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Abstract—In this paper, a new hybridization of a Myopic and 
Neighborhood approaches is proposed to solve large-size vertex 
p-median location problems. The effectiveness and efficiency of 
our approach are demonstrated empirically through an intensive 
computational experiment on large-size instances taken from 
TSPLib and BIRCH datasets, with the number of nodes varying 
from 734 to 9,976 for the former and from 9,600 to 20,000 nodes 
for the latter. The results show that the new approach, though 
relatively simple, yields better solutions compared to the ones in 
the literature. This demonstrates that a simpler approach that 
takes into account the advantages of other methods can lead to 
promising outcome and has the potential of being adopted in 
other combinatorial optimization problems. 

Keywords—P-median; discrete location problems; myopic 
heuristic; neighborhood heuristic 

I. INTRODUCTION 
The p-median location problem is one of the oldest discrete 

location problems. The objective of the vertex p-median 
location problem is to find the location of p median facilities 
among n demand points to minimize the sum of the distances 
between customers and their nearest median facilities. This 
problem is also known as the minisum vertex location problem 
[1]. In the uncapacitated type, each median facility is not 
restricted by the number of demand points/customers to serve, 
however, in the capacitated p-median location problem each 
median facility has a fixed capacity. In this paper, we are 
interested in addressing the former for the case of large-scale 
instances where exact methods may not be suitable. This type 
of location problems has many applications such as, locating 
the locations of the ambulances, schools, firefighters and 
hospitals among others [2-5]. 

The problem was first introduced in [6, 7], and has been 
proved to be an NP-hard optimization problem [8]. For large-
size location problems, optimal solutions may not be reached, 
therefore, heuristic and metaheuristic approaches are usually 
the best way forward for solving these vertex p-median 
location problems [9, 10]. For more information on the vertex 
p-median location problems, see [11-13]. The vertex p-median 
location problem was formulated by ReVelle and Swain in [14] 
and its implementation was enhanced by Rosing et al. in [15]. 
The following notation is used. 

Let I be the set of nodes (demand points), J the set of 
potential sites, and Cij the distance between site i (𝑖 ∈ 𝐼) and 
demand point j (𝑗 ∈ 𝐽). 

Let p the number of median facilities to be located and let 
yi and xij the following decision variables with: 

𝑦𝑖 = �1, 𝑖𝑓 𝑎 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑖𝑡𝑒 𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 and xij the fraction of the demand of customer j that is 
supplied from facility i. 

The p-median location problem can be formulated as 
follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑗 ∈𝐽𝑖 ∈𝐼             (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖𝑗 = 1 ∀ 𝑗 ∈ 𝐽 𝑖 ∈𝐼             (2) 

 ∑ 𝑦𝑖 = 𝑝𝑖 ∈𝐼                  (3) 

 𝑥𝑖𝑗  −  𝑦𝑖 ≤ 0 ∀ 𝑖 ∈ 𝐼 ;  𝑗 ∈ 𝐽             (4) 

 𝑦𝑖  ∈ {0 , 1} ;  ∀ 𝑖 ∈ 𝐼              (5) 

𝑥𝑖𝑗  ≥  0 ;  𝑗 ∈ 𝐽               (6) 

Equation (1) is the objective function which minimizes the 
sum of the total distances, (2) states that all demand at demand 
site (j) must be satisfied, (3) guarantees that exactly p median 
facilities are to be located. Equation (4) ensures that demand 
nodes can be only assigned to the open median facilities, (5) 
specifies that the location variables have to be binary, and 
finally, (6) requires that the assignment variables have to be 
non-negative. 

Though there exist heuristic approaches dedicated for the 
vertex p-median location, there is no recent research that has 
concentrated on comparing the performance of the heuristic 
approaches with the state-of-the-art techniques. In this paper, 
we aim to fill that gap. 

A. Contribution and Organization of the Paper 
Here, the basic Myopic construction and Neighborhood 

improvement approaches are first outlined. A new Hybrid-
heuristic that integrates the two above techniques is also 
proposed. In other words, the contribution of this study is three 
folds: 

• Introduce a new Hybrid-heuristic approach which 
integrates Myopic and Neighborhood for solving large-
size vertex p-median problems, 
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• Compare the performance of heuristic approaches 
versus the performance of recent existing approaches, 
and 

• Generate new best solutions for large instances that can 
be used for benchmarking purposes or even as bounds 
for exact methods if need be. 

The paper is organized as follows. The next Section 
presents a brief review of the related literature. The third 
Section describes some vertex p-median heuristic approaches, 
with an emphasis on the new proposed approach. In Section 4, 
an illustrative example is presented followed by the 
computational results in Section 5. The final Section outlines 
our conclusion and highlights some research avenues. 

II. LITERATURE REVIEW 
The difficulty of solving large-size vertex p-median 

location problems led several authors to investigate alternative 
approaches and techniques [16-18]. This section provides a 
brief overview of some work on recent large-size vertex p-
median location problems. See [19, 20] for a review on this 
topic. 

In [16], Avella et al. presented a Branch-and-Cut-and-Price 
approach, which yields reasonable solutions for instances with 
demand points/customers (n) less than 3,795. They applied 
their approach on the OR library instances, namely, the TSP-
Lib instances [21]: Fl1400, PCB3038 and Rl5934, and the 
Optimal Diversity Management (ODM) instances BN1284, 
BN3373 and BN5535. In [22], Hansen et al. used a Variable 
Neighborhood Search (VNS) to find a solution for the 
clustering problem as a large-size vertex p-median location 
problem. They reported the results for two large-size datasets, 
where each dataset consists of p groups (clusters) of two 
dimensional data points generated in a square. The datasets 
consist of BRICH I instances and BRICH III instances [23]. 
The size of each dataset ranged from 10,000 demand points to 
89,600 demand points. The TSP-Lib library is used to choose 
the second set of instances from [21]: PCB3038, RL5915, 
RL5934, RL11849, USA13509, IT16862, SW24978, and 
BM33708, where the number attached to each instance title 
indicates the number of demand points (n) in that instance. In 
[24], Avella et al. introduced a new Lagrangean relaxation 
heuristic to solve large-size p-median location instances. The 
algorithm consists of three main components: (1) Subgradient 
column generation, (2) Core heuristic, and (3) Aggregation 
procedure. The authors reported the solution of instances from 
BRICH ( two of type BRICH I and two of type BRICH III), 
and also two instances from the TSP-Lib library [21], namely 
PCB3038 and USA13509. In [25], Irawan et al. introduced a 
multiphase approach that includes three parts; (1) demand 
points aggregation, (2) Variable Neighbourhood Search and (3) 
an exact approach to solve large-size unconditional and 
conditional p-median location vertex problems. The approach 
consists of four phases (stages). The first phase solves several 
aggregated problems using a ‘‘Local Search with Shaking’’ 
procedure to generate candidate solutions which are then used 
to solve a reduced location problem in Phase two using 
Variable Neighbourhood Search or an exact method. The new 
candidate solution set is then introduced as an input for the 
iterative learning process to tackle the aggregated p-median 

location problem in Phase three. Finally, Phase four is a post 
optimization phase applied to solve the original problem using 
a local search, starting from the best solution obtained in the 
previous phase. This multiphase approach is tested on three 
well-known datasets. The first is the BIRCH datasets (BIRCH I 
and BIRCH III), the second is based on the TSP-Lib library 
[21] which includes IT16862, SW24978, BU33708 and 
CH71009 whereas the third is the Circle dataset, which is a 
newly geometrically generated by the authors to guarantee 
optimal solutions and hence provides a strong comparison with 
the heuristic produced. In [26], Irawan and Salhi further 
designed a hybrid technique based on clustering and VNS with 
the aim to find a solution to large-size p-median location 
problems. The new approach is a multi-step methodology in 
which learning from previous steps is taken into account when 
tackling the next step. Each step consists from sub-problems 
which are solved by a fast procedure to produce good feasible 
solutions. Within each step, the solutions are grouped together 
to produce a new promising subset of potential 
medians/facilities. This is similar in principle to data mining 
and heuristic concentration developed by Rosing and ReVelle 
[27]. The proposed approach is tested on BIRCH datasets. In 
[3], Janáček and Kvet studied the public service system design 
which is formulated as a p-median location problem, through 
focusing on the approximate radial approach using dividing 
points. The approximate approach can be implemented using 
any commercial integer programming solver. The proposed 
approach is tested on TSP-Lib instances; RL1304, FL1400, 
U1432, V1748, D2103, and PCB3038. In [28], Vasilyev and 
Ushakov proposed a new modified hybrid sequential 
Lagrangian heuristic that uses a shared memory parallel 
implementation which can be used in suitable technology. 
They integrate their Lagrangian relaxation approach with a sub 
gradient column generation and a core selection method in 
combination with a simulated annealing to identify the 
sequences of lower and upper bounds for the optimal value. 
The proposed approach is also tested on BIRCH datasets. In 
[29], Vasilyev et al. addressed a general fault-tolerant version 
of the p-median location problem. The authors adapted their 
earlier method to determine the upper and lower bounds. They 
tested the proposed method on large-scale problem instances 
taken from TSPLIB library: JA9847, USA13509, IT16862, and 
SW24978. 

In summary, due to the importance of the vertex p-median 
location problem and its real-life applications, a considerable 
amount of p-median location approaches have been proposed 
such as Branch-and-cut-and-price, Variable neighborhood 
search, Lagrangean relaxation, among others. Though the 
above approaches are promising, they are not easily and widely 
applicable. We therefore believe there could still be the need to 
propose a simple but powerful and effective heuristic-based 
approach. 

III. HEURISTICS APPROACHES FOR THE P-MEDIAN PROBLEM 
This section outlined two classes of heuristic approaches: 

the Myopic approach, and the Neighborhood Search approach. 
The Myopic approach is a construction method that builds a 
good solution from scratch, while the neighborhood search 
approach is an improvement algorithm. More details can be 
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found in [19, 20, 30]. This will then be followed by the new 
hybrid myopic-neighborhood which we propose. 

A. Myopic Approach 
Myopic is the simplest greedy add (i.e., construction) 

heuristic approach. The Myopic method starts with an empty 
set of medians (vertices/points) and successively adds the 
candidate vertex (point) that yields the best decrease in the 
minisum objective function value. The process continues until 
the solution includes p median facilities [19]. The Myopic 
Approach is simple to understand and to implement. However, 
it suffers from the fact that once a facility is added, it is not 
removed in subsequent iterations and therefore will restrict the 
search space. Fig. 1 shows the commonly used Myopic 
pseudocode. Let us define the function  𝑍(𝐽,𝑋) =
 ∑ 𝑚𝑖𝑛𝑚∈𝑋 �𝑐𝑚𝑗�,𝑗 ∈𝐽  ; where X is the current set of candidate 
solutions. The function depends on both the set of demand 
nodes to be considered and the candidate locations to be used. 

 
Fig. 1. Myopic Algorithm Pseudocode [20]. 

Step 1 starts by initializing the set of candidate solutions to 
an empty set. Step 2 relates to the best vertex (point) to be 
added to the candidate solution set. Step 3 adds that 
vertex/point to the candidate solution set. Step 4 checks if less 
than p median facilities have been added to the solution set. If 
so, the Myopic approach continues with Step 2; if not, the 
search terminates. According to Daskin [30], the solution 
obtained using Myopic method may not be optimal as outlined 
earlier. This is because once a site is chosen, it remains there 
which restricts the search making the solution suboptimal as 
the optimal solution may not necessarily have the additive 
property. In other words, there is no guarantee of optimality for 
the Myopic approach, unless we are locating only a single 
median facility [20]. 

B. Neighborhood Approach 
Neighborhood approach attempts to improve a given 

solution made up of p candidates. It can be considered as one 
of the most-widely and oldest improvement mechanism [19, 
30]. The approach starts with any feasible candidate solution to 
the vertex p-median location problem (For example, it could 
begin with the solution set identified by the Myopic approach), 
then the approach assigns each demand vertex to its nearest 
median facility. Then the one median location problem within 
each neighborhood is selected through examining each 
candidate demand point. If the solution of the one median 
location results in a new location for the median facility, the 
approach reallocates all demand points to the nearest open 
median facility. Otherwise (i.e., if no change for the median 
facility locations), the approach stops. If there is no new 
assignments, the approach also stops; otherwise, the search 
continues [20]. Fig. 2 shows the pseudocode of the 
Neighborhood search approach. Note that this approach was 
initially developed for the Weber problem (i.e, the p-median 

problem but on the plane) by [31] which is known as the 
locate-allocate method. 

 
Fig. 2. Neighborhood Search Approach Pseudocode [20]. 

Step 1 starts by initializing the solution with any set of p 
median facilities. Step 2 to Step 6 initialize and set the 
vertices/points neighborhood. Step 7 initializes a new 
candidate set of median facility locations. Step 8 to Step 13 the 
new candidate locations is found. Step 10 calculates the 1-
median location problem within each neighborhood and adds 
that vertex/point to the solution set in Step 11. 

C. The Proposed Hybrid Myopic-Neighborhood Approach 
This section outlines the new Hybrid Myopic-

Neighborhood. The main idea of the proposed approach is that, 
at each iteration of the Myopic and after determining the next 
point (vertex) to be added to the current solution; the 
Neighborhood approach is used as many times as possible till 
there is no improvement in the current candidate solution. In 
other words, this embedded local search acts as a filtering 
mechanism during the search process as the open set of 
facilities is augmented. Fig. 3 shows the pseudocode of the 
Hybrid Myopic-Neighborhood approach. 

 
Fig. 3. Hybrid Myopic-Neighborhood Approach Pseudocode. 

Step 1.Let X  ⃪ Ø. /Where X is the set of locations, starting with an empty set.  
Step 2.Find i* =argminiϵI {Z(J, X U{i}x)}. / the best node to add to the 

solution set. 
Step 3.Set X  ⃪ X U { i* }./ Adds that site to the solution.  

 4. If |X| < P, go to Step 2; else stop. 
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Fig. 4. A Simple Flowchart of the New Hybrid Myopic-Neighborhood 

Approach. 

For completeness, we also provide Fig. 4 as a flowchart for 
the Hybrid Myopic-Neighborhood approach. 

IV. NUMERICAL EXAMPLE 
This section introduces a small example to illustrate the 

new Hybrid Myopic-Neighborhood approach to solve vertex 
location problem. For simplicity let us consider an example 
from Daskin [30] with Table I shows the distance matrix. 

For the first median (p=1), using total enumeration, the 
location of the 1st median is located at vertex (point) 9. 

For the second median (p=2), (1) applying Myopic: The 
location of the 2nd median is located at vertex 7 and the set of 

solution X= {9, 7}. According to the Myopic, we should 
proceed by adding a new third vertex which yields the lowest 
objective function value, however, the new Hybrid approach 
proposed applying Neighborhood approach; (2) applying 
Neighborhood, no change has been happened in the solution 
set, therefore, go to next median (i.e., median # 3). 

For the third median (p=3), (1) applying Myopic, the 
location of the 3rd median is located at vertex 6 and the set of 
solution X={9,7,6}. (2) applying Neighborhood, The new 
location set, Xnew={11,7,6}, a change happened at site 9 and 
swapped with site 11, therefore, go to step 4, and apply again 
Neighborhood. Now, there is no median facility changed; go to 
Next median, and so on. The detailed calculations can be found 
in Appendix A. 

It is clear that using the new Hybrid approach improves the 
objective function value of the Myopic, which considered an 
added sequence approach. The best solution at p is not 
necessarily the best solution at p-1 with adding an additional 
vertex. This is because the additivity property is not satisfied. 
This observation was also taken advantage of when applying 
the ‘drop’ method instead of the ‘add’ method, as demonstrated 
by the flexible drop method, known as subdrop, originally 
developed by Salhi and Atkinson [32]. Also, it is worth noting 
that the new Hybrid either improves the objective function 
value of the Neighborhood or retain that value but never 
worsen it, since the Hybrid keeps starting from a better 
intermediate initial solution. 

Table II compares the results of using the new Hybrid 
approach to solve the example in Table I, versus the results of 
Myopic, Neighborhood, Exchange, and Lagrangian approaches 
in [30]. The table shows that the new Hybrid Myopic-
Neighborhood outperformed other heuristics, namely, Myopic, 
Neighborhood, and Exchange heuristics approaches. The 
Hybrid approach achieved optimality at all levels of medians 
(q=1,…,p), such as the Lagrangian exact approach. However, 
the new Hybrid approach is very simple to understand and 
relatively easier to implement in practical setting. 

TABLE I. THE DISTANCE MATRIX FOR A P-MEDIAN EXAMPLE FROM [30] 

 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 225 555 825 360 900 270 495 720 600 870 1005 

2 150 0 220 400 380 520 330 480 420 550 610 610 

3 444 264 0 216 192 360 492 336 240 696 468 468 

4 990 720 324 0 612 216 1062 828 432 1116 774 612 

5 120 190 80 170 0 180 125 60 120 235 185 215 

6 1440 1248 720 288 864 0 1368 1008 288 1200 744 528 

7 198 363 451 649 275 627 0 165 495 242 440 671 

8 528 768 448 736 192 672 240 0 480 592 400 736 

9 624 546 260 312 312 156 585 390 0 494 247 247 

10 880 1210 1276 1364 1034 1100 484 814 836 0 418 880 

11 1102 1159 741 817 703 589 760 475 361 361 0 399 

12 1340 1220 780 680 860 440 1220 920 380 800 420 0 
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TABLE II. COMPARING THE HYBRID APPROACH VERSUS OTHER HEURISTIC AND EXACT APPROACHES 

P Myopic Exchange Neighborhood Lagrangian Hybrid 

1 4,772 4,772 4,772 4,772 4,772 

2 3,145 3,145 3,145 3,145 3,145 

3 2,641 2,498 2,641 2,438 2,438 

4 2,157 1,884 2,157 1,884 1,884 

5 1,707 1,444 1,572 1,444 1,444 

6 1,327 1,083 1,192 1,083 1,083 

7 966 747 747 747 747 

8 666 531 666 531 531 

9 426 366 426 366 366 

10 210 210 210 210 210 

11 60 60 60 60 60 

12 0 0 0 0 0 

V. COMPUTATIONAL RESULTS 
To assess the performance of the new Hybrid Myopic-

Neighborhood approach to solve large-size vertex p-median 
location problems, an extensive computation experiment using 
two frequently types of datasets is carried out. These datasets 
consist of the TSP-Lib, and BIRCH instances. Computational 
results of the vertex p-median instances are listed in Table III, 
Table IV, Table V and Table VI. This section reports the 
computational results on a subset of large-size instances which 
have previously been used in [22, 24, 25, 28]. Computational 
experiments were carried out on a processor Intel(R) Core(TM) 
i7-8550U CPU@1.80GHz 1.99 with 8 GB of RAM, under 
Windows 10, 64-bit. The code was written and executed in 
MATLAB. 

A. TSP-Lib Instances 
The first dataset of instances is taken from the TSP-Lib, a 

travelling salesman library [21]. There are 11 instances 
(UY734, ZI929, MU1979, CA4663, TZ6117, EG7146, 
YM7663, EI8246, JA9847, GR9882, and KZ9976), where each 
instance is solved with p varying from 25 to 75 with an 
increment of 5. The number attached to each instance name 
indicate the number of demand points (n) of that instance. For 
example, UY734 contains the coordinates of 734 cities in the 
Uruguay. The instances are ranged in size from n = 734 to 
9,976. 

1) Comparison vs Neighborhood “NBHD” and Myopic: 
The computational results for the new Hybrid approach on the 
TSP-Lib dataset are presented in Table III alongside those 
obtained by the Neighborhood “NBHD” and Myopic 
approaches, with ‘Bold’ showing the best solutions. For 
clarity, the items in Table III are as follows: 

a) n is the number of demand points, 
b) p is the number of median facilities to be located, 
c) z is the minisum objective function obtained by the 

three approaches, 
d) Deviation(%): The percentage gap between a given 

solution and the best solution. It is computed as: 
Deviation(%)= 100*(ZH-ZBest)/ZBest), where ZH and ZBest 
correspond to the Z value obtained with heuristic ‘H’ and the 

best Z value respectively. ‘Bold’ values in the table refer to the 
best solutions [25]. 

e) Time (Sec); Time in seconds. We should notice that 
the time of Neighborhood "NBHD" is significantly small since 
the approach starts by the candidate solution obtained by the 
Myopic approach and apply one pass of improvement instead 
of repeated ones in earlier steps. 

Generally speaking, the new Hybrid approach provides 
better results than Neighborhood and Myopic approach, for all 
TSP-Lib instances listed in Table III. This means that the new 
Hybrid approach outperforms both the Neighborhood and 
Myopic approaches of the vertex p-median location problem. 

2) Comparison vs. existing techniques: Table IV 
compared the performance of the Hybrid Myopic-
Neighborhood versus the performance of two versions of 
Variable Neighborhood Search approach called Var1 and 
Var2 presented in [25]. The results are given in Table IV 
which shows the value of the objective function (Z), the 
deviations in % and the CPU time in seconds for the Hybrid 
approach. The notations in the table are the same as the ones 
given earlier for Table III. 

To our surprise, the results demonstrated that the new 
Hybrid provides better solutions compared to Variable 
Neighborhood Search on all TSP-Lib instances listed in Table 
IV. The Hybrid approach yields new benchmarking solutions 
for all of the instances by producing 11 new best solutions 
which can be used for further benchmarking. 

B. BIRCH Instances 
BIRCH is a generated-synthetic dataset suggested by 

Zhang et al. [23]. Each BIRCH dataset contains p two-
dimensional clusters demand points (data points) generated in a 
square. Dataset of type I is the easiest to solve while datasets II 
and III are harder [22]. Type 1 and Type 3 instances results are 
reported in this paper; these are the most frequently used types 
in the vertex p-median literature. The largest problem instance 
generated in this category contains 20,000 demand points. The 
number of medians (clusters) p is ranged from 25 and 100 as 
shown in Table V which also shows the results of the 24 
BIRCH instances. 
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TABLE III. COMPUTATIONAL RESULTS FOR THE HYBRID, NEIGHBORHOOD “NBHD” AND MYOPIC APPROACHES ON THE TSP-LIB 

n p 
Z Deviation (%) Time (Sec) 
Hybrid NBHD Myopic NBHD Myopic Hybrid NBHD Myopic 

734 25 205538.00 213171.90 221036.85 3.71 7.54 1.4 0.02 0.47 
929 30 199171.23 200646.89 208460.24 0.74 4.66 5.5 0.05 0.72 
1979 35 305849.50 313868.19 329945.58 2.71 7.88 163.6 0.12 3.46 

4663 40 6508942.87 6651807.60 6858853.82 2.14 5.38 376.0 1.04 44.62 
6117 45 2293933.42 2388862.31 2483309.72 4.13 8.26 639.4 1.68 124.25 

7146 50 926303.48 938372.66 982511.38 1.03 6.07 673.0 2.97 235.86 
7663 55 1337941.96 1359608.60 1431263.27 1.41 6.97 1021.6 3.60 333.77 
8246 60 1206962.23 1233756.02 1263392.14 2.29 4.68 1532.0 3.19 474.34 

9847 65 3211308.65 3271312.72 3386102.36 1.99 5.44 2328.5 6.67 1134.28 
9882 70 1768824.70 1780385.42 1892195.85 0.77 6.97 1958.3 8.52 1289.16 

9976 75 6172025.46 6275422.16 6549036.63 1.72 6.11 2250.1 4.09 1161.07 

Average 2.06 6.36    

TABLE IV. COMPUTATIONAL RESULTS FOR THE HYBRID, VAR1 AND VAR2 APPROACHES ON THE TSP- LIB INSTANCES 

n p 
Z  Deviation (%) 
Hybrid Var1 Var2  Var1 Var2 

734 25 205538.00 209214 207647  1.79 1.03 
929 30 199171.23 208002 209374  4.43 5.12 
1979 35 305849.50 320885 320777  4.92 4.88 

4663 40 6508942.87 6885883 6817921  5.79 4.75 
6117 45 2293933.42 2412269 2371727  5.16 3.39 

7146 50 926303.48 1010761 1003380  9.12 8.32 
7663 55 1337941.96 1430669 1416127  6.93 5.84 
8246 60 1206962.23 1235810 1241036  2.39 2.82 

9847 65 3211308.65 3365986 3311024  4.82 3.11 
9882 70 1768824.70 1869116 1859538  5.67 5.13 

9976 75 6172025.46 6378764 6340439  3.35 2.73 

Average  4.94 4.28 

1) Comparison vs. Neighborhood “NBHD” and Myopic: 
The computational results for our new Hybrid approach on the 
BIRCH dataset are presented in Table V, where the summary 
results of the three approaches (Hybrid, Neighborhood 
“NBHD” and Myopic) are shown. Here, we have the obtained 
objective function (Z) of the three approaches, the deviation 
(%) of the NBHD and Myopic form the Hybrid, and the run 
time (in seconds). On the BIRCH instances of Type 1 and 
Type 3, the Hybrid approach, as shown in earlier experiments, 
provides again better solutions compared to Neighborhood 
“NBHD” and Myopic approaches. 

2) Comparison vs. existing techniques: The results of our 
computational experiments on the BIRCH I and III datasets 
are also compared with the results obtained by Hansen et al. 
[22], who presented a primal–dual variable neighborhood 
search (VNS) algorithm; and Avella et al. [24] who introduced 
a Lagrangean relaxation approach, which consists of three 
components: (1) subgradient column generation; (2) core 
heuristic; and (3) an aggregation procedure. The two 

approaches are referred to as VNS and CH respectively. The 
results of the VNS and CH approaches are taken from [24]. 

The computational results of the new Hybrid approach on 
the BIRCH dataset are presented in Table VI versus the results 
of the other two approaches (VNS and CH). For the BIRCH I 
instances the new Hybrid provides better solutions compared to 
VNS and CH. The Hybrid approach yielded the same results as 
the best-known results with deviation equal to (0.000), while 
VNS and CH yielded (0.039) and (3.674) respectively. On the 
BIRCH III instances, Hybrid outperforms VNS and CH where 
Hybrid found three best solutions and yielded the smallest 
deviation (0.002). As stated in [22] our experiments also show 
that the BIRCH instances of type 3 are harder to solve 
compared to type 1 instances. Also, Table VI shows that not 
only the Hybrid approach yielded better results than VNS and 
CH, but also requires relatively less computational burden 
compared to its nearest competitor in terms of quality, namely, 
the VNS metaheuristic. This reduction in computational time is 
even more significant in those larger instances where the 
hybrid consumes only approximately 15% of the time spent by 
the VNS. 
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TABLE V. COMPUTATIONAL RESULTS FOR THE HYBRID, NBHD AND MYOPIC APPROACHES ON THE BIRCH INSTANCES 

Type 1 Z Deviation (%) Time (Sec) 
n p Hybrid NBHD Myopic NBHD Myopic Hybrid NBHD Myopic 
10000 100 12,428.50 12,428.50 15,587.56 0.00 25.42 3496.5 3.4 1920.1 
15000 100 18,639.30 19,079.36 22,934.81 2.36 20.21 6515.9 12.9 4137.4 
20000 100 24,840.30 25,462.10 30,931.91 2.50 21.48 7483.5 13.0 8648.0 
9600 64 11,934.80 12,407.19 15,287.29 3.96 23.21 751.7 1.9 686.3 
12800 64 15,863.80 15,863.81 20,005.21 0.00 26.11 1242.3 2.5 1382.2 
16000 64 20,004.60 21,423.51 25,370.31 7.09 18.42 2135.9 6.8 1821.3 
19200 64 24,018.30 24,964.97 31,225.47 3.94 25.08 2914.6 3.7 2711.1 
10000 25 12,455.70 12,455.71 15,548.69 0.00 24.83 116.3 0.4 105.2 
12500 25 15,597.10 15,597.15 19,734.60 0.00 26.53 1331.4 0.5 308.8 
15000 25 18,949.30 18,949.25 23,531.83 0.00 24.18 413.1 0.9 261.6 
17500 25 21,937.40 21,937.40 27,119.47 0.00 23.62 543.7 1.0 409.8 
20000 25 25,096.80 25,096.82 31,082.81 0.00 23.85 897.9 0.8 558.7 
Average 1.65 23.58  
Type 3 Z Deviation (%) Time (Sec) 
n p Hybrid NBHD Myopic NBHD Myopic Hybrid NBHD Myopic 
10000 100 9,624.79 10,023.04 10,542.17 4.14 5.18 2881.3 7.3 2737.2 
15000 100 15,904.12 16,461.50 17,297.50 3.50 5.08 6252.1 11.4 5685.3 
20000 100 19,989.02 20,757.61 21,958.13 3.85 5.78 7372.9 26.0 6783.1 
9600 64 8,225.58 8,470.84 8,793.05 2.98 3.80 776.4 4.3 766.2 
12800 64 10,210.36 10,597.02 11,779.22 3.79 11.16 1218.3 6.4 1193.5 
16000 64 13,340.47 13,805.74 14,653.65 3.49 6.14 2337.1 12.1 1904.1 
19200 64 15,207.56 15,671.28 16,915.79 3.05 7.94 3367.3 8.0 2606.2 
10000 25 7,203.39 7,507.42 7,813.95 4.22 4.08 115.2 1.1 104.9 
12500 25 8,576.10 9,219.43 10,033.18 7.50 8.83 278.5 1.5 171.9 
15000 25 9,513.64 9,864.70 10,188.10 3.69 3.28 287.1 0.9 252.4 
17500 25 12,535.68 13,686.14 14,877.32 9.18 8.70 465.5 1.4 347.2 
20000 25 13,052.81 13,935.27 15,085.42 6.76 8.25 582.2 1.7 491.4 
Average 4.68 6.52  

TABLE VI. COMPUTATIONAL RESULTS FOR THE VNS, CH AND HYBRID APPROACHES ON THE BIRCH INSTANCES 

BIRCH instances of Type 1 Deviation (%) Time (Sec) 
n p Best-Known 

  

VNS CH Hybrid VNS CH Hybrid 
10000 100 12428.5 0.021 0.001 0.000 786 47 3,496.5 
15000 100 18639.3 0.213 0.002 0.000 3,386 101 6,516 
20000 100 24840.3 0.000 0.001 0.000 3,982 210 7,484 
9600 64 11934.8 0.023 0.002 0.000 1,205 56 752 
12800 64 15863.8 0.015 0.001 0.000 2,451 84 1,242 
16000 64 20004.6 0.000 0.001 0.000 2,739 129 2,136 
19200 64 24018.3 0.021 0.002 0.000 3,698 219 2,915 
10000 25 12455.7 0.065 0.001 0.000 1,091 82 116 
12500 25 15597.1 0.049 8.794 0.000 2,073 115 1,331 
15000 25 18949.3 0.028 16.681 0.000 2,353 175 413 
17500 25 21937.4 0.026 8.437 0.000 2,615 241 544 
20000 25 25096.8 0.001 10.168 0.000 3,055 365 898 
Average 0.039 3.674 0.000 2,453 152 2,320 

 
BIRCH instances of Type 3 Deviation (%)  Time (Sec) 
n p Best-Known 

  

VNS CH Hybrid VNS CH Hybrid 
10000 100 9624.79 0.096 0.002 0.002 2609 60 2,737.2 
15000 100 15904.12 0.094 21.767 0.005 3,495 121 5,685 
20000 100 19989.02 0.181 27.983 0.003 3,429 222 6,783 
9600 64 8225.58 0.123 21.912 0.002 1,483 57 766 
12800 64 10210.36 0.117 11.412 0.001 2,503 98 1,194 
16000 64 13340.47 1.890 23.142 0.001 3,169 170 1,904 
19200 64 15207.56 0.907 38.925 0.006 3,243 229 2,606 
10000 25 7203.39 0.834 11.349 0.000 1,016 94 105 
12500 25 8576.1 0.788 0.956 0.000 1,606 144 172 
15000 25 9513.64 3.099 52.041 0.003 2,742 192 252 
17500 25 12535.68 1.141 38.387 0.000 2,803 250 347 
20000 25 13052.81 2.060 54.700 0.003 3,364 364 491 
Average 0.944 25.215 0.002 2,622 167 1,920 
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VI. CONCLUSION 
This paper introduces a new Hybrid heuristic to solve large 

scale vertex p-median location problems varying in size 
ranging from 734 to 20,000 demand points. Many Heuristics, 
Meta-heuristics and Exact approaches have been developed for 
this purpose. This paper presented a new Hybrid-heuristic 
approach which integrates two heuristic approaches, namely, 
the Myopic approach as a construction method to find the 
solution of each q (q=1,..,p) median facility; while the 
Neighborhood approach improves this solution as much as 
possible at each level of q. By embedding the Neighborhood 
approach into the Myopic heuristic within the search and not 
put in a sequential manner as a post optimizer at the very end, 
as usually applied, excellent results have been produced which 
are highly competitive with the state-of-the-art approaches on 
large-size instances with up to 20,000 demand points. This can 
be seen to act as a continuous filtering mechanism to guide the 
search. 

The new Hybrid approach was tested on the TSP-Lib 
instances (n = 734−9976) and outperformed the ones by [25]. 
In addition, the new approach was assessed on several large-
size BIRCH instances (n = 9600−20000), each instance is 
solved with p ranging from 25 to 100. The results show that 
our method gives better solutions compared to [24] and [22] 
results. 

In brief, the results show that the new approach gives in 
general better solutions which can be then used for 
benchmarking purpose in the future. This demonstrates that a 
simpler approach that takes into account the advantages of 
other methods can lead to promising outcome besides having 
the potential to be adopted in tackling other combinatorial 
optimization problems. 
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APPENDIX A 
For the first median (p=1) Set X=Ø, Table 7 shows the calculations of the total enumeration by summing the entries in each column in Table 1, to obtain the 

values of Z(J,X). Finding i* =argmin iϵI { Z(J,X)}. The smallest value is 4772, i*=9 and X={9}. 

TABLE VII. THE TOTAL ENUMERATION (P=1) 

I 1 2 3 4 5 6 7 8 9 10 11 12 

Z 7816 7913 5855 6457 5784 5760 6936 5971 4772 6886 5576 6371 

For the second median (p=2), (1) applying Myopic approach by finding i* =argmin iϵI {Z(J, X U{i})}. Table 8 shows the results of this computation, to obtain the 
values of Z(J,X). The minimum sum value is 3145, corresponds i*=7 and X={9,7}. 

TABLE VIII. THE RESULTS OF THE MYOPIC APPROACH (P=2) 

X 9 9 9 9 9 9 9 9 9 9 9 9 

i 1 2 3 4 5 6 7 8 9 10 11 12 

Z 3845 3725 3943 4296 3696 4268 3145 3655 4772 3563 3858 4392 

According to the Myopic, we should proceed by adding a new third point (vertex/median) in the same manner, however, the new Hybrid Myopic-Neighborhood 
approach proposed applying the Neighborhood approach. By finding N1 and N2, where Ni is the set of demand nodes which i median is the closest open median 
facility to it. Here N1 ={3,4,5,6,9,11,12} and N2 ={1,2,7,8,10}. Then find k* =argminkϵNi{Z(Ni,{k})}; k*=9,7 and Xnew={9,7}. No median facility changed; Go to 
Next median (p).  

For the third median (p=3), (1) applying Myopic, by finding i* =argminiϵI {Z(J, X U{i})}. Table 9 shows the results of this computation to obtain the values of 
Z(J,X). The minimum value is 2641, corresponds i*=6 and X={9,7,6}. 

TABLE IX. THE RESULTS OF THE MYOPIC APPROACH (P=3) 

X 
9 9 9 9 9 9 9 9 9 9 9 9 

7 7 7 7 7 7 7 7 7 7 7 7 

i 1 2 3 4 5 6 7 8 9 10 11 12 

Z 2695 2770 2647 2689 2929 2641 3145 2845 3145 2661 2718 2765 

(2) applying Neighborhood, by finding N1, N2 and N3. Here N1 ={3,5,9,11,12} N2 ={1,2,7,8,10}, and N3 ={4,6}. Then find k* =argminkϵNi{Z(Ni,{k})}; 
k*=11,7,6 and Xnew={11,7,6}, the new value of Z is 2535. Median facility changed; go to step 4.  

finding N1 , N2 and N3. N1 ={8,10,11,12}, N2 ={1,2,5,7} and N3 ={3,4,6,9}. Then find k* =argminkϵNi{Z(Ni ,{k})}; k*=11,1,6 and Xnew={11,1,6} the new value 
of Z is 2438. Median facility changed; go to step 4. 

finding N1 ,N2 and N3. N1 ={8,10,11,12} N2 ={1,2,5,7} and N3 ={3,4,6,9}. Then find k* =argminkϵNi{Z(Ni,{k})}; k*=11,1,6 and Xnew={11,1,6} No median 
facility changed; Go to Next p median and so on. 
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