easy to build neural networks. The following module
torch.optim introduces various optimization algorithms for
training neural networks. The torch.autograd module

implements the automatic differentiation method. The
torch.utils.tensorboard module helps to save and visualize the
results.

The first step in any deep learning project involves loading
and processing training data. Reinforcement learning of a
model consists of its interaction with the simulated
environment. Meta-World allows you to design environments
according to the Env interface of the Gym framework. First,
we need to create the desired test, and then an instance of the
environment. A task is assigned to the environment using the
set_task() method from the corresponding already defined
training and test tasks of the created test. In the current project,
a function was described that returns an instance of the
environment given the benchmark test and the task name task
name.

The process of creating the environment of the Meta-World
framework for the subsequent training of the model is shown in
Fig. 4. The agent's interaction with the environment is
implemented through the environment's step() method. For the
convenience of interacting with the environment, the Runner
class was described, an instance of which receives from the
model the action to be performed, passes it to the simulated
environment and receives from it information about the current
state, the value of the reward, success rate and other metadata.
Then, an instance of the ReplayMemory class collects all the
received information about states, actions, etc. into the
corresponding tensors in order to further transfer it to the main
MAML algorithm for processing. The strategy is presented as a
neural network. To create it, PyTorch uses the corresponding
torch.nn module. It provides the implementation of all
commonly used neural network components such as fully
connected and convolutional layers, activation layers and
associated loss functions.

The neural network representing the main strategy consists
of one hidden layer with a size of 128 neurons and an
activation function nn.Tanh() between the layers Fig. 5.

The input of the neural network is a vector of length 39
about the state of the ML1 Meta-World test environment, at the
output the neural network gives a vector of length 4 about the
next action by the agent in the environment.

Fig. 3. Diagram of the Development Process of a Neural Network Model.

265 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 4. The Initialization of the Meta-World Environment.

Fig. 5. The Strategy Neural Network Initialization.

For each iteration of the meta-learning stage 10 training
tasks were selected to obtain the needed data. The number of
adaptation steps of the MAML algorithm was equal to 1, i.e.
during testing, adaptation to a new problem occurred in one
step of the gradient descent algorithm. The maximum length
for a single task in the environment was 500. The maximum
length for a single task in the environment was 500. The
reward discount factor was 0.99.

During the adaptation phase, the weights of the neural
network were changed with a learning rate factor of 1 × 10−4,
during the meta-learning phase 1 × 10−3 . The optimization
method TRPO was used as a meta-optimizer with a maximum
number of steps for linear search of 15 and a step of 5 × 10−3.

The neural network was trained for 600 epochs for
environment with reach-v2, pick-place-v2 tasks and 1200
epochs for push-v2. Also, the multitasking weight optimizer
only started optimization after 50 epochs so that the model had
time to adjust the initially randomized weights according to the
task and environment.

B. General Description of the MetaWorld Environment
Meta World is an open-source simulated test for

reinforcement meta-learning and multitasking learning,
consisting of 50 different environments with robotic
manipulations [17]. Task T in Meta World is defined as a set
consisting of a reward function, an object's starting position,
and its target position. Metal-earning makes two important
assumptions:

1) Meta-training and meta-testing tasks have a common
distribution 𝑝(𝑇).

2) The task distribution 𝑝(𝑇), has a general structure that
can be used to effectively adapt to new tasks.

If 𝑝(𝑇) , is defined as a family of variations within a
specific problem, as in previous works [6], [10], then it is
unreasonable to hope for a generalization to completely new
problems. For example, an agent has little chance of being able
to quickly learn to open a door without ever hitting a door
before if it has only been trained on a set of uniform and
narrow tasks during meta-learning. Thus, in order to allow
reinforcement meta-learning methods to adapt to completely
new tasks, a sufficiently large set of tasks is needed, where
continuous changes in parameters cannot be used to describe
the differences between tasks. In Meta World, all tasks are
performed by a robotic arm. The action space is a set of two
elements, consisting of changing the 3D space of the gripper.

Actions in this space range from -1 to 1. The observation
space is represented as a set of 6 3D Cartesian positions of the
gripper, a normalized measurement of how open the grip is, the
3D position of the first object, the quaternion of the first object,
the 3D position of the second object, the quaternion of the
second object, all previous measurements in the environment,
and finally 3D position of the target. If there is no second
object or the target is not supposed to be included in the
observation, then the values corresponding to them are set to
zero. The state space is always 39-dimensional. The reward
functions for all tasks have the same value, which is in the
range from 0 to 10, where 10 always corresponds to the fact
that the task was solved. It should be noted that all tasks were
implemented using the MuJoCo physics engine [18], [19],
which allows to simulate the physical laws of the real world
quickly and efficiently. The Multi-world interface [20] and
interfaces of the popular OpenAI Gym environment [21] were
taken as the basis, which makes this framework quite easy to
use.

VI. EXPERIMENTAL METHODOLOGY
As an applied task for solving and evaluating the efficiency

of the developed algorithms, we consider the ML1 test in the
Meta-World environment. ML1 is aimed at evaluating the
adaptation of the algorithm in several steps to change the goal
within the same task. ML1 uses separate Meta-World tasks,
where training tasks correspond to 50 random initial positions
of objects and targets, and testing tasks correspond to 50 held
positions. Algorithms are evaluated on three tasks from Meta-
World:

• reach-v2.

• push-v2.

• pick-place-v2.

where either the position to be reached or the target
position of the object varies. Target positions are not specified
in world states, which forces reinforcement meta-learning
algorithms to adapt to the target through trial and error.

266 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

In the reach-v2 task, the robotic arm needs to reach a target
position, which is given randomly. The next push-v2 challenge
is to push the puck towards the net. In the pick-place-v2
problem, it’s important to take and place the puck in the goal.
The positions of the puck and the goal in the tasks are set
randomly.

Since the reward values do not directly indicate the success
of the chosen policy, Meta-World defines an interpretable
success metric for each task, which is used as the main
criterion. Since all tasks involve the manipulation of one or
more objects in the target configuration, this success metric is
usually based on the distance between the task-relevant object
and its final target position, i.e.,�|𝑜 − 𝑗|� < 𝜀, where 𝜀 is the
threshold, for example, 5 cm. The software implementation
was carried out in the Python programming language version
3.8. The environment was modeled using the Meta-World
framework version 2.0 together with the OpenAI Gym
framework version 0.19. As noted earlier, MetaWorld contains
ready-made implementations of various environments for
meta-reinforcement learning and agent testing. To build
models of neural networks, the PyTorch framework version
1.10 was used, which contains implementations of various
layers and algorithms for optimizing neural networks.

VII. ANALYSIS OF RESULTS
Fig. 6 shows the maximum success rate, averaged over 5

runs, in the ML1 Meta-World test environment. Based on the
results obtained, all 3 algorithms do an excellent job of solving
the reach-v2 problem both at the training and testing stages. On
more complex push-v2 and pick-place-v2 tasks, the MAML
SPSA-Delta algorithm is the most efficient among all those
considered. The improvement relative to the basic algorithm
was 17% at the training stage and 21% at the testing stage on
the push-v2 task, 8% and 3% on the pick-place-v2 task,
respectively. However, on the pick-place-v2 problem, the
ability of the MAML SPSA-Delta method to generalize is not
much higher than the MAML SPSA-Track algorithm (60% for
MAML SPSA-Delta and 59% for MAML SPSA-Track). The
following figures show examples of the moving average
success rate for the reach-v2 task over 6 × 107steps in a test
environment (Fig. 6 is the training phase, Fig. 7 is the testing
phase). For all constructed charts, the moving average
coefficient is 0.8. As can be seen from the graph, the modified
MAML algorithms solve the problem no worse than the
original MAML algorithm environment (Fig. 7 is the training
phase; Fig. 8 is the testing phase). For all constructed charts,
the moving average coefficient is 0.8.

As can be seen from the graph, the modified MAML
algorithms solve the problem better than the original MAML
algorithm. Now let's look at the moving average success rate
plots for the following push-v2 task over 2 × 108steps in a
test environment (Fig. 9 is the training phase, Fig. 10 is the
testing phase). Compared to other tasks, the SPSA-Delta
MAML algorithm took significantly longer to adapt to the
environment and overtake the basic MAML method. The
SPSA-Track algorithm also shows good results, but they do not
differ significantly from the results of the unmodified MAML
algorithm. Finally, let's analyze the constructed plots of the
moving average success rate for the last pick-place-v2 task

over 6 × 107 steps in the test environment (Fig. 11 is the
training phase, Fig. 12 is the testing phase). It follows from the
graph that both MAML algorithms with modifications are
significantly more efficient at the testing stage than the original
MAML algorithm.

Fig. 6. The Maximum Success rate of Algorithms in the ML1 Meta-World

Test Environment.

Fig. 7. Average Success Rate of Algorithms on the Reach-v2 Problem at the

Training Stage.

Fig. 8. Success Rate of Algorithms on the Reach-v2 Problem at the Testing

Stage.

267 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 9. Success Rate of Algorithms on the Push-v2 Problem at the Training

Stage.

Fig. 10. Success Rate of Algorithms on the Push-v2 Task at the Testing

Stage.

Fig. 11. Success Rate of Algorithms on the Pick-place- v2 Problem at the

Training Stage.

Fig. 12. Success Rate of Algorithms on the Pick-place-v2 Task at the Testing

Stage.

Moreover, the MAML SPSA-Delta and MAML with
SPSA-Track algorithms achieve the same high success rate, but
the first algorithm learns 2 times faster than the second.

Consider the average maximum success rate achieved by
each algorithm in the ML1 Meta-World test environment,
information about which is shown in Table I.

Based on the results of experiments in the ML1 MetaWorld
test environment with three different methods of deep
reinforcement meta-learning: the original MAML algorithm,
MAML SPSA-Delta, MAML SPSA-Track, the proposed
MAML SPSA-Track method shows an average efficiency
improvement of 4%, and MAML SPSA-Track Delta by 8%,
respectively. Moreover, the latter spends on average 2 times
less time for training on push-v2 and pick-place-v2 tasks.
According to the obtained results, it is safe to say that the use
of a multitasking loss function and its stochastic approximation
with simultaneous perturbation can significantly improve the
efficiency of deep reinforcement learning algorithms.

TABLE I. MAXIMUM SUCCESS RATE AVERAGED OVER ALL TASKS IN
THE ML1 META-WORLD TEST ENVIRONMENT.

Algorithms Learning Phase Testing Phase

MAML 76% 75%

MAML SPSA-Delta 84% 83%

MAML SPSA-Track 80% 79%

VIII. CONCLUSION
Based on the tasks of deep learning, reinforcement

learning, meta-learning, meta-learning with reinforcement and
multitasking learning and their relevance are described.

After making comparison of the basic MAML algorithm
with the proposed MAML SPSA-Delta and MAML SPSA-
Track by conducting computational experiments to train the
agent on reach-v2, push-v2, pick-place-v2 tasks in the ML1
Meta World test environment, it was concluded that the
MAML SPS-Track algorithm is on average 4% more efficient
compared to the original MAML method, and the MAML
SPSA-Delta algorithm is 8% more efficient. Moreover, the last
algorithm spends on average 2 times less time on push-v2 and
pick-place-v2 tasks.

REFERENCES
[1] Wang, Y. X. Ramanan, D. and Hebert M. “ Learning to Model the Tail”.

Advances in Neural Information Processing Systems 30, 2017, pp.58-69.
[2] Zidong Zhang, Dongxia Zhang, and Robert C. Qiu,” Deep reinforcement

learning for power system applications: an overview”.,csee journal of
power and energy systems, vol. 6, no. 1, march 2020,pp.213-225.

[3] Martín H., J. A., de Lope, J., and Maravall, D. “The kNN-TD
Reinforcement LearningAlgorithm”, Lecture Notes in Computer
Science,2009, pp.305-314.

[4] Ezzeldin, T. and Kassis, A.” Beyond Explanations: Recourse via
Actionable Interpretability – Extended”,Research gate, 2020, pp.1-17.

[5] L. David, A. Michael, and B. Richard. “ Dynamic core competences
through meta-learning and strategic context “,Elsevier, Journal of
Management, Volume 22, Issue 4, 1996, PP. 549-569.

[6] G. Shakah. “ The Devices of the Internet of Things Based on the
Recognition of Handwriting Words with Mobile Assisted “,
International Journal of Interactive Mobile Technologies (iJIM),Vol.14,
No. 4,2020, pp.74-85.

268 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

[7] O. Aissam, E,Hamza, and J, Philippe Leroy. “ Dynamic Access Control
Policy based on Blockchain and Machine Learning for the Internet of
Things”, (IJACSA) International Journal of Advanced Computer
Science and Applications,Vol. 8, No.7, 2017, pp.417-424.

[8] R. Vilalta, and D.Youssef .“ A perspective view and survey of meta-
learning. Artificial Intelligence Review”, Vol.18, No2, 2002,pp.77–95.

[9] O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and D.Wierstra. “
Matching networks for one shot learning. Advances in neural
information”, processing systems, Vol,29, 2016, pp.3630–3638.

[10] A. Kendall, Y. Gal, and R. Cipolla.” Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics”, In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 7482–7491.

[11] A. Boiarov, O. Granichin, and O Granichina. “ Simultaneous
perturbation stochastic approximation for few-shot learning “ , IEEE,
European Control Conference (ECC), 2020, pp. 350–355.

[12] H. Wang, H. Zhao, and B. Li. “Bridging multi-task learning and meta-
learning: Towards efficient training and effective adaptation”. Vol,139.
In International Conference on Machine Learning. PMLR, 2021, pp.
10991-11002.

[13] H. Kono, Y. Murata G, A.Kamimura, K. Tomita, and T,Suzuki.
“Transfer Learning Method Using Ontology for Heterogeneous Multi-
agent Reinforcement Learning”, (IJACSA) International Journal of
Advanced Computer Science and Applications,Vol. 5, No. 10,
2014,pp.156-164.

[14] M. Botvinick M, S. Ritter, X.Wang, Kurth-Nelson Z. Blundell.,and D.
Hassabis . “Reinforcement Learning, Fast and Slow” , Trends in
Cognitive Sciences, Vol. 23, No, 5 , 2019, pp. 26-41.

[15] A. Nichol, J. Achiam, and J. Schulman. “On First-Order Meta-Learning
Algorithms”, NIPS, 2018, pp.55-69.

[16] S. Jadon, and A. Garg. “Hands-On One-shot Learning with Python”
Packet Publishing, 2020.

[17] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine,
“Meta-World: A Benchmark and Evaluation for Multi-Task and Meta
Reinforcement Learning”, Proceedings of the Conference on Robot
Learning, PMLR 100, 2020, pp.1094-1100.

[18] E. Todorov, T. Erez, Y. Tassa. And A. Mujoco.” physics engine for
model-based control”, In International Conference on Intelligent Robots
and Systems, IEEE, October 2012.

[19] A. Al-Oqaily, and G .Shakah, “solving Non-linear Optimization
Problems Using Parallel Genetic Algorithm”, International Conference
on Computer Science and Information Technology (CSIT), IEEE,
2018.pp.103-106.

[20] A. V. Nair, V. Ong. M. Dalal. S. Bahl, S. Lin, and S. Levine. “Visual
reinforcement learning with imagined goals”, Advances in Neural
Information Processing Systems 31, 2018.

[21] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.
Tang, and W. Zaremba. Openai gym. arXiv:1606.01540, 2016.

269 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Literature Review
	III. Material and Method
	A. The Task of Reinforcement Meta-Learning

	IV. Development of the Training Method
	A. MAML Meta-Learning Algorithm
	B. Method Formulation of the Problem

	V. Software Implementation of the Console Application
	A. Architecture and Composition
	B. General Description of the MetaWorld Environment
	1) Meta-training and meta-testing tasks have a common distribution 𝑝,𝑇..
	2) The task distribution 𝑝,𝑇., has a general structure that can be used to effectively adapt to new tasks.

	VI. Experimental Methodology
	VII. Analysis of Results
	VIII. Conclusion
	References

