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Abstract—Forecasting the ionosphere layer’s total electronic 
content (TEC) is crucial for its impact on satellite signals and 
global positioning systems (GPS) and the ability to predict 
earthquakes. The existing statistical-based forecasting models 
such as ARMA, ARIMA, and HW suffered from the TEC non-
stationarity nature, which requires algorithmic handling of the 
forecasting and the mathematical part. This study proposes a 
hybrid method that incorporates several components and is 
designated as Optimized Variational Mode Decomposition with 
Recursive Neural Network Forecasting (OVMD-RNN) to forecast 
TEC. Before using the Elman Network to train each component, 
Variational Mode Decomposition (VMD) was used to decompose 
the signal into its essential stationary components. In addition, 
the proposed method includes an optimization algorithm for 
determining the best VMD decomposer parameters. The GPS 
Ionospheric Scintillation and TEC Monitor (GISTM) at 
Universiti Kebangsaan Malaysia station have been used to 
evaluate the method based on collected datasets for three years, 
2011, 2012, and 2013. The experiment findings show that the 
model has successfully tracked all the up and down patterns in 
the time series. The results also reveal that VMD-based training 
might not always provide good results due to the residual signal. 
Finally, the evaluation focused on generating loss value and 
comparing it to the ARIMA benchmark. It showed that OVMD-
RNN had accomplished a maximum improvement percentage of 
ARIMA with a value of (99%). 

Keywords—Elman neural networks; forecast; hybrid model; 
optimized Variational Mode Decomposition; total electronic content 

I. INTRODUCTION 
The global navigation satellite system (GNSS) has become 

a critical system for providing a wide range of services and 
applications in the modern world. As a result, its dependability 
and performance are critical for various systems. The state of 
the ionosphere and its amount of influence by solar radiation 
and the geomagnetic field is one of the factors that affect 
GNSS radio communication transmissions [1]. 

Researchers utilise a quantitative metric to explain the 
effect of solar radiation on the total electron content (TEC) of 
the ionosphere layer. This variable represents the variability of 
solar radiation's impacts on the ionosphere layer, as well as it's 
geographically and temporally represented global positioning 
system (GPS) coordinates and time information. A dependable 
and accurate TEC forecasting can provide useful feedback to 
GPS receivers and improve numerous GPS-dependent 
services. Scientists created the International Reference 
Ionosphere (IRI) project to anticipate electron density, ion 

composition, electron and ion temperature, and vertical 
electron column density due to the relevance of ionosphere 
prediction. As a result, IRI is a collaborative international 
initiative of the Committee on Space Research (COSPAR) and 
the International Union of Radio-science (URSI) to build and 
refine a reference model for the Earth ionosphere's most 
critical plasma properties [2]. 

The main goal of majoring in TEC is to foresee any delays 
in GPS or communication signals in general, which could 
impair the operation of numerous devices. Earthquake 
forecasting is another application of measuring and evaluating 
TEC. Studies have shown that the ionosphere is influenced by 
the Sun's position and radiation and geomagnetic activity, and 
seismic activity in the Earth's crust and surface. These impacts 
can aid in predicting an earthquake several days ahead of time 
[3]. 

The challenging aspect of TEC prediction is its non-
stationarity nature. This has brought a limitation to the 
existing studies that uses statistical-based forecasting models 
such as ARMA, ARIMA, and HW [4]. Hence, researchers 
have tested the capability of neural networks in the general 
and recursive types of neural networks [5]. The latter is more 
preferred because of its feedback or memory aspect, which 
enables more flexibility in modelling the dynamics of the time 
series. However, RNN is not sufficient because of embedded 
non-stationarity in the time series, which requires algorithmic 
handling of the forecasting in addition to the mathematical 
part. VMD decomposition is a possible candidate for 
decomposing the original time series into various stationary 
components [6], However, it is still encountering an issue in 
deciding the optimal number of intrinsic mode components for 
better forecasting performance and obtaining optimal VMD 
components before forecasting is needed. Hybrid architecture 
is a good candidate approach through combining RNN with 
optimal VMD settings. With such a hybrid combination, the 
VMD will decompose the original time series into stationary 
components that are easier to be learned by the following 
RNN layer. 

The current forecasting models suffered from the TEC 
non-stationarity nature. This study describes a new method for 
forecasting the TEC time series that combines three 
components: decomposing the original signal to its stationary 
components using Variational Mode Decomposition (VMD), 
parameter optimization using Genetic Algorithm (GA), and 
forecasting using the Elman Neural Network, a well-known 
Recurrent Neural Network (Elman NN). 
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In the next Section II, related works on TEC forecasting 
and current approaches have been presented. In Section III, 
the proposed method has been described, i.e., OVMD-RNN 
and the methodology flow. The experimental works have been 
presented in Section IV as well as the results, whereas 
Section V gives conclusions. 

II. RELATED WORK 
TEC forecasting increases the knowledge of ionosphere 

space weather to give accurate warning and mitigation of TEC 
impacts. Due to the time-series nature of TEC forecasting, 
researchers prefer traditional time series forecasting models 
such as Auto Regression Moving Average (ARMA) and its 
derivatives [7]. The VMD-ARMA (VARMA) model is 
described in [8] as a non-stationary signal decomposition 
technique based on Variational Mode Decomposition (VMD) 
paired with Auto Regressive Moving Average (ARMA) to 
estimate ionosphere delay values 1-hour ahead. 

However, despite their large training requirements, some 
researchers have favoured non-linear models with a high 
approximation, such as Artificial Neural Networks (ANN) [9]. 
The TEC signal’s non-linear nature is one of the factors 
driving the researchers' interest in employing ANN models for 
TEC forecasting. [10] is one of the first researchers to use 
ANN for TEC forecasting, further aided by [11]. According to 
them, the capacity to use ANN to predict TEC in places where 
appropriate training data was absent has been demonstrated 
empirically. [11] used ANN with a single hidden layer in 
addition to input and output layers, as described by the 6:9:1 
configuration. 

According to the newest research, a single hidden layer is 
sufficient, and adding more layers necessitates more training 
without increasing accuracy. However, studies have shown 
that ANN does not outperform basic linear models like 
ARMA and Auto Regressive Integrated Moving Average 
(ARIMA) [1], which is essentially ARMA plus an integration 
component. Both ARMA and ARIMA have outperformed the 
IRI global reference model. ARMA's and ARIMA's 
superiority Holt-Winter models, which add a component for 
seasonable effect, were also seen compared to the global IRI 
model [12, 13]. Several scholars have made a comparison of 
ARIMA with ANN. Based on mean absolute error (MAE) and 
root mean square error (RMSE) values, the performance of the 
ARMA and ANN models are validated on both geomagnetic 
quiet and disturbed days [14]. For the ARMA and ANN 
models, forecasting errors are higher on geomagnetically 
disturbed days; when tested using MAE and RMSE, ANN 
outperformed ARMA. Hybrid models of ARMA and ARIMA 
were used in other investigations. For 1-hour ahead forecast of 
ionosphere TEC, [12] used hybrid ARIMA models based on 
Wavelet Transform (WT) and Empirical Mode Decomposition 
(EMD). 

A hybrid GA and ANN model was suggested by [15] to 
forecast 1-hour vertical TEC for one station in China. The 
Backpropagation Neural Network (BP) and the GA approach 
train parameters in a two-step process. GA tunes the weights 
and biases of the original neural network in the first stage. 
Model's weights and biases are recorded as a lengthy 

chromosome. The fitness function expressed as a prediction 
error is used to evaluate each chromosome's performance in 
the population. A Wavelet Neural Network (WNN) is utilised 
to model the ionosphere time series in Iran by [16]. WNN is a 
hybrid of wavelet theory and neural network theory. One of 
the advantages of TEC modelling with WNN is its ease of use 
and speed of computation. 

More recent studies have used machine learning 
algorithms for GPS TEC forecasting. The performance of a 
Gaussian kernel-based machine learning algorithm was 
compared to that of ANN and ARMA in  [1]. The outcomes of 
their work have demonstrated dominance over them. 

the authors in [17] employed a hybrid model in which the 
TEC time series was divided into its stationary components 
using VMD. Then a kernel extreme learning machine was 
used to anticipate the data. Kernel extreme learning machines 
were compared to ANN in this study, and the results show that 
the former is superior in forecasting accuracy. The idea of 
combining VMD with neural networks can be found in older 
time series forecasting research. Integration of VMD and 
generic regression neural networks is the focus of [17]. 

Another example is [18], who used VMD in conjunction 
with an extreme learning machine to model the Monthly 
Precipitation Time Series. Overall, researchers have attempted 
to forecast TEC time series in various locations for 
accomplishing needed actions such as handling delays of 
satellite signals GPS and forecasting earthquakes. 

III. PROPOSED METHOD 
This study proposes a time series forecasting model using 

a VMD, and ENN hybrid architecture called an Optimized 
Variational Mode Decomposition with Elman Recursive 
Neural Network Forecasting (OVMD-RNN). It contains the 
following contributions. 

• It develops a framework for TEC forecasting based on 
decomposition, optimization and ENN. 

• It provides GA for finding the optimal IMF 
components K and the correlation coefficients 𝛼  for 
VMD. 

• It integrates the developed OVMD by GA with ENN 
for forecasting the TEC. 

• It evaluates the hybrid framework based on our data 
and compares it with recent models in the literature. 

A. Preliminary 
1) Variational mode decomposition: The application of 

VMD is the initial step in the approach. The purpose of VMD 
is to decompose the TEC signal into bandwidth-limited 
components of varying frequencies. The decomposition helps 
eliminate the signal's random behavior and makes it more 
forecastable. Before VMD, researchers discovered various 
decomposition techniques, including Fourier transforms, 
wavelet transforms, and EMD [19]. However, research has 
shown that VMD outperforms EMD. 
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In the VMD algorithm [20], the real-valued input signal is 
viewed as an ensemble of sub-signals (modes) with a narrow 
band of frequencies around a few light frequencies. The VMD 
algorithm is represented as a variational problem with 
constraints: 

𝑚𝑖𝑛
{𝑢𝑘},{𝑤𝑘}

  �∑  𝑘 ∥∥∂𝑡 ��𝛿(𝑡) + 𝑗
𝜋𝑡
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 s.t ∑  𝑘 𝑢𝑘 = 𝑓
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where, 𝑢𝑘 denotes variational model components, and 𝑤𝑘 
are the corresponding centres of each variation model 
component. 

The optimization is solved using Lagrangian multiplier 
𝜆 and quadratic penalty 𝛼 as follows; 
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The augmented Lagrangian equation is then solved using 
the algorithm of alternate direction multipliers [20]. 

The values of the number of components K and penalty 𝛼 
play a significant role in VMD decomposition performance 
[21]. Specifically, a large value of K indicates interferential 
decomposition, whereas a small value indicates incomplete 
decomposition. As a result, the best values for K and 𝛼 must 
be determined. Therefore. The problem formulation is being 
reformulated as follows. 

Assume y(t) represents a TEC time series. The goal of this 
study is to predict its value for the future time horizon, Tf. 
Because of its non-stationary aspect, first, it must be 
decomposed using the type VMD procedure before 
forecasting. The result of the decomposition is K modes that 
are expressed as follows: 

∑  𝐾
𝑘=1 𝑢𝑘(𝑡) = 𝑦�               (3) 

The decomposition’s objective function is formulated to 
maximizes the correlation between intrinsic components Corr 
such as. 

𝐶𝑜𝑟𝑟 = 𝐶𝑜𝑣�𝑦(𝑡),𝑦�  (t)�
𝜎�𝑦(𝑡)�𝜎�𝑦�(𝑡)�

               (4) 
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            (5) 

2) Genetic algorithm: A genetic algorithm (GA) is a 
stochastic searching algorithm with heuristic knowledge. It 
provides a way to find the optimal value of an objective 
function based on random generating of candidate solutions, 
heuristic interaction between them, and selecting elites from 
one generation to provide the offspring representing the next 
generation until convergence or meeting the stopping criterion 
[22]. GA is inspired by the theory of survival of the fittest that 
was proposed by Darwin [23]. The GA pseudocode is given in 
Algorithm 1. 

Algorithm 1 GA Optimization 

Input  
        S //number of solutions in generation 
        N//number of generations  
       Objective function  
Output  
        Best solution  
Start 
1- Initiate first population 
2- Current generation =first population 
3- Evaluate current generation 
4- Select elites (using roulette wheel) 
1- Perform crossover ((using uniform crossover) and mutation 
(using probability) 
2- Combine solutions  
3- if not meeting stopping criterion go to 3  
4- best solution =solution of best fitness value of the last 
generation  
End 

GA was employed to optimize the objective function of 
the decomposition Equation 5, and the two variables K and α 
represent the chromosome. Algorithm 1 shows the steps of 
GA to obtain the best K and α values. The first step consists of 
randomly generating the initial population in this work. The 
population is evaluated based on the objective function stated 
in Equation 5. Then, a roulette wheel selection mechanism is 
applied to select the parent that will undergo the crossover 
operation, used within a specific probability. 

Similarly, the mutation operator is performed on the new 
solution within a pre-defined probability to maintain the 
diversity of the population. After that, the produced population 
will replace the worst solutions of the previous generation. 
These steps are repeated till meeting the stopping criterion. 
Finally, GA will return the best solution (i.e., best K and α 
values). 

3) The Elman neural network: An Artificial Neural 
Network, or ANN, is a massively parallel distributed 
processing system made up of densely interconnected neural 
computing parts that can learn, gain knowledge and make it 
available for use. ANN architecture is defined by the network 
of neuron connections, the training or learning mechanism for 
calculating the connection weights, and the activation 
function. 

Even though the Multilayer Perceptron neural network 
(MLP) can solve a wide range of complex issues, it can only 
map the input space to the output space in a static way. Elman 
Neural Network (ENN) [24] is a simple recurrent neural 
network with dynamic characteristics. The structure of Elman 
RNN is identical to a three-layered MLP, except for an 
additional layer called a context layer, which is engaged in the 
former. In Elman RNN, the hidden neurons are activated by 
both the input and context neurons. The hidden neurons feed 
forward to activate the output neurons while also feeding back 
to activate the context neurons. As a result, the context layer 
allows ENN to respond to dynamism. 

The ENN is trained using the BP algorithm, as shown in 
Equation 6 [25]. 

𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝜇 ∂𝐸(𝑡)
∂𝑊(𝑡)

              (6) 
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where, 𝜇 denotes the learning rate. 

A conceptual diagram of Elman RNN is presented in 
Fig. 1. 

 
Fig. 1. The Structure of ENN [26]. 

B. Methodology Flow 
As shown in Fig. 2, the developed methodology of the 

forecasting method consists of three phases after pre-
processing: 1- Optimized VMD Decomposition, 2 - Elman 
RNN training, and 3 - forecasting. The phases are conceptual, 
but practically they have an interconnected nature. The 
optimization requires calculating the loss function to rank 
candidate solutions. On the other hand, the optimal evaluation 
setting is used for the VMD decomposition. Next, the result is 
used for ENN training and the trained ENN is used for 
forecasting. 

1) Phase 1: Optimized VMD Decomposition: As is 
presented in Fig. 2, in the first phase, the data is entered into 
the optimized VMD decomposer, which is responsible for 
dividing the time series into various IMF components with the 
assistance of a genetic algorithm that optimizes K and 𝛼 
values. 

2) Phase 2: ENN Training: After decomposing the TEC 
time series into its IMF components in the first phase, the IMF 
passed to the recursive neural networks (ENN) to train the 
ENN model. The training phase comprises of two parts: the 
first part is the backward path that takes an existing neural 
network topology and calculates weight changes based on the 
gradient of the error. The second part is the forward path that 
uses current weights to propagate. 

3) Phase 3 Forecasting: Once the ENN is trained, the 
testing phase (forecasting) is used. It uses the optimized VMD 
and trained ENN for forecasting the IMFs and after that a 
summation of the forecasted time series is used to forecast the 
overall time series. Such an evaluation includes providing the 
discrepancies between the predicted values and the actual 
values. 

C. Training and Testing Flow 
The interaction between the training phase and the testing 

phase is given in Fig. 3. As it is shown in the figure, the data 
comes as s stream, and it is partitioned into two parts: the 
historical part 𝑤ℎ and the future part 𝑤𝑓. The data in 𝑤ℎ was 
used for training, while the data in 𝑤𝑓  was for performance 
evaluation. For the testing, the predicted value was compared 
with the original value stored in 𝑤𝑓  and used to calculate 
testing errors. 

D. Data pre-processing and partitioning 
Pre-processing comprises data visualization and 

determining whether missing records exist. In the case of 
missing records, an average window over multiple days is 
used to replace the missing value in one day. After that, the 
data were partitioned. The purpose is to divide the data into 
training and testing data. The training data will come from the 
past, whereas the testing will occur in the future, forecasting 
time intervals. The signal and the duration of the time window 
are inputs. The output is a matrix consisting of training and 
testing data. The data will be passed through the time window, 
and samples will be added. The final sample is a prediction 
based on these samples. Following data collection, the data is 
divided into two categories: training and testing. 

 
Fig. 2. A General Methodology Flowchart in TEC Forecasting. 

X1          X2    Xit 

……. 

∑ 

F1 

Input Layer 

……. 

∑ ∑ 

Wi         
 

bj 

F2 Fm 

Wrj        

𝑭𝑭 𝟐𝟐
(𝒌𝒌
−
𝟏𝟏)

   
   

𝑭𝑭 𝟏𝟏
(𝒌𝒌
−
𝟏𝟏)

   
   

𝑭𝑭 𝒎𝒎
(𝒌𝒌

−
𝟏𝟏)

   
   

Recurrent 
 

𝑭𝑭𝟏𝟏(𝒌𝒌)      𝑭𝑭𝟐𝟐(𝒌𝒌)      𝑭𝑭𝒎𝒎(𝒌𝒌)      

∑ 

F0 

𝒀𝒀𝒌𝒌+𝟏𝟏 

Wi0         
 
b0 

𝒁𝒁−𝟏𝟏 𝒁𝒁−𝟏𝟏 𝒁𝒁−𝟏𝟏 

Hidden 
 

Output 
 

……. 

485 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 7, 2022 

 
Fig. 3. Training and Testing Phases of TEC Forecasting. 

E. Data Description 
Data are recorded by the GPS Ionosphere Scintillation and 

TEC Monitor (GISTM) with a dual-frequency receiver 
GSV4004B at UKM station, geographic coordinate: 2.55 °N, 
101.46 °E. At the L1 (1575.42 MHz) and L2 (1227.6 MHz) 
frequency bands, the GSV4004B receiver can track up to 11 
GPS satellites. Amplitude and phase are monitored at 50 Hz, 
while code/carrier divergence (C/No) is sampled at 1 Hz for 
each satellite. The GPS Ionospheric Scintillation and TEC 
Monitor (GISTM) shows ionospheric delay over Universiti 
Kebangsaan Malaysia (UKM) station from 2011 to 2013. 

F. Parameter Setting 
GA optimization has been employed to find the best values 

of K and 𝛼 . Considering that the optimization process 
consumes considerable computational time, only a few 
numbers of individuals were permitted to participate. For GA, 
the number of iterations is set to 6, the number of individuals 
to 5, the searching range for K between 2 and 16, and the 
searching range for  𝛼  between 1,000 and 10,000 for GA 
optimization. The parameters are shown in Table I. 

The proposed method has also been compared to ARIMA 
using the parameters mentioned in Table II. The observation's 
lag time is set to 30, the degree of difference is set to 2, and 
the moving window size is set to 15. 

TABLE I. PARAMETER SETTING FOR GA 

Dataset No. of 
iterations 

Crossover 
prob. 

Mutation 
prob. 𝑲 𝜶 

2011- 
2012 6 0.5 0.3 [2,16] [1000,10000] 

2013 10 0.5 0.3 [2,16] [1000,10000] 

TABLE II. ARIMA PARAMETER SETTINGS 

Parameter name  Value  

Number of lag observations (p) 30 

Degree of differencing (d) 2 

Moving average window size 15 

For ENN, the number of epochs was set to 6 and 10 for 
2011 & 2012 and 2013, respectively. The number of neurons 
in the first layer was set to 60; the second layer was set to 30. 
The time window lag was set to 30. The parameter settings are 
shown in Table III. 

TABLE III. ELMAN RNN PARAMETER SETTINGS 

Parameter name  2011 &2012 2013 

Number of epochs 6 10 

Neurons present in the First layer 50 50 

Neurons in the hidden layer 30 25 

Time-window (time lag) 30 30 

G. Performance Metrics 
The evaluation is based on two measures: 

The first one is the mean squared error (MSE) which is 
given to evaluate the prediction of one time series, and is 
given by Equation 7. 

𝑀𝑆𝐸 = 1
𝑛
� (𝑌𝑡 − 𝐹𝑡)2

𝑛
𝑡=1               (7) 

where, 𝑌𝑡 denotes the ground truth value of the time series 
at moment 𝑡, and 𝐹𝑡  denotes the predicted value of the time 
series. 

The second metric is the improvement percentage from 
one model to another, and it is used to evaluate the relative 
improvement of proposed model over the benchmark as 
shown in Equation 8. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = �𝑀𝑆𝐸𝑂𝑢𝑟−𝑀𝑆𝐸𝑅𝑀𝑆𝐸
𝑀𝑆𝐸𝑅𝑀𝑆𝐸

�             (8) 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 
This section presents the obtained results from the 

experiments conducted in this study and analysis the results of 
the developed OVMD-RNN and its comparison with the 
benchmark ARIMA. 

For the 2011 and 2012 datasets, 21 months were used for 
training and the remaining three months for testing. Fig. 4 
depicts the original TEC time series for 2011 and 2012 before 
applying the proposed model, and the non-stationarity (the 
frequency varies over time) can be seen. Fig. 5 shows the 
testing data’s TEC time series for three consecutive months. 

For further evaluation, the proposed model has been tested 
on another dataset for the year 2013. Fig. 6 depicts the original 
TEC time series for 2013 before applying the proposed model. 
Fig. 7 is the TEC time series for two consecutive months for 
the testing data. 
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Fig. 4. TEC for 2011 and 2012 Dataset. 

 
Fig. 5. TEC Time Series for Three Consecutive Months for Testing Data. 

 
Fig. 6. TEC for 2013 Dataset. 

 
Fig. 7. TEC Time Series for Two Consecutive Months for Testing Data. 

A. VMD Decomposition 
1) K=5: Firstly, the TEC time series for 2011-2012 has 

been decomposed into its components using VMD and 
analyzed into five IMFs, which representing the optimal 
number of K components obtained through GA optimization, 
as shown in Table IV. Fig. 8 shows K=5 components for the 
test TEC time series data part. 

2) K=7: As shown in Fig. 9, the testing TEC time series 
for 2013 was decomposed into its components and analysed 
into seven IMFs representing the optimal number of K 
components obtained through GA optimization. 

B. Forecasting 
Fig. 10, for example, displayed the visualisation of mode 2 

forecasting and their comparison to real values. The 
visualization of mode 4 forecasting and its comparison to real 
values are depicted in Fig. 11. The visualisation shows that the 
proposed model OVMD-RNN can follow all the up and down 
peaks in the original data. 

TABLE IV. THE BEST K AND 𝛼 VALUE BY THE GA 

Best K Best  𝜶 Algorithm 

5 9948 GA 

 
Fig. 8. VMD Decomposition for K=5 for Testing Data. 
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Fig. 9. VMD Decomposition for K=7 for Testing Data. 

 
Fig. 10. Real Values Vs Prediction of VMD Mode 2. 

 
Fig. 11. Real Values Vs Prediction of VMD Mode 4. 

 
Fig. 12. A Comparison between Real Values, OVMD_RNN and ARIMA for 

K = 5. 

The forecasting results have been presented in Fig. 12. It is 
observed from the figure that in the three models, the 

proposed model has provided better forecasting compared 
with ARIMA, which has shown a lack of capturing the trend 
and the pattern in the original time series. Furthermore, it has 
been discovered that the proposed model correctly predicted 
the four peaks in the original data, which show a level of 40 in 
October and November and a little lower level in late 
November and early December. 

 
Fig. 13. A Comparison between Real Values, OVMD_RNN and ARIMA for 

K = 1 (without VMD). 

Fig. 13 presented the forecasting results for the years 
2011&2012 in the last three months. Without applying VMD 
(K=1), observing Fig. 12, 13, it is noticed that K=1 has better 
tracking than a higher loss at the training. VMD interprets it  
has caused the removal of an essential part of the signal, 
which has led to missing by the neural network while training 
for K= 5, when K=1, this has not been observed because this 
part was preserved when training by ENN. This provides that 
VMD based training might not always provide good results 
due to the residual signal that is deleted by this process. 

For further evaluation, the forecasting behavior in the year 
2013 is presented for the proposed model and its comparison 
with ARIMA. 

As is shown in Fig. 14 and 15 increasing the value of K 
has enabled better prediction. Furthermore, the model has 
successfully tracked all the up and down patterns in the time 
series, ranging between 15 and 30. 
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Fig. 14. A Comparison between Real Values, OVMD_RNN and ARIMA for 

K = 7. 

 
Fig. 15. A Comparison between 2013 Real Values, OVMD_RNN and 

ARIMA for K = 1 (without VMD) and K = 7. 

Fig. 14 presented the forecasting results for the year 2013 
in the last two months because the first months have been used 
for training. It is observed from the figure that the proposed 
model has provided better forecasting compared with ARMIA, 
which has shown a lack of capturing the trend and the pattern 
in the original time series. In addition, it is noticed that the 
proposed model has successfully forecasted all the up and 
down peaks in the original data, which appears with the level 
of 10 for October and at the end of November with the level of 
35. 

Fig. 15 presented the forecasting results for the year 2013 
in the last two months. Without applying VMD (K=1), the 
model can’t track the trend of the time series. 

C. Evaluation 
The evaluation was focused on creating the loss value and 

comparing it to the ARIMA benchmark. 

1) Loss value: The loss value in the training phase is 
presented in Fig. 16, which shows that K=1 has the highest 
loss value than K=5, which is the value resulting from GA. In 
addition, for leading the optimality of GA. 

Observing Fig. 13, it is noticed that K=1 has better 
tracking than a higher loss at the training. In K=5, the VMD 
process removed some important parts and caused some 
missing during Elman training. The result shows VMD-based 
training might not always provide good results due to the 
residual signal deleted by the process. 

The loss value in the training phase is presented in Fig. 17 
for the dataset 2011-2012, which proves the superiority of the 
proposed forecasting model when the value of K is selected 
optimally. 

Regarding the loss value K=5, the proposed model has 
been compared to ARIMA, as shown in Fig. 17. The proposed 
approach has a smaller error or loss value than ARIMA. The 
results demonstrate that it is superior. 

To summarize the performance, the overall loss value K 
=1 has been presented, which indicates VMD decomposition 
and K= 7, which suggests the result of GA. 

In Fig. 14 and 15, it is observed that increasing the value 
of K from 1 to 7 has enabled a lower value of loss than 
ARIMA, which proves the superiority of the proposed 
forecasting model when the value of K is selected optimally. 

 
Fig. 16. The Loss Value of OVMD-RNN for When K =1, K=5. 

 
Fig. 17. The Loss Value of OVMD-RNN Vs ARIMA. 
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2) Accuracy: In terms of the loss value K = 5, OVMD-
RNN has been compared to ARIMA, as shown in Fig. 12, 
Because proposed approach has a smaller error or loss value 
than ARIMA, the results demonstrate that it is superior. The 
improvement percentage is 99% as calculated based on 
Equation 9. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = �𝑅𝑁𝑁−𝐴𝑅𝐼𝑀𝐴
𝐴𝑅𝐼𝑀𝐴

� = �0.05−12.47
12.47

� = 0.99            (1) 

TABLE V. OVERALL PREDICTION COST FOR ARIMA AND OVMD-RNN 
BASED ON DIFFERENT YEARS AND VALUES OF K 

 2011&2012 2013 

K 1 5 1 7 

ARIMA 6.92 12.04 10.14 7.79 

OVMD-RNN 8.12 0.03 24.72 4.29 

Improvement percentage  0.17 99% %143 %44 

From Table V, K = 1 indicates that VMD has not been 
applied. So, the non-stationary time series were not divided 
into stationary components but were predicted directly using 
ENN and ARIMA. For K = 5 and K = 7, these values were 
obtained by implementing GA on both times series 2011-2012 
and 2013, respectively, to find the best K value. These K 
values provide the lowest loss value. 

D. Observations 
From the results obtained, it has been observed that TEC is 

a non-stationary time series making it challenging to forecast. 
Moreover, VMD is a good candidate for decomposing TEC 
time series into stationary components. Still, sometimes VMD-
based training might not always provide good results due to the 
residual signal. 

The proposed model (OVMD-RNN) does not implement 
multi-time series collected from different areas to be 
generalized. Therefore, extending the model to accept multi-
time series at one time will enable more accurate forecasting; 
this can be applied for future work. 

V. SUMMARY AND CONCLUSION 
This paper has created a novel forecasting approach for the 

TEC time series. VMD is used to split the original TEC time 
series into necessary stationary components, considering the 
non-stationarity of the data and the need to include non-linear 
knowledge for forecasting. Each essential TEC component 
was trained and forecasted using an Elman RNN. In addition, 
the method consists of an optimization algorithm for 
determining the best VMD decomposer parameters. The VMD 
parameters, K and 𝛼 selection, utilized the GA optimization 
method. The GPS Ionospheric Scintillation and TEC Monitor 
(GISTM) with a dual-frequency receiver GSV4004B at the 
UKM station evaluated our obtained dataset for three years, 
2011, 2012 and 2013. The evaluation was focused on creating 
the loss value and comparing it to the ARIMA benchmark. It 
showed that the proposed progressive technique with two 
decomposition values for K = 4 and 5 and a significant 
reduction of the loss value was superior. Future research will 
develop multi-dimensional TEC forecasting from multiple 
places within the same geographic region. 
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