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Abstract—Although one of the major roles of delivery logistics 
activities is to ensure a good quality of customer service, certain 
risks such as damage, delay, return of transported goods occur 
quite often. This makes risk control and prevention one of the 
requirements of transport supply chain quality. The article 
focuses on the analysis of the risk of delay, which is often 
considered fundamental for the quality of service and as a center 
of additional costs related to the violation of time windows. Such 
a risk can harm the image of a supplier, which can even lead to 
the loss of customers in case of recurrence. The aim of the 
following case study is the development of a fuzzy-bayesian 
approach that anticipates, by predictive analysis combining 
Bayesian networks (BNs) and Fuzzy logic, the possible delays 
affecting the smooth running of a delivery operation. The results 
of the implementation of the late delivery risk prediction model 
are validated by verifying three axioms. In addition, a sensitivity 
and scenario analysis is performed to validate the model and 
identify the parameters that have the most adverse impact on the 
occurrence of such a risk. These results can help 
carriers/transport providers to minimize potential late deliveries. 
In addition, the developed model can be used as a basis for 
different types of predictions in the field of freight transport as 
well as in other research areas. 

Keywords—Delivery logistics; risk management; predictive 
analysis; bayesian network; fuzzy logic 

I. INTRODUCTION 
On-time delivery is often considered as a performance 

indicator in the field of freight transportation [1]. However, any 
delay in goods delivery to their destination can harm the 
activities of the actors involved (shipper, carrier, 
warehouseman, and final customer) and affect their 
profitability.  Therefore, measuring the risk of delay in advance 
enables reliable decisions to be made when planning deliveries. 
Consequently, the effect of such a risk can be reduced or even 
eliminated. This study focuses on the analysis of delivery delay 
to assist transportation companies in making decisions and 
optimizing their planning. Despite, the development of a delay 
risk prediction model is hampered by the unavailability of data. 
With this in mind, this paper contributes by implementing a 
fuzzy-bayesian approach to overcome the problem of missing 
or unavailable data. 

The occurrence of delay in freight transport operations is 
influenced on the one hand by external factors such as road 
events (accidents, congestion, and weather conditions). On the 
other hand, by internal factors related to carriers' decisions in 
terms of resource selection and delivery planning [2]. This 

paper has studied all of these elements, and it has designed a 
predictive model integrating the different cause-effect 
relationships between several factors (internal and external) 
impacting on-time delivery. For this, it opted for BNs [3] 
thanks to its advantage of modeling, probabilistic reasoning of 
uncertain systems [4], and causal analysis. 

The article is structured as follows: an overview of the 
literature related to delivery delay and the application of BNs 
in the transportation domain is given in Section II. The 
construction of the fuzzy-Bayesian model and its validation are 
presented in Section III. Section IV provides a discussion of 
the results obtained. Finally, the conclusion and further 
research are covered in Section V. 

II. RELATED WORK 
In this section, we provide a brief overview of literature 

regarding our context of study, namely delayed deliveries, and 
for Bayesian network applications in transportation field. 

A. Delayed Deliveries 
Delayed deliveries mean goods arriving at their destination 

out of schedule. According to ATRI (American Transportation 
Research Institute), in 2016, trucking operations in the U.S. 
experienced about 1.2 billion hours of delays alone due to 
traffic congestion. This number of delays generates $74.5 
billion in additional operational costs [5]. Because there are 
other causes of delay besides congestion, these additional costs 
continue to rise. 

According to [6] various factors can disrupt delivery 
reliability, among them personnel issues, vehicle breakdowns, 
and poor planning. This means that resource selection by 
checking vehicle conditions and driver performance in addition 
to the adequacy of planning have a significant effect on speed 
of service. Furthermore, other external factors such as 
accessibility to delivery points, accidents, unforeseen events 
(public works), and methodological conditions [6]–[8]  can 
cause further delays. 

The occurrence of delay largely influences [9]–[12]: 

• Additional costs: these costs are typically related to a 
delay penalty, and vehicle operating costs such as 
maintenance and vehicle rental in the case of private 
fleet use. As well as driver-related costs, that include 
salary and benefits. In addition, delay can lengthen the 
storage period, resulting in inventory holding costs. 
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• Warehouse productivity: arriving late at the warehouse 
may result in overlapping deliveries.  This will 
influence the availability of unloading bays and labor as 
well as overloading the workforce to wait for late 
deliveries. 

• Customer satisfaction: late deliveries can affect the 
operations of the consignees. This will have a 
significant impact on the customer relationship. As a 
result, customers find themselves in a situation of 
frustration. In case of recurrence, this situation exposes 
suppliers to the loss of customers. 

• Loss of opportunity to consolidate shipments: the 
occurrence of delays contributes to the lack of 
opportunity to consolidate shipments due to the 
uncertainty of meeting delivery deadlines. 

• Carrier profitability: this is generally affected by the 
additional costs incurred, the damage to the carrier's 
image due to the loss of customers and the extra time 
generated which reduces the opportunity to make more 
deliveries. 

The concept of predicting the risk of late delivery is 
generally studied in the context of improving service quality. In 
the literature, the prediction of such risk is performed using 
several techniques from artificial intelligence. 

Keung et al. [13] have opted for machine learning methods 
such as KNN, and ANN to predict shipment delays. The 
authors [14] used Random Forest and SVM for on-time 
delivery prediction. Berrones-Sanz [15] also proposed a model 
for on-time delivery prediction using logistic regression. In 
order to predict on-time delivery violation, [16] relied on ANN 
machine learning technique. As for [17], they proposed a 
neural network-based model to anticipate delivery  time. 

In addition, BNs are among the most popular prediction 
methods in various research areas [18]. This paper exploits the 
potential of BNs in risk prediction to anticipate the occurrence 
of delay in a delivery operation. 

B. Applications of BNs in the Transportation Field 
BNs are applied in several domains: diagnosis (medical and 

industrial), risk management, spam detection, fraud detection, 
data mining, and text mining, etc.[19]. In the transportation 
domain, BNs are used for different types of prevention. 
Gregoriades and Mouskos [20] used BNs to quantify the risk of 
accidents in order to locate black areas. The authors [21] 
developed a bayesian model for the identification of features 
affecting the safety of motor carriers. Zhu et al. [22] presented 
a bayesian approach for contextual (e.g., dynamic traffic 
information) or non-contextual (e.g., instantaneous driving 
speed) evaluation of driving behavior. As for [23], they 
modeled drivers' vehicle use behavior according to time of day. 
The use of BNs also extends to other transportation axes, 
namely traffic congestion prediction [24], [25] as well as 
freight demand prediction [26]. 

III. MODELING THE RISK OF LATE DELIVERY USING A 
FUZZY-BAYESIAN APPROACH 

A BN is ''a graphical probabilistic model consisting of a set 
of nodes (variables of interest in the domain) and arcs (causal 
phenomena). In addition to a set of local probability 
distributions (network parameters)'' [3], [27], [28]. A BN 
allows modeling the effect of a fact or an uncertain event on 
another via the representation of the causal relationship 
between those events [29]. In this case, an arc from X to Y can 
be interpreted as 'X causes Y'. Fig. 1 shows that the knowledge 
gained about the overlay of fragile products determines the 
knowledge about the damage of goods. 

 
Fig. 1. Example of a Causality Representation. 

The study is based on exhaustive bibliographical research, 
in addition to a survey of experts, in order to identify all the 
parameters (factors) which can hinder the delivery of a good to 
its destination in time. As well as the schematization of the 
dependency relations between these parameters, in order to 
build the structure of the Bayesian network. The approach 
followed introduces a methodology for modeling and 
evaluating the risk of late delivery using BNs by following 
these steps: 

Definition of the BN structure: Determining the 
relationships between nodes allowed us to design a causal 
graph based on a three-level architecture. 

• The first level represents the input or feeder nodes that 
have an indirect effect on the risk of delay; they fall into 
five categories detailed in Table I; 

• The second level consists of the intermediate nodes that 
represent the various intermediate cause factors (direct 
causes, or cause-effects) that lead to the impact factors 
encapsulated in the third level (final impacts); 

• The third level contains the final impacts that define the 
factors that directly and negatively influence the arrival 
of goods at their destination on time. 

Generate conditional probabilities of intermediate effects 
and final impacts: The generation of conditional probability 
tables will be made using Sugeno's fuzzy inference 
implementation. 

Model validation: This step consists of relying on Bayes 
theory and posterior probabilities relating to intermediate 
effects and final impacts, in order to study the effect of a state 
linked to an input parameter on the envisaged risk. In addition, 
sensitivity analysis and partial validation are performed to 
validate the model. 

A. Definition of the BN Structure 
The construction of the Bayesian network architecture can 

be done in two different ways: 

• Objective methods: by using a database to apply the 
structure's learning methods. 
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• Subjective methods: by gathering knowledge from 
experts in the field, through written questionnaires, 
individual interviews or brainstorming sessions. 

The first approach necessitates a large quantity of data. and 
it may establish dependencies or independencies between some 
variables that are inconsistent with the experts' opinions [30]. 
For this reason, researchers prefer the use of the second 
approach where experts are involved to verify the causal links 
between the network variables. [31]. In the literature, several 
researchers have relied on expert knowledge among them [31]–
[35].With this in mind, the article used the subjective method. 

Based on a survey of experts in the freight transportation 
field and a literature review of the various factors that drive the 
occurrence of delay risk, a set of network input parameters are 
identified and presented in detail in Table I. In addition to the 
intermediate effects and final impacts presented in Table II. 
The survey consisted of two questionnaires, the first was 
conducted to verify and validate the identified variables and the 
second to establish the causal relationships between the 
variables. 

After identifying the variables (Tables I and II) that will 
constitute the nodes of the graph and studying the causal 
relationships between them, the structure of the Bayesian 
network is developed and illustrated in Fig. 2. 

B. Generation of Conditional Probabilities of Intermediate 
Effects and Final Impacts 
After building the Bayesian network structure, the next step 

is to compute the conditional probability tables (CPT) for each 
variable. These CPTs can be computed based on the 
knowledge of the experts or using learning algorithms from a 
database. Although there is no more database in the literature 
adapted to the parameters identified to build the graph 
structure, the article is oriented towards the use of subjective 
methods. 

Since the number of conditional probabilities in the 
developed network is 1032, it is difficult to rely on expert 
knowledge to evaluate such a large number of 
probabilities[36]. In fact, in the literature, many researchers 

have developed models to lower the number of CPTs of a BN. 
As an example, causal interaction models that have attracted 
the interest of several researchers such as [37]–[41]. One of the 
most widely used models is the Noisy-OR model introduced by 
[39] which allows for the specification of non-deterministic 
interactions between the parents associated with an effect [42]. 

In addition, other methods such as fuzzy logic [43] allowing 
the reduction of numbers of questions asked to experts and the 
generation of probability tables [2], [44], [45] .With this in 
mind, the paper relied on this method to first express the 
experts judgments by fuzzy rules, and then generate the 
conditional probability tables by a fuzzy inference mechanism. 
These fuzzy rules are of the type 'If the driver's performance is 
bad then the occurrence of the accident is high. Here the value 
of "high" for the accident occurrence is qualitatively 
represented by a linguistic variable expressed in natural 
language. For the different rules, the accident occurrence node 
can be translated into one of the following values: low, 
medium, high. In addition, for the different nodes of the graph, 
their influences are revealed by three linguistic values (states) 
represented in Table III. Since the quantification of these 
linguistic variables oscillates in interval 0.1, the article opted 
for the expression of these values in fuzzy form to ascertain the 
degree of each node's membership in all its fuzzy subsets. As 
an example, the accident occurrence node is high with 90%, 
medium with 8% and low with 2%. 

The implementation of the approach adopted for generating 
conditional probability tables is done in three steps: 

• Definition of fuzzy variables, their associated linguistic 
values(variable whose values are qualitative and 
represent natural language expressions [62] and their 
membership functions; 

• Determination of fuzzy rule bases: a base of "if-then" 
rules, is used by the "fuzzy inference system" in order 
to translate the input variables into output [62]; 

• Development of inference mechanism that forms 
conclusions based on the fuzzy rules and the input data 
[63]. 

 
Fig. 2. The Structure of the Bayesian Network Modeling the Risk of Delay of a Delivery. 
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TABLE I. DESCRIPTION OF THE INPUT PARAMETERS OF THE CAUSAL GRAPH 

Variable class Variable 
name Description 

Parameters 
related to the 
road 

Road design It refers to the geometric nature of the road, such as the number of lanes and direction of traffic. [46]. 

Lighting Lighting conditions (artificial light, daylight, darkness, twilight) have a considerable effect on the occurrence of road 
accidents, due to the adaptation of speed with visibility conditions [47]. 

Road cleaning 
after accident 

Improper cleaning of accident sites can result in the  vehicle skidding due to the presence of body fluids, fuel and other 
debris. 

Traffic 
parameters 

Signage Traffic signal control considers the control of traffic signals and the existence of stop sign and yield sign [48] . 

Weather 
conditions 

Weather conditions can disrupt driver capabilities, pavement friction, road infrastructure conditions, and vehicle stability and 
maneuverability, due to reduced visibility, extreme temperatures, precipitation, high winds, and lightning [49].  As a result, 
they affect traffic demand (carriers postpone or cancel planned delivery operations), traffic safety (accident rates), and traffic 
flow relationships (changes in the fundamental traffic flow variables, volume, speed, and density influence the capacity of a 
road system) [50]. 

Occurrence of 
events that 
block/slow 
traffic 

Traffic can be disrupted by the occurrence of a variety of events, including: 
Unexpected events such as road accidents, vehicle breakdown in the middle of the road, land subsidence and public works 
[51]; 
Irregular social events such as political demonstrations, diplomatic visits [51], sporting events; 
Regular events such as festive events (religious, national or international holidays) and vacation departure; 
In addition, the delivery period also influences traffic. Delivery during peak hours can slow down traffic. 

Parameters 
related to 
personnel 
(drivers, 
planners, ...) or 
planning 
systems 

Driver 
behavior 
 

Driver behavior is considered one of the major sources of traffic accidents [52]. 
These behaviors include failure to observe speed limits, safety distance, and poor vehicle handling that manifests itself in 
hard braking, and hard acceleration, especially when visibility is reduced, and when climbing hills [53]. 

Driving style A driver's habitual driving style that includes calmness behind the wheel, level of attention contribute to traffic accidents 
[54], [55]. 

Driver  
condition 

The poor condition of drivers is often due to fatigue, alcohol consumption, negative emotions (worries and fear of arriving 
late), drowsiness, headaches, respiratory illnesses, and fever [56]. 

Number of 
exchanges 

The increase in the number of exchanges resulting from indirect deliveries leads to more loading/unloading operations [57], 
and therefore an increase in the risk of delay due to uncontrolled/estimated time at the exchange points. 

Departure time A travel time estimate is said to be accurate if it could help improve the quality of service by delivering the goods on time 
[58]. For this, the departure time must be sufficient to cover the planned route within the required time window. 

Resource 
allocation 

Personnel, vehicle condition (breakdown), and delivery points are among the factors that cause delay to occur [6]. Therefore, 
optimal allocation of resources (vehicles, warehouses, personnel, etc.) to routes helps to reduce the risk of delay. 

Vehicle-
related 
parameters 

Vehicle 
condition 

Vehicle condition is one of the causes of accidents [59]. Poor physical condition of the vehicle can cause vehicle breakdown 
and hence the occurrence of delays. In addition, negligence in checking the administrative condition of vehicle can be the 
cause of vehicle ticketing. 

Parameters 
related to 
delivery areas  
(warehouses) 

Availability of 
delivery bays 

The lack of adequate delivery bays for different vehicle sizes leads to long queue [60]. In this case, drivers try to park their 
vehicles far away or illegally near the delivery site.  This leads to long queue. 

Resource 
availability 

The lack of human resources in the delivery areas is one of the factors that lead to long queue[60]. Similarly, the lack of 
material resources (handling equipment, forklifts, etc.) can aggravate this problem. 

 Internal events Internal events such as strikes over working conditions can slow down or block access to delivery areas. 

 Scheduling of 
arrival times 

Synchronizing inbound and outbound delivery operations within a warehouse requires reliable arrival times [61]. Lack of 
scheduling of arrival times (delivery deadlines) with carriers can cause overlapping operations of multiple deliveries, 
subsequently resulting in long queues. 

TABLE II. PRESENTATION OF INTERMEDIATE EFFECTS AND IMPACTS ON DELAY 

Intermediate effects Final Impacts 

• Road visibility 
• Vehicle skidding 
• Condition of the road infrastructure 
• Spillage of substances 
• Congestion 
• Occurrence of ticket 

• Road environment condition 
• Driver performance 
• Queue 
• Parking 
• Occurrence of accidents 
• Occurrence of breakdown 

• Additional travel time 
• Accessibility to destination points 
• Relevance of planning 
• Occurrence of delay 
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TABLE III. STATES OF THE BAYESIAN NETWORK NODES 

Nodes Linguistic values 

Road design  Good, medium, bad 

Lighting  Good, medium, bad 

Fog Low, medium, heavy 

Road visibility Good, medium, bad 

Condition of the road infrastructure Good, medium, bad 

Road cleaning after accident Appropriate, medium, 
inappropriate 

Spillage of substances Low, medium, strong 

Vehicle skidding Low, medium, significant 

Weather conditions Normal, medium, extreme 

Occurrence of events that block/slow traffic Low, medium, high 

Signage  Good, medium, bad 

Congestion Low, medium, high 

Road environment Good, medium, bad 

Vehicle condition Good, medium, bad 

Driver performance Good, medium, bad 

Driver behavior Good, medium, bad 

Driving style Good, medium, bad 

Driver condition Good, medium, bad 

Occurrence of accidents Low, medium, high 

Occurrence of breakdown Low, medium, high 

Occurrence of ticket Low, medium, high 

Additional travel time Low, medium, high 

Number of exchanges Low, medium, high 

Resource allocation Good, medium, bad 

Relevance of planning Good, medium, bad 

Estimated departure time Good, medium, bad 

Scheduling of arrival times Good, medium, bad 

Occurrence of internal events Low, medium, high 

Resource availability High, medium, low 

Availability of delivery bays High, medium, low 

Queue Fast, medium, slow 

Parking Very close, close, far 

Accessibility to destination points High, medium, low 

Occurrence of delay Low, medium, high 

To better assimilate our proposed approach, we explain 
CPTs generation for ‘Congestion’ node. In this case, the 
inference mechanism aims at determining the probabilities of 
the occurrence of congestion with respect to the states of the 
nodes: Signage, weather conditions, occurrence of events 
blocking/disrupting the traffic. 

The membership function used for the different nodes of 
the graph is Gaussian, as it provides less error compared to 
other triangular and trapezoidal functions [64]. An example of 
the description of the membership function for the weather 
variable is provided in Fig. 3. 

 
Fig. 3. Membership Functions for the Weather Variable. 

After defining the membership functions for the congestion 
nodes and its antecedents, subsequently, a fuzzy rule base is 
determined to evaluate the variation of the congestion node 
with respect to the states of its parent nodes or its causes. This 
fuzzy rule base is detailed in Table IV. 

TABLE IV.  FUZZY RULES OF THE 'CONGESTION' NODE WITH ITS PARENT 
NODES 

Rule 
number Signage Weather 

conditions 
Occurrence 
of events Congestion 

1 Bad extremes High high 

2 Bad extremes Medium high 

3 Bad extremes Low medium 

4 Bad medium High high 

5 Bad medium Medium medium 

6 Bad medium Low medium 

7 Bad normal High medium 

8 Bad normal Medium medium 

9 Bad normal Low low 

10 Medium extremes High high 

11 Medium extremes Medium medium 

12 Medium extremes Low medium 

13 Medium medium High medium 

14 Medium medium Medium medium 

15 Medium medium Low medium 

16 Medium normal High medium 

17 Medium normal Medium medium 

18 Medium normal Low low 

19 Good extremes High high 

20 Good extremes Medium medium 

21 Good extremes Low medium 

22 Good medium High medium 

23 Good medium Medium medium 

24 Good medium Low low 

25 Good normal Low medium 

26 Good normal Medium low 

27 Good normal  Low low 
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The inference mechanism is triggered by initializing the 
input variables with precise values representing the peak of the 
Gaussian distribution and activating a set of fuzzy rules. This 
mechanism uses the Sugeno inference system. The aim is to 
identify degrees of membership to each fuzzy subset. The 
calibration of these degrees provides the CPTs of the BN. 

Consider the example of inferring the congestion node 
knowing that the signage is average, the methodological 
conditions are normal, and the occurrence of traffic 
blocking/interfering events is low. The initial values of the 
input variables represented in rule 18 of Table VI will feed the 
fuzzy inference system. The latter is implemented with the 
Fispro software. 

The results of the fuzzy inference are illustrated in Fig. 4, 
thereafter; the different results are aggregated, in order to 
combine them into a single value for each state. This value is 
the result of the union of the different conclusions of the rules 
activated with the max method. 

 
Fig. 4. Fuzzy Inference of the Variable 'Congestion. 

The conclusions of the activated rules of rule 18 are 
summarized in Table V. Thus, the low value of congestion is 
0.98, and the average value is 0.020. Now, since each 
possibility of a fuzzy subset must be greater than zero, a value 

of 0.001 is given to the null probability, in this case the high 
value is 0.001. 

Congestion (low) = max (0.98, 0.015, 0.008) = 0.98. 

Congestion (medium) = max (0.015, 0.008, 0.020) = 0.020. 

Congestion (high) = 0.001. 

The conditional probabilities for the different states of the 
variable 'congestion' of the rule 18 is calculated in the 
following way:   

P (Congestion = low | Occurrence events = low, Weather = 
normal and Signage = medium) = 
0.98/(0.98+0.020+0.001)=0.979. 

P (Congestion = medium | Occurrence of events = low, 
Weather = normal and Signage = medium) = 
0.020/(0.98+0.020+0.001)=0.019. 

P (Congestion = high | Occurrence of events = low, 
Weather = normal and Signage = medium) = 
0.001/(0.98+0.020+0.001)=0.001. 

TABLE V. DEGREE OF MEMBERSHIP FOR EACH FUZZY SUBSET OF THE 
VARIABLE 'CONGESTION 

Rule activated Language value of the output 
variable 

Degree of 
membership 

R27 Low 0.015 

R26 Low 0.015 

R24 Low 0.015 

R23 Medium 0.015 

R18 Low 0.98 

R17 Medium 0.020 

R15 Medium 0.020 

R14 medium 0.020 

R9 Low 0.008 

R8 medium 0.008 

R6 medium 0.008 

C. Anticipation of Scenarios and Interpretation of Results 
After constructing the Bayesian network using Open 

Markov tool, it is used to deduce the probabilities of certain 
events by setting evidences (states) for certain nodes and study 
their effects through the propagation of their probabilities on 
the child nodes. At this level, the input parameters' impact on 
the occurrence of delay is studied through four scenarios listed 
as follows: 

• Scenario 1: favorable road environment and delivery 
areas input parameters, unfavorable transport company 
input parameters. 

• Scenario 2: unfavorable road environment and delivery 
areas input parameters, favorable transport company 
input parameters. 
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• Scenario 3: favorable road environment and delivery 
areas input parameters, favorable transport company 
input parameters. 

• Scenario 4: unfavorable road environment and delivery 
areas input parameters, unfavorable transport company 
input parameters. 

The input parameters related to the transport company 
correspond to those related to the vehicles, the staff (drivers, 
planners ...) and the planning systems. 

The input parameters related to the road environment and 
delivery areas correspond to those related to the road, traffic 
and warehouses. 

The four scenarios corresponding to different 
configurations of the input node states are detailed in Table 
VII. 

After feeding the BN with the states of each scenario, the 
inference mechanism provides probability propagation over 
intermediate effects and final impacts to quantify delay 
occurrence. Table VIII, shows the probability distribution for 
some nodes in the network. 

TABLE VI. CONDITIONAL PROBABILITY TABLE OF THE 'CONGESTION' NODE 

 Conditional probability 
Rule number Signage Weather conditions Occurrences of events Congestion Low medium high 
1 bad 0.22 extremes 0.18 high 0.21 high 0.001 0.015 0.984 
2 bad 0.22 extremes 0.18 medium 0.52 high 0.001 0.020 0.979 

3 bad 0.22 extremes 0.18 low 0.78 medium 0.001 0.979 0.020 
4 bad 0.22 medium 0.5 high 0.21 high 0.001 0.020 0.979 

5 bad 0.22 medium 0.5 medium 0.52 medium 0.001 0.988 0.011 
… … … … … … … … 

18 medium 0.51 normal 0.78 low 0.78 low 0.979 0.020 0.001 

19 good 0.81 extremes 0.18 high 0.21 high 0.001 0.015 0.984 

20 good 0.81 extremes 0.18 medium 0.52 medium 0.006 0.988 0.006 
… … … … … … … … 

25 good 0.81 normal 0.78 high 0.21 medium 0.015 0.984 0.001 
26 good 0.81 normal 0.78 medium 0.52 low 0.979 0.020 0.001 

27 good 0.81 normal 0.78 low 0.78 low 0.979 0.020 0.001 

TABLE VII. DESCRIPTION OF THE SCENARIOS ACCORDING TO THE VALUES OF THE INPUT PARAMETERS 

Input parameter 
Value 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Road environment  and delivery  areas parameters 

Road design good bad good  bad 

Lighting good bad good bad 
Post-accident road cleaning appropriate inappropriate appropriate inappropriate 

Signage good bad good bad 
Weather conditions normal extremes normal extreme 
Occurrence of events that block/impede traffic low high low high 

Availability of delivery bays high low high low 
Resources Availability  high low high low 

Occurrence of internal events low high low high 
Scheduling of arrival times good bad good bad 
Transport company parameters 

Driving style bad good good bad 
Driver condition bad good good bad 

Driver behavior bad good good bad 
Vehicle condition bad good good bad 

Resource allocation bad good good bad 
Estimated departure time bad good good bad 
Number of exchanges high Low low high 
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TABLE VIII. PROBABILITY DISTRIBUTION FOR BAYESIAN NETWORK NODES 

Node State Scenario
1 

Scenario
2 

Scenario
3 

Scenario
4 

Congestion 

Low 0.9790 0.0010 0.9790 0.0010 

Medium 0.0020 0.0150 0.0020 0.0150 

High 0.0010 0.9840 0.0010 0.9840 

Occurrence 
of a 
breakdown 

high 0.9790 0.0010 0.0010 0.9790 

Medium 0.0200 0.0020 0.0020 0.0174 

Low 0.0027 0.9790 0.9790 0.0010 

Occurrence 
of an 
accident 

Low 0.0022 0.0012 0.9574 0.0010 

Medium 0.0418 0.9574 0.0416 0.0173 

high 0.9559 0.0214 0.0010 0.9817 

 Low 0.0209 0.9166 0.9166 0.0052 

Occurrence 
of ticket Medium 0.0052 0.0592 0,0592 0.0209 

 high 0.9738 0.0242 0.0242 0.9738 

Accessibili
ty to 
destination 
points 

High 0.9635 0.0010 0.9635 0.0010 

Medium 0.0355 0.0155 0.0355 0.0155 

Low 0.0010 0.9835 0.0010 0.9835 

Delay 

Low 0.0017 0.0050 0.9718 0.0010 

Medium 0.0861 0.9624 0.0272 0.0160 

High 0.9121 0.0327 0.0010 0.9830 

In the case of the first scenario, the occurrence of 
congestion is low with a probability of 97.9%. Concerning the 
occurrence of a breakdown and ticket, and accident are 
important with respectively 97.9% and 97.3% and 95.5%. As 
for the accessibility to the destination, point tends to be high 
with 96.3%.  Therefore, the probability of the occurrence of 
delay is important with a value of 91.1%. 

For the second scenario, the probability of congestion 
occurrence is high with a probability of 98.4%. Regarding the 
occurrence of accident is more likely to be 'medium' with a 
probability of 95.7%, as for the occurrence of breakdown and 
ticket are low with respectively 97.9% and 91.6%, In addition, 
the accessibility to the destination point tends to be low with 
98.3% which leads to an average risk of occurrence of delay of 
96.2% 

For the third scenario, the inference model predicts a low 
probability of congestion occurrence with a rate of 97.9%. 
Also, the risks related to the occurrence of an accident, 
breakdown and a ticket are low with respectively 95.7%, 
97.9% and 91.6%. In addition, the accessibility to the 
destination point tends to be high with 96.3%. Therefore, the 
probability of delay occurrence is very low with 97.1%. 

For the fourth scenario, congestion tends to be high with a 
rate of 98.4%. Also, the risks of the occurrence of an accident, 
a breakdown or a ticket are high with respectively 98.1%, 
97.9% and 97.3%. As for the accessibility to the destination, 
point is low with a percentage of 98.3%. Hence the highest 
probability of the occurrence of delay with 98.3%. 

Based on the results of the inference of the first two 
scenarios, we can conclude that the parameters related to the 
transport company have more impact on the occurrence of 
delivery delay than those related to road and delivery 
environment. 

D. Sensitivity Analysis 
The sensitivity analysis identifies the factors ranked 

according to those that have more impact on the probability of 
a node [65]. The Fig. 5 shows the tornado diagram [66] of the 
"delay occurrence" sensitivity analysis.  According to the 
figure, variables such as vehicle condition, resources 
availability, estimated departure time, number of exchanges, 
and resource allocation contribute more to the occurrence of 
late deliveries. Poor vehicle condition is the main parameter 
influencing the risk of delay. This can be justified by its 
resulting events such as the occurrence of breakdowns and 
accidents, as these have a significant impact on the occurrence 
of such risk. 

E. Partial Validation  
In order to validate the proposed model, the paper uses 

partial validation allowing the verification of three axioms 
presented by [67] and opted by various researchers such as 
[68], [69]: (1) The occurrence of change (increase/decrease) in 
the probability of the parent node thus changes the probability 
of the child node; (2) The values of the child nodes must be 
consistently affected by the changes made to the probability 
distributions relative to the parent node; In the case of a node 
with more than one parent (e.g., x and y), the overall effect of x 
and y must be greater than the individual effects of parent x or 
parent y. 

For example, when the probability of "road design = good" 
increases from 70% to 75%, the probability of "road 
infrastructure condition = good" and "road environment = 
good" increases from 77% to 80% and 84% to 86% 
respectively. In light of this variation, when the probability of 
"Occurrence of events that block/slow traffic=low" increases 
from 74% to 78%, the probability of "congestion=low" and 
"road environment=good" increases from 78% to 82% and 
87% to 90% respectively, which is consistent with the axiom. 
Similarly for the other nodes of the graph. 

 
Fig. 5. Sensitivity Analysis for Occurnce of Delay. 
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IV. DISCUSSION 
In this paper, an analysis of potential delivery delays is 

developed using a Bayesian fuzzy model. BNs have been used 
in various existing studies to analyze the risk of delay in 
different areas such as maritime transport[45], [70], rail 
transport [71] and air transport [72]. Compared to the existing 
works, the developed model focuses on the occurrence of delay 
in the road freight transport domain. This model consists of 
many internal and external factors that cause delay to occur. 
Sensitivity analysis and interpretation of the results of four 
scenarios show that the internal factors related to the transport 
companies have a stronger effect on the occurrence of late 
deliveries than the external factors. This means that the 
transport company decisions in terms of resource selection, in 
addition to planning relevance, have a considerable effect on 
delivery reliability than road and delivery events such as 
congestion, weather conditions and availability of delivery 
bays. Therefore, optimized resource (physical and material) 
allocation to the right routes and a smart routing planning 
design plays an important role in ensuring on-time deliveries. 
In order to validate the results of this model, an example test of 
three axioms is performed. 

V. CONCLUSION 
The respect of delivery deadlines is crucial to ensure the 

quality of logistics services. Unfortunately, it often happens 
that this deadline is not respected, leading to a series of more or 
less unfortunate consequences. This article focuses on 
predicting the risks of delays in deliveries with the aim of 
anticipating them in order to either avoid them or be better 
prepared to deal with them and reduce the impact of poor 
quality of service. To do this, the article proposes a fuzzy 
Bayesian model combining the Bayesian approach and fuzzy 
logic in order to monitor the occurrence of delivery delays. 
This model is based on a set of factors causing the delay of 
deliveries and their causal relationships represented by a causal 
graph. Fuzzy logic intervenes by the generation of fuzzy rules 
based on conditional probability tables. Such a model is 
particularly effective, especially for the type of problem dealt 
with through this article. It is positioned as an excellent 
alternative to deep learning for making predictions in the 
absence of massive data. 

One of the limitations of the proposed model is the 
identification of all the factors that cause delivery delays, the 
lack of integration of all these factors can affect the 
effectiveness of this model in correctly predicting possible 
delays. 

The generalization of the model to all risks that can degrade 
the quality of delivery services such as damage, theft and loss, 
is a potential perspective to the work presented here. Similarly, 
a comparative study between a Bayesian-fuzzy model and a 
model derived from deep-learning around the prediction of 
delivery risks and the management of the crises that follow are 
very promising avenues of research. 
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