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Abstract—Due to its tasty and spicy fruit with nutritional 

qualities, chili is a demanding crop widely farmed around the 

world. Hence, it is essential to accurately determine the health 

status of chili for agricultural productivity. Recent years have 

seen impressive results in recognition fields due to deep learning 

approaches. However, deep learning models’ networks need an 

abundant data to perform well and collecting enormous data for 

the networks is time-consuming and resource-intensive. A data 

augmentation method is proposed to overcome this problem. It 

was applied to a small dataset of healthy and diseased chili leaf 

by utilizing geometric transformation method. Eventually, two 

deep learning models of CNN and ResNet-18 were evaluated 

using augmented and original datasets. From a series of 

experiment, it can be concluded that the trained deep learning 

models using original and augmented datasets perform better 

with an average accuracy performance of 97%. 

Keywords—Chili leaf; deep learning; data augmentation; 

geometric transformation 

I. INTRODUCTION 

Chili (Capsicum sp.) is an important spice from the family 
Solanaceae that originates from South and Central America [1]. 
It is a demanding crop and extensively cultivated in tropical 
Asia and equatorial America with a high genetic diversity due 
to its edible and pungent fruit with nutritional values [2]. 
Vitamin C, potassium, phosphorus fibre, antioxidants like 
vitamin A, and flavonoids like β-carotene, α-carotene, lutein, 
zeaxanthin, and cryptoxanthin are among the nutritional values 
contained in a chili fruit which have the ability to suppress 
several human cancers [3]. However, owing to the impact of 
fungus, bacteria, viruses, pests, and climate on the chili 
cultivation process, the chili itself is susceptible to a variety of 
diseases. These diseases make it difficult for chili to thrive, 
reducing the production and quality of the fruit. It is estimated 
that 60-70 percent of diseases and early disease symptoms are 
detected just on leaves [4]. Hence, it is necessary to identify 
chili diseases precisely and implement early preventive and 
treatment measures. 

Since the advent of deep learning, deep learning models 
have made significant advances in disease recognition [5]. 
Good performance from deep learning models normally needs 
a large number of parameters and enormous data to make these 
parameters operate properly. In order to do so, manual data 
collection and labelling [6] are required to get enormous data, 
which is resource-intensive and time-consuming. As a result, it 
can be hard to gather enough data to train the deep learning 
models, which significantly limits the accuracy of chili disease 
recognition. 

With small collection of datasets, several research [7-10] in 
the chili agricultural field has used the data augmentation 
method to increase the volume of datasets. The method 
generates data artificially via adding augmented images to the 
existing dataset through either oversampling or warping [11]. 
By using oversampling augmentation such as generative 
adversarial networks (GANs), augmented images with a low 
likelihood of occurring label (abnormal) are added to the 
original datasets, preventing a deep learning model from being 
biassed toward the majority label of images during the 
recognition process. Even though GANs have intriguing 
promise, they need a substantial number of initial original 
images in order to train and create an augmented image [12]. 
As a result, depending on the initial size of the original dataset, 
GANs may not be a viable option. 

In contrast, warping augmentations such as geometric 
transformation alter original images in such a way that their 
labels are maintained [13] , and this is accomplished without 
requiring a minimum amount of the original image to be 
present. Most of research [10, 13-15] that employed geometric 
transformation to augment original images concentrated on 
single transformation operation such as rotation, flipping, and 
scaling. To the best of the author knowledge, there has been 
very limited research on numerous fusions of geometric 
transformation operations in order to produce augmented 
images throughout the years. Hence, this research examines the 
data augmentation method known as a geometric 
transformation and its several transformation fusions on a 
small chili dataset. The augmented and original images are 
then fed into two deep learning models, Convolutional Neural 
Network (CNN) and Residual Network (ResNet-18), 
developed from scratch for chili disease recognition. 

The contributions of this research findings can be 
summarized as follows. According to the findings of this 
research, the optimal level of accuracy for recognising chilli 
diseases depends on the category of datasets used and the size 
of the deep learning model. The finding implies that the best 
optimal recognition accuracy came from small datasets with 
both original and augmented images that were fed to a larger-
sized model. This is in contrast to datasets with only original 
data (original datasets) and datasets with only augmented data 
(augmented datasets). All of the research experiments reveal 
that the deep learning models created from scratch are accurate 
to a maximum reported accuracy of 99.7%. 

The remainder of this paper is organised as follows. The 
original dataset of healthy and diseased chili leaf produced for 
this research is explained in Section II. Meanwhile, Section III 
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delves into the data augmentation method's transformation 
process, focusing on geometric transformation and its several 
transformation fusions. The architectures of deep learning 
models for feature extraction and recognition purposes are then 
discussed in Section IV. In Section V, the experimental 
procedures and testings used in this research to acquire the 
accuracy performance findings are described and the 
conclusion of this research is presented in Section VI. 

II. CHILI LEAF IMAGE DATASET 

In this research, the camera of an Oppo Reno 2 smartphone 
was used to capture images of chili leaf in the Batu Pahat state 
of Johor, Malaysia. Both types of leaf showed healthy and 
indications of bacterial spot disease. Only 1200 original chili 
leaf images were able to be acquired due to the low quantity of 
chilli crops in the research site. Of those 1200 images, 600 
showed healthy chili leaf, while the remaining 600 showed 
diseased chili leaf. The images are captured in auto-focus mode 
at a resolution of 3000 x 4000 pixels before being resized down 
to 224 x 224 pixels. 

III. GEOMETRIC TRANSFORMATION 

Data augmentation can be described as the mapping of any 
method that artificially increases the original dataset using the 
preservation label of transformations [13]: 

𝜑 = 𝑌 → 𝑍               (1) 

where Y  is the original dataset and Z  is the augmented 
dataset of Y . The original dataset that has been artificially 
increased is therefore expressed as: 

𝑌′ = 𝑌 ∪ 𝑍               (2) 

where Y′  stores the original dataset as well as the 
transformations described by φ . It is worth noting that the 
preservation label of transformations reflects that if an 
image  d is an element of class f , then  φ(d) is likewise an 
element of class f. Given that there is an infinite number of 
mappings φ(d) that fulfil the criterion of preservation label of 
transformations, this research assesses an augmentation 
method, namely the geometric transformation. 

Geometric transformation is a data augmentation method 
that alters the image's geometry by relocating the locations of 
each pixel's value [16]. The image's fundamental pattern of a 
class is preserved, but it has been shifted to a new place and 
alignment. This research explores the types of geometric 
transformation such as reflection, translation, rotation, 
shearing, scaling, and several fusions between them. 

Reflection [17] mirrored an image around the horizontal (x-
axis) or vertical ( y -axis). It assists users in increasing the 
amount of images of an original dataset by requiring the 
original image matrices' rows to be inverted. In a horizontal 
reflection, the left and right sides of the image are turned 
horizontally. As shown below, the fx  and fy  components 

indicate the pixel's present location after reflection across the 
x-axis, while the coordinates of the object's original position in 
the image are denoted by x and y: 

𝐴 = [
𝑓𝑥

𝑓𝑦
] = [

−1 0
 0 1

] . [
𝑥
𝑦]              (3) 

where 𝐴 is the process equation of reflection on 𝑡ℎ𝑒 𝑥-axis. 
In a vertical flipping, the image is turned upside down such that 
the 𝑦-axis is on top and the 𝑥-axis is on the bottom. The 𝑓𝑥 and 
𝑓𝑦  components indicate the pixel's present location after 

reflection across the y -axis, while the coordinates of the 
object's original position in the image are denoted by 𝑥 and 𝑦, 
where B is the process equation of reflection on tℎe y-axis: 

𝐵 = [
𝑓𝑥

𝑓𝑦
] = [

1 0
0 − 1

] . [
𝑥
𝑦]              (4) 

Then there is translation [17], which is the process of 
shifting an object in an image from one location to another. 
The translation can be performed in four directions: down, up, 
right and left, which helps prevent positional bias in a set of 
translated images. The fx  and fy  components indicate the 

pixel's present location after translation, while the coordinates 
of the object's original position in the image are denoted by x 
and y, where 𝐶 is the process equation of translation: 

𝐶 = [
𝑓𝑥

𝑓𝑦
] = [

𝑥
𝑦] + [

𝑇𝑥

𝑇𝑦
]              (5) 

Next, rotation [18] entails spinning the original image, 
either in the left or right direction, with angles ranging from 1o 
to 359o. The 𝑓𝑥 and 𝑓𝑦 components indicate the pixel's present 

location after rotation while the coordinates of the object's 
original position in the image are denoted by 𝑥 and 𝑦, where 𝐷 
is the process equation of rotation: 

𝐷 = [
𝑓𝑥

𝑓𝑦
] = [

𝑐𝑜𝑠𝜑 − 𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

] . [
𝑥
𝑦]            (6) 

Additionally, shearing [17] is the process of altering the 
shape of the original image in a single direction. Shearing can 
be done in either the x-axis or the y-axis direction. The fx and 
fy  components indicate the pixel's present location after 

shearing while the coordinates of the object's original position 
in the image are denoted by x and y. 

Consequently, (7) shows the shearing in the x -axis 
direction, whereas (8) shows the shearing in the y -axis 
direction. The E  and F  are the process equations of images 
sheared on the x-axis and the y-axis directions, respectively. 

𝐸 = [
𝑓𝑥

𝑓𝑦
] = [

1 𝑠ℎ𝑋
0 1

] . [
𝑥
𝑦]             (7) 

𝐹 = [
𝑓𝑥

𝑓𝑦
] = [

1 0
𝑠ℎ𝑌 1

] . [
𝑥
𝑦]              (8) 

In contrast, scaling [18], often known as zooming or 
cropping, is the process of enlarging and shrinking the original 
image in order to view more information. The operation of the 
process is to enlarge or shrink the image from a starting X, Y 
position to a destination X, Y. The fx  and fy  components 

indicate the pixel's present location after scaling, while the 
coordinates of the object's original position in the image are 
denoted by x and y,where G is the process equation of scaling. 

𝐺 = [
𝑓𝑥

𝑓𝑦
] = [

𝑋𝑠𝑐𝑎𝑙𝑒 0
0 𝑌𝑠𝑐𝑎𝑙𝑒

] . [
𝑥
𝑦]             (9) 
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An object in an original image that has been reflected, 
whether on the x -axis or the y -axis, can be translated by 
shifting the reflected image into a new location, resulting in a 
fusion of reflection and translation transformations. Given that 
H and I are the process equations of images reflected on the x-
axis and the y -axis, respectively, and then translated, the 
equations are as follows: 

𝐻 = 𝐴 ∪ 𝐶             (10) 

I = 𝐵 ∪ 𝐶             (11) 

This research also includes the fusion of reflection and 
scaling transformations. Given that J  and K  are the process 
equations of images scaled, and then reflected on the x-axis 
and the 𝑦-axis, respectively, the equations are as follows: 

𝐽 = 𝐺 ∪ 𝐴             (12) 

 𝐾 = 𝐺 ∪ 𝐵             (13) 

Additionally, this research also has a fusion of scaling and 
shearing transformations. Given that L and M are the process 
equations of images scaled, and then sheared on the direction 
of the x-axis and the y-axis, respectively, the equations are as 
follow: 

𝐿 = 𝐺 ∪ 𝐸             (14) 

𝑀 = 𝐺 ∪ 𝐹             (15) 

Finally, there can be more than two fusions of geometric 
transformations. Given that N and O are the process equations 
of images scaled, then reflected on the x-axis and the y-axis, 
respectively, and lastly followed by translation, the equations 
are as follows: 

𝑁 = 𝐺 ∪ 𝐴 ∪ 𝐶             (16) 

𝑂 = 𝐺 ∪ 𝐵 ∪ 𝐶             (17) 

IV. DEVELOPMENTS OF DEEP LEARNING MODEL 

In the leaf disease recognition domain, researchers have 
employed enhanced deep learning network architecture 
through various models [9-10] and applied them to chili 
disease recognition. This research employs two types of deep 
learning models: CNN and ResNet-18, which are developed 
from scratch using the Deep Network Designer [19]. An 
accuracy measure in [20] is used as a metric to evaluate the 

performance of these models. The architecture of each model is 
described in further detail in the following section. 

A. CNN Architecture 

Output, input, and hidden layers are the three primary 
layers of a CNN model [21]. It is common for the hidden layers 
to have convolutional with rectified linear unit (ReLU) 
function, pooling, and fully connected layers. The 
convolutional layer comprises a collection of filters that are 
used to identify features of varying sizes. Each filter convolves 
throughout an input image by moving horizontally for a certain 
amount of time, then moves vertically for another amount of 
time until the whole image has been convolved. A nonlinear 
activation function, which is the ReLU, is then applied to the 
convolution process' outputs. The layer which pools the neuron 
cluster outputs from the convolution layer into a single neuron 
is called the pooling layer. The pooled output is then given to a 
fully connected layer, which adds a bias vector and multiplies 
it by a weight matrix before feeding it to a softmax layer, 
which executes the classification operation (output). The 
architecture of a CNN model is shown in Fig. 1. 

B. ResNet-18 Architecture 

ResNet is suggested in [22] as a solution to the issues of 
performance deterioration and gradient vanishing caused by the 
depth expansion of an CNN model. Convolution layers, 
pooling layers, fully linked layers, softmax layers, and shortcut 
connections make up the architecture of a ResNet-18 model 
shown in Fig. 2. The shortcut connections represent the 
connections that travel between two layers. There are two main 
kinds of pooling layers in the ResNet-18 model architecture in 
this research. The first of these layers is the max-pooling layer, 
which chooses the maximum element from the area of the 
feature map covered by the convolution filter. For the second 
layer which is the average pooling layer, instead of picking the 
maximum element, it works by calculating the average value of 
the element from the region of the feature map. 

The building layer of ResNet-18 is seen in Fig. 3 with an 
input 𝑥  parameter and the desired output 𝐻(𝑥) . The block 
makes use of a shortcut connection that enables it to 
immediately learn the residual 𝐹(𝑥) = 𝐻(𝑥) − 𝑥  in order to 
generate the desired output [𝐹(𝑥) + 𝑥] , hence avoiding 
performance deterioration and gradient vanishing due to an 
excessive number of convolutional layers. 

 

Fig. 1. CNN Model Architecture. 
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Fig. 2. ResNet-18 Model Architecture. 

 

Fig. 3. The Building Layer of ResNet-18. 

The ResNet building layer in Fig. 3 employs the residual 
mapping function [23] described below , where σ: 

𝑃 = 𝑊2𝜎(𝑊1𝑥)             (18) 

denotes the activation function of ReLU. Through a second 
activation function of ReLU, the output y can be obtained: 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥            (19) 

A linear transformation of output y can also be obtained by 
multiplying 𝑊𝑠 to 𝑥 in (19) as shown below. 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑊𝑠𝑥           (20) 

V. RESULTS AND DISCUSSION 

The accuracy performance results for both the CNN and 
ResNet-18 models on original and augmented datasets of 
healthy and diseased chili leaf are acquired via the use of 
experimental setup and testing, which are detailed in the 
following section. 

A. Experimental Setup 

All of the models in the experiments run on MATLAB® 
with an Intel® CoreTM i3 processor operating at 3.4 GHz. The 
models' networks are fed data from three different categories of 
datasets: datasets with only original data (original datasets), 
datasets with only augmented data (augmented datasets), and 
datasets with both original and augmented data (original + 
augmented datasets). Only 1200 images from each category 
datasets are fed into the models in order to preserve the data 

balance. Therefore, 40 images from the original datasets are 
chosen to be augmented, consisting of 20 random images of 
healthy chili leaf and 20 random images of diseased chili leaf. 
During the augmentation process, which comprises of 15 
geometric transformations, 600 augmented images are 
produced and preserved in the augmented datasets, while the 
original images are discarded. For original + augmented 
datasets, 300 images of original and augmented healthy chili 
leaf, as well as 300 images of original and augmented diseased 
chili leaf, are used. Table I shows the specific information for 
all the datasets in this research. 

TABLE I. DATASETS INFORMATION 

Type of 

datasets 
*Ori_HC *Ori_DC *Aug_HC *Aug_DC 

Total 

images 

Original 600 600 0 0 1200 

Augmented 0 0 600 600 1200 

Original + 

Augmented 
300 300 300 300 1200 

*Ori_HC = Original images of healthy chili leaf 

*Ori_DC = Original images of diseased chili leaf 

*Aug_HC = Augmented images of healthy chili leaf 

*Aug_DC = Augmented images of diseased chili leaf  

When the CNN and ResNet-18 models are fed with a 
dataset, 70% of the data in the dataset is utilised to train the 
models, while the remaining 30% is used to test the models. 
During training, the hyperparameter settings [24] of both 
models, such as batch size, learning rate, maximum epoch, 
testing frequency and optimizer, are fixed such that the 
optimum performance of both models is equal. Table II 
summarises the fixed hyperparameter settings for both models. 

TABLE II. FIXED HYPERPARAMETER SETTINGS 

Hyperparameter setting Value 

Batch size 32 

Learning rate 0.0001 

Maximum epoch 30 

Testing frequency 50 

Optimizer 
Stochastic gradient descent with momentum 

(sgdm) 
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In each experiment, the accuracy performance of a 
developed model given an input dataset is determined using the 
following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂𝑑 =
𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂𝑟𝑖_𝐻𝐶 + 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂𝑟𝑖_𝐷𝐶

2
      (21) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐴𝑑 =
𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐴𝑢𝑔_𝐻𝐶 + 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐴𝑢𝑔_𝐷𝐶

2
    (22) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂𝐴𝑑 =
𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂𝑎𝑑_𝐻𝐶 + 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂𝑎𝑑_𝐷𝐶

2
  (23) 

*Od = Original datasets 

*Ad = Augmented datasets 

*OAd = Original + augmented datasets 

*Oad_HC= Ori_HC + Aug_HC 

*Oad_DC = Ori_DC + Aug_DC 

B. Experimental Testing 

Fig. 4 displays the geometric transformations that were 
performed on images of healthy and diseased chili leaf in order 
to create augmented images. The performed geometric 
transformations are based on the process equations in section 
III. 

The accuracy results obtained by developed models when 
applied to the three categories of datasets, which are referred to 
as original datasets, augmented datasets and original + 
augmented datasets are shown in Table III. 

Table III shows that after applying both models to the three 
categories of datasets, the accuracy performance achieved for 
each dataset varies. The CNN model produced accuracies of 
92.3%, 82.5%, and 94.2% for the original datasets, augmented 
datasets, and original + augmented datasets, respectively. 
Conversely, the ResNet-18 model achieved accuracies of 
99.2%, 91.8 %, and 99.7% for the original datasets, augmented 
datasets, and original + augmented datasets, respectively. In 
every experiment undertaken, it can be concluded that the 
ResNet-18 model outperforms the CNN model in terms of 
accuracy. 

Despite the fact that both models were trained on 600 
images per class, the average accuracy attained from the 
original datasets was only 95.8%. The geometric 
transformation method improved performance and yielded the 
best accuracy result of the two models, with an average 
recognition accuracy of 97% from both models that can be 
seen from original + augmented datasets. These findings 
indicate that the geometric transformation method improves the 
abilities of the models to generalise [25] by modifying the 
orientation of original image while retaining its original 
information. 

On the other hand, the accuracy results from the augmented 
datasets showed that if the models were only trained with 
augmented images, the accuracy dropped by 8.6% and 9.8% on 
average compared to the accuracy of the original datasets and 
the original + augmented datasets. This is due to the black 
pixel areas (background areas) in the augmented images 

created by geometric transformation and the absence of the 
attention mechanism [26] that is found in the original images. 
The deep learning models use more background areas of the 
augmented images as distinct regions in the training process, 
leading to lower accuracy performance. 

 

 

Fig. 4. Applied Geometric Transformation on Healthy and Diseased Chili 

Leaf Images. A) Reflection on tℎe x-axis. B) Reflection on tℎe y-axis. C) 

Translation. D) Rotation. E) Shearing on the x-axis. F) Shearing on the y-axis. 

G) Scaling. H) Reflection on tℎe x-axis and Translated. I) Reflection on 

tℎe y-axis and Translated. J) Scaling and Reflected on the x-axis. K) Scaling 

and Reflected on the y-axis. L) Scaling and Sheared on the x-axis. M) Scaling 

and Sheared on the y-axis. N) Scaling, Reflected on the x-axis and then 

Translated. O) Scaling, Reflected on the y-axis and then Translated. 

TABLE III. ACCURACY RESULTS OF DATASETS 

Type of datasets 
Accuracy given by 

CNN 

Accuracy given by 

ResNet-18 

Original datasets 92.3% 99.2% 

Augmented datasets 82.5% 91.8% 

Original+augmented 
datasets 

94.2% 99.7% 
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VI. CONCLUSION 

This research proposed the data augmentation method 
known as a geometric transformation and its several 
transformation fusions on a small chili dataset and tested on 
two deep learning models, CNN and ResNet-18. A clear 
improvement in accuracy performance results were seen for 
both models after adding augmented images into the original 
datasets. The accuracy of both models went up by 94.2% for 
the CNN model and 99.7% for the ResNet-18 model.This 
suggests that a combination of the original and augmented 
images can improve the accuracy performance of the models 
substantially. Further research also revealed that ResNet-18 
had the highest accuracy performance among both models 
when no data augmentation was used. 
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