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Abstract—Automatic detection of epilepsy based on EEG 
signals is one of the interesting fields to be developed in medicine 
to provide an alternative method for detecting epilepsy. High 
accuracy values are very important for accurate diagnosis in 
detecting epilepsy and avoid errors in diagnosing patients. 
Therefore, this study proposes the Enhanced Gradient Boosting 
Machines Fusion (Enhanced GBM Fusion) for automatically 
detecting epilepsy based on electroencephalographic (EEG) 
signals. Enhanced part of GBM Fusion is the pattern of majority 
voting evaluation based on the fusion of five-class and two-class 
GBM, called Enhanced GBM Fusion. The raw signal is extracted 
using Discrete Fourier Transform (DFT) and Discrete Wavelet 
Transform (DWT), then feature is selected by using Genetic 
Algorithm (GA) before classification. This proposed method was 
evaluated using five classes (normal in open eyes, normal in close 
eyes, interictal with hippocampal, interictal, and ictal) from the 
University of Bonn. The experimental results show that the 
proposed Enhanced GBM Fusion can increase the accuracy of 
GBM Fusion of 99.8% to classify five classes of epilepsy based on 
EEG signal. However, the performance of Enhanced GBM 
Fusion cannot be generalized to other datasets. 

Keywords—Epilepsy; enhanced gradient boosting machine 
fusion; electroencephalographic (EEG) signal; discrete wavelet 
transform (DWT); discrete fourier tansform (DFT); genetic 
algorithm (GA) 

I. INTRODUCTION 
Globally, WHO estimates that about five million people are 

diagnosed with epilepsy yearly. Low and middle-income 
countries are nearly three times more than high-income 
countries to be diagnosed with epilepsy [1]. This is feasible due 
to the increased risk of endemic conditions, variations in 
medical infrastructure, the availability of preventive public 
health programs, and accessible healthcare services. 

Epilepsy is a chronic medical disorder with clinical 
symptoms and signs due to intermittent brain function 
disorders. It occurs due to abnormal or excessive electrical 
discharge from neuron paroxysms of various etiologies. 
Generally, epilepsy is attended in unpredictable, unprovoked 
recurrent seizures that affect a variety of mental and physical 
functions. Seizure is a spontaneous electrical hyperactivity 
activity of a group of nerve cells in the brain and is not caused 

by an acute brain disease. “Seizure” in epilepsy is an incurable 
disease. However, about 70% of people with epilepsy can be 
free from seizures with proper treatment. Neuroscientists 
generally predict seizures based on an abnormal 
electroencephalographic (EEG) pattern in the brain. An EEG is 
a device that records activity in the brain, including seizures. 

A method with high accuracy is needed to detect whether 
the ongoing seizure is an epileptic seizure or a fake seizure. 
Visual examination of the EEG signal is necessary to 
determine the occurrence of epilepsy. Unfortunately, checking 
the EEG signal manually takes a long time, and sometimes the 
results are missed or false-alarm detections [2]. Automatic 
epilepsy detection has been studied since the 1970s in the form 
of literature in the hope of helping the medical world in 
detecting automatic epilepsy based on EEG data [3]. In 
general, automatic epilepsy detection can be categorized into 
two groups which are conventional approaches and Deep 
learning approaches. 

Misdiagnosis of epilepsy is a fatal error because it can lead 
to inappropriate treatment and death. Therefore, a high 
accuracy value is essential in the automatic detection of 
epilepsy. The automatic detection of epilepsy from five classes 
of EEG data has been tried using various approaches, but not 
many of them achieve accuracy above 98%. This study 
presented a method for automatic epilepsy detection based on 
the motivation that the method can classify five classes of EEG 
signals with greater than 98 percent accuracy. This study 
utilized a combination of Discrete Fourier Transform (DFT) 
and Discrete Wavelet Transform (DWT) for feature extraction 
in the frequency and time-frequency domains. The output from 
the feature extraction by DFT and DWT is extracted again 
using a statistical feature and crossing frequency features. To 
obtain the best features that would be used for classification, 
feature selection based on a Genetic Algorithm (GA) is used in 
this study. This study proposes a method to enhance GBM 
Fusion that was previously used by Sunaryono et al. [4]. 

The distinguish of  this study from the study conducted by 
Sunaryono et al. [4] is that this study proposes the Enhanced 
Gradient Boosting Machine Fusion, where the method will 
focus more on errors that occur in the classification results. 
Errors in this classification will be evaluated to see if there is a 
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pattern in the errors. The pattern will be applied to the 
Enhanced Gradient Boosting Machine Fusion classification for 
higher accuracy. The workflow for the proposed method can be 
seen in Fig. 1. By using the proposed method, this study hopes 

to have good accuracy results (above 98%) and the study also 
hopes to contribute to helping the medical world to detect 
epilepsy automatically so that people with epilepsy can be 
diagnosed accurately and quickly. 

 
Fig. 1. Flowchart of the Proposed Method. 

The remaining sections are organized as follows. Section II 
provides related works. The Section III outlines the materials 
and methods utilized in this study. In Section IV, the 
experimental result and discussion are presented. In Section V, 
the conclusion is reached. 

II. RELATED WORK 
This section provides literature study based on the 

University of Bonn dataset: Wu et al. [5] carried out their 
research using the Complete Ensemble Empirical Method 
(CEEMD) to decompose signal data into 12 IMFs and one 
residue. XGBoost was used as a classification method where 
the results detected an accuracy higher or equivalent to 99% in 
12 cases of two and three classes. Ullah et al. [6] use a 
Pyramidal One-Dimensional Deep Convolutional Neural 
Network (P-1D-CNN) as an architecture to perform feature 
extraction to classify three classes. To improve accuracy, the 
author added majority voting on the architecture, which has 
significantly increased the accuracy of P-1D-CNN. This 
architecture yields an accuracy of 99.1 ± 0.9% in the two and 
three-class cases. 

Türk and Özerdem [7] performed Continuous Wavelet 
Transform (CWT) as a feature extraction method on EEG 
signals to get a time-frequency 2-D scalogram image. The 
scalogram images were used as input for CNN classification. 
The classification result with the highest accuracy was 99% for 
three classes and 93.6% for five classes.  Wang et al. [8] 
propose the Discrete Wavelet Transform (DWT) method as a 
feature extraction method and uses the Gradient Boosting 
Machine and Grid Search Optimization to optimize the 
hyperparameters. The study resulted in an accuracy of 96.5% 
for classifying three classes using a dataset from the University 
of Bonn. 

Sunaryono et al. [4] also suggested using Discrete Wavelet 
Transform (DWT) in automatic epilepsy detection. Gradient 
Boosting Machine fusion (GBM Fusion) method is proposed to 
increase the accuracy of classifying three classes to 99.45%. 
The proposed fusion combines the results of the classification 
of 2 classes and three classes using majority voting. 

Singh and Dehuri [9] produced 100% accuracy in two and 
three classes case. Also, they produced 93.33% in five classes 
case with a hybrid technique using DWT-based Singular Value 
Decomposition fuzzy k-nearest neighbor (SVD-FkNN) 
classifier. On a substantial scale, DWT-based SVD 
decomposes the input EEG signals into sub-bands. The 
extracted feature is classified using several 'k' values for the 
FkNN classifier. 

Zhao et al. [10] implemented a 1-D DNN based on CNN 
for robust automatic epilepsy detection that consisted of three 
convolutional blocks and three fully connected layers. In 
addition, each convolutional block consists of five distinct 
layer types. The proposed method achieved an accuracy of 
93.55% in the five classes problem. Zhao et al. [11] continue 
the research with proposed a method called SeizureNet based 
on CNN that utilizes two convolutional neural networks to 
extract features and a fully connected layer to learn high-level 
features. This method has achieved 95.84% accuracy in five 
classes case. 

Sukriti et al. [12] used two entropy features, called refined 
composite multi-scale dispersion entropy (RCMDE) and multi-
scale dispersion entropy (MDE) to detect seizure from EEG 
data with one way analysis of variance (ANOVA) as a feature 
selection method before being classified by Support Vector 
Machine (SVM). The best accuracy achieved is 96.67% in 
three classes case using RCMDE. 

Zhang et al. [13] modeled a multi-scale non-local (MNL) 
network, 1 D CNN, to identify epilepsy automatically. Signal 
pooling and multi-scale non-local layers were added to boost 
CNN performance. The MNL network achieved 98.64% 
accuracy in classifying three classes case. Fast Fourier 
Transform (FFT) and PCA neural network (PCANet) are 
utilized by Li and Chen [14] as feature extraction method. 
From EEG signal, a frequency matrix was created using FFT, 
and the feature was extracted using PCANet. The extracted 
feature is classified using SVM. The proposed method achieves 
its best accuracy in classifying three classes case with a 99.6% 
accuracy score. 
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III. MATERIAL AND METHOD 

A. EEG Dataset 
The data used is data that has been collected by the 

Department of Epileptology University of Bonn (UoB), 
Germany, which was obtained by Andrzejak et al. [15]. This 
data consists of an analog signal which is converted to 12-bit 
digital and then filtered by a bandpass filter in the range of 0.53 
to 40 Hz. The datasets are grouped into five sets denoted by A, 
B, C, D, and E, where each class has different characteristics, 
as detailed in Table I. Each dataset has 100 single-channel 
EEG data segments, and each data has a duration of 23, 6 
seconds for a total of 4097 samples. Sample signal for five 
datasets as shown in Fig. 2. This study evaluated the proposed 
automatic epilepsy detection using EEG waves from all sets. 

B. Discrete Wavelet Transform 
Discrete Wavelet Transform (DWT) is a technique for 

performing signal analysis that provides a representation of a 
signal in time and a signal that can be computed efficiently. In 
DWT, the signal to be analyzed will pass through the filter 
process with different frequencies and scales. DWT will divide 
the signal into two: high frequency using a highpass filter and 
low frequency using a lowpass filter. DWT has a more flexible 
frequency window function than CWT, where the DWT 
frequency window narrows when observing high-frequency 
information and widens when analyzing low-frequency 
resolution. As defined in equation 1, for example, the 

parameter m is an integer that controls the dilation of the 
wavelet, the parameter 𝑚, 𝑘  are an integer that controls the 
translation of the wavelet, 𝑠0 is a preset scaling parameter, and 
its value is greater than 1. 0 is a translation parameter that has a 
value greater than zero and is the parent of the wavelet. 

𝛹𝑚.𝑘(𝑡) = 1

�𝑠0
𝑚
𝛹 �𝑡−𝑘𝑡0𝑠0

𝑚

𝑠0
𝑚 �  (1) 

In this study, DWT is used to decompose the EEG data 
obtained through the discrete Fourier transform process. 
Various wavelet families and wavelet levels are used in DWT 
to provide a scaling function. The wavelet decomposition L-
level determines the signal's frequency band according to its 
level. The output of DWT were the coefficient vectors. 

C. Discrete Fourier Transform 
DFT is a technique to perform feature extraction using the 

frequency domain. DFT is beneficial because DFT makes it 
possible to find the spectrum of a signal with a finite duration. 
Since DFT treats the data periodically, it will express the input 
data's periodicity along with each periodic component's relative 
strength. The method proposed in this study uses the 
implementation of Fast Fourier Transform (FFT) since FFT is 
an efficient algorithm to compute DFT. The use of FFT is to 
divide the original EEG data into five frequency sub-sections, 
namely gamma (>30 Hz), beta (between 12 and 30Hz), alpha 
(between 8 and 12 Hz), theta (between 4 and 8 Hz), and delta 
(< 4Hz) using DFT as described in equation 2. 

TABLE I. DATASET OVERVIEW 

Dataset Patient Status Setup Phase 

A Healthy Surface EEG Open Eyes 

B Healthy Surface EEG Close Eyes 

C Epilepsy Intracranial EEG Interictal Hippocampal Position 

D Epilepsy Intracranial EEG Interictal Epileptogenic Zone 

E Epilepsy Intracranial EEG Ictal 

 
Fig. 2. Dataset EEG Samples. 
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𝐹𝑛 = ∑ 𝑓𝑘 𝑒−
2𝜋𝑖𝑛𝑘
𝑛𝑁−1

𝑘=0 , 𝑛 ∈ [0,𝑁 − 1] (2) 

The transformed data is filtered using a band-pass filter to 
produce 𝐹𝛾(𝑛),𝐹𝛽(𝑛),𝐹𝛼(𝑛),𝐹𝜃(𝑛),  and 𝐹𝛿(𝑛)  signals at the 
respective sub-band frequencies. The EEG signal that has been 
in the form of frequency will be transformed again into the 
time domain using Inverse DFT to get an EEG signal that has 
been decomposed in the time domain as described in equation 
3. 

𝑓𝑠(𝑘) = 1
𝑁
∑ 𝐹𝑠(𝑛)𝑒

2𝜋𝑖𝑛𝑘
𝑛 ,𝑛 ∈ [0,𝑁 − 1], 𝑠 =  𝛾,𝛽,𝛼,𝜃,𝛿 𝑁−1

𝑛=0 (3) 

D. Statistical Feature 
Information on data distribution can be obtained from 

percentiles by dividing the data into 100 equal parts. To get the 
percentile of pth, the elements of the coefficient vector are 
ordered from smallest to largest. Eq (4) is used to get the nth 
index of the pth percentile, and 𝑁 represents the length of the 
vector coefficient. 

𝑛 = 𝑝
100

(𝑁 + 1)  (4) 

The result was five statistical signal features retrieved from 
the results of each DWT coefficient vector, namely, the 95th 
percentile, 75th percentile, 50th percentile, 25th percentile, and 
5th percentile. Thus, 5(L+1) statistical features were retrieved 
from all coefficient vectors of the DWT L-level decomposition 
result. 

E. Crossing Frequency Features 
Zero-Crossing Frequency (ZCF) is a condition where the 

two elements of the vector coefficient have a frequency that 
crosses zero or changes signs from positive to negative and 
vice versa. ZCF was chosen to replace Zero Crossing Rate 
(ZCR) because ZCF has a more straightforward calculation and 
the exact duration data. This work extracted ZCF from the 
coefficient vector of DWT results to capture the signal's 
frequency information. Suppose 𝑁 is the span of the coefficient 
vector, 𝑣(𝑘) is the 𝑘𝑡ℎ P

 component of the coefficient vector, and 
sgn is the sign function, then ZCF can be obtained by equation 
5. 

𝑍𝐶𝐹 = 1
2
∑ �𝑠𝑔𝑛�𝑣(𝑘 + 1)� − 𝑠𝑔𝑛(𝑣(𝑘))�𝑁−1
𝑘−1  (5) 

This study also uses the Mean Crossing Frequency (MCF) 
to complete the signal frequency information that ZCF has 
obtained. MCF is described as the frequency of two subsequent 
components of the vector cross 𝑚; if m is the average value of 
the coefficient vector, MCF can be calculated by using 
equation 6. 

𝑀𝐶𝐹 = 1
2
∑ |𝑠𝑔𝑛(𝑣(𝑘 + 1) −𝑚) − 𝑠𝑔𝑛(𝑣(𝑘) −𝑚)|𝑁−1
𝑘−1   (6) 

With the L-level of decomposition, a total of 2(L+1) 
crossing frequency features were obtained from the coefficient 
vector of the DWT result. 

F. Feature Selection using Genetic Algorithm 
Genetic Algorithm (GA) is an optimization algorithm that 

is a population-based search algorithm that uses the concept of 
survival of the fittest. GA is inspired by natural selection[16]. 

A new population is generated by repeated iterations of the 
genetic operator on the individuals present in the population. 
The critical elements of GA are chromosome representation, 
selection, crossover, mutation, and computation of fitness 
functions. The Fitness function determines the ability to 
compete of an individual. The fitness value determines the 
probability of selecting an individual for reproduction. The 
selection phase is to choose parents based on their fitness 
values to carry their genes to the next generation. Crossover is 
the phase where the parents reproduce, and the crossover point 
is chosen randomly from the parents' genes. Offspring is made 
by exchanging genes between parents. Of the many offspring 
made, several offspring can experience mutations with a low 
random probability. This happens to maintain diversity in the 
population and prevent premature convergence. 

GA dynamically changes the search process through 
crossover and mutation probabilities to achieve the optimal 
solution. GA has better global search capabilities because GA 
can modify the encoded gene. Besides that, GA can also 
evaluate many individuals and generate several optimal 
solutions. As stated by Katoch et al. [17], offspring derived 
from crosses of parental chromosomes have a high probability 
of deleting the genetic scheme of parental chromosomes. The 
cross formula is defined as equation (7). 

𝑅 = 𝐺+2√𝑔
3𝐺

  (7) 

𝐺  is the fixed number of generations determined by the 
population and g is the number of generations.  

A classification with many features will increase the 
complexity of the training process. Many features also do not 
always result in good classification [18]. In this study, GA is 
used as a feature selection method to eliminate features that 
will not be used in the classification. Firstly, feature selection 
technique using GA was began by randomly creating the initial 
population of chromosomes, which are binary mask vectors of 
length comparable to the number of features. The genes on the 
chromosomes could take on the value 0 or 1. If the value of the 
ith gene was 0, then the ith feature was disregarded for 
classification; else, the feature was chosen. Feature selection 
using A fitness function was used to determine the quality of 
each chromosome. The fitness function for feature selection 
using GA makes use of the accuracy rate of a classifier that has 
been trained with chromosome-specific features. Until the final 
requirements are reached, the population is iteratively modified 
through crossover, mutation, and selection. 

G. Gradient Boosting Machine Fusion 
To construct new base-learners to be maximally correlated 

with the negative gradient of the loss function, which is related 
to the entire ensemble, is the principle of the Gradient Boosting 
Machine (GBM) [19]. Unlike the Decision Tree and Random 
Forest algorithms, the random forest combines several decision 
tree outputs to generate predictions. In GBM, each decision 
tree predicts from the previous error decision tree [20]. 
Therefore, GBM is a classification method that always tries to 
reduce errors. If 𝑦 =  𝑧(𝑠(𝑡))  is an estimate of functional 
dependence, then for the loss function model, 𝛹(𝑦, 𝑧),  is 
formulated in eqution (8). 
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ẑ�𝑠(𝑡)� = ŷ = arg𝑚𝑖𝑛𝛹(𝑦, 𝑧)  (8) 

To optimize the function, ŷ is used as a parameter in the 
function as 𝑖𝑛 ŷ = ∑ ŷ𝑖𝑀

𝑖=1 . This is what distinguishes GBM 
from other machine learning. In GBM, a "greedy stagewise" 
approach is derived from the weak-learners increment function. 
The function is formulated in equation (9). 

(𝑝𝑡 ,𝜃𝑡) = arg𝑚𝑖𝑛𝑝,𝜃 ∑ 𝛹�𝑦𝑖  , 𝑓𝑡−1� � + 𝑝ℎ(𝑥𝑖 ,𝜃)𝑁
𝑖=1  (9) 

In this study, GBM Fusion is used to classify multi-class 
models. To improve the classification results where several 
classifiers would be trained as basic classifiers to classify EEG 
signals into five and two classes. After classifying five classes 
and two classes, the best results will be taken through majority 
voting using equation (10), suppose C is a class. 

𝐶(𝑥𝑜) =  
arg𝑚𝑎𝑥

𝑘 ∈ {0,1,2,3,4}

⎝

⎜⎜
⎛
∑ 𝐼𝑘  

𝑠 ∈ {0, 1}
𝑜𝑟 𝑠 ∈ {0, 2}
𝑜𝑟 𝑠 ∈ {1, 2}
𝑜𝑟 𝑠 ∈ {1, 3}…
𝑜𝑟 𝑠 ∈ {3, 4}

4
𝑖=1

⎠

⎟⎟
⎞
∑ 𝐼𝑘�𝑦𝑠𝑖�4
𝑖=1    (10) 

H. Enhanced GBM Fusion 
This study enhances the research of Sunaryono et al. [4] by 

evaluating the pattern of errors in the majority voting to 
improve the classification performance of automatic epilepsy 
detection in five classes case. The steps below were utilized to 
train Enhanced GBMs fusion and predict the class label for 
unknown data using Enhanced GBMs fusion. 

• Obtain the decomposed signals 𝑓𝛾, 𝑓𝛽 , 𝑓𝛼 ,𝑓𝜃 , and 𝑓𝛿  by 
decomposing the original EEG signal using DFT. 

• Perform DWT with L-level decomposition to the initial 
EEG data to produce the coefficient vectors C1. 

• Perform DWT with L-Level of decomposition to the 
decomposed EEG data for frequency sub-band 
𝛼,𝛽, 𝛾, 𝛿 and 𝜃 to obtain the coefficient vectors as 𝐶2. 

• Obtain feature sets 𝐹1  by extracting 2(L+1) crossing 
frequency features and 5(L+1) statistical features from 
the coefficient vectors 𝐶1. 

• Obtain feature sets 𝐹2  by extracting 10(L+1) crossing 
frequency features and 2 5(L+1) statistical features 
from the coefficient vectors 𝐶2. 

• Perform feature selection using GA to 𝐹1  and 𝐹2  to 
determine which are the most important features. 

• Train two 5-class GBMs, X1 and X2, utilizing the 
selected features from 𝐹1  and 𝐹2  as input features, 
respectively. 

• Train twenty 2-class GBMs with the selected features 
from 𝐹1  and 𝐹2  to classify the EEG signal as either 
class 0 and class 1 (named 𝐹101 and 𝐹201), class 0 and 
class 2 (named 𝐹102  and 𝐹202 ), class 0 and class 3 
(named 𝐹103 and 𝐹203), class 0 and class 4 (named 𝐹104 
and 𝐹204 ), class 1 and class 2 (named 𝐹112  and 𝐹212 ), 
class 1 and class 3 (named 𝐹113 and 𝐹213), class 1 and 

class 4 (named 𝐹114  and 𝐹214 ), class 2 and class 3 
(named 𝐹123 and 𝐹223), class 2 and class 4 (named 𝐹124 
and 𝐹224), class 3 and class 4 (named 𝐹134 and 𝐹234). 

• Suppose x0 is an EEG signal without labels. Using 𝐹1 
and 𝐹2, predict the class label of x0 to obtain y1 and y2, 
respectively. 

a) If yi = 0, then predict the class label of x0 using 
models 𝐹𝑖01 , 𝐹𝑖02 , 𝐹𝑖03 , and 𝐹𝑖04  to obtain yi 𝑦𝑖01,𝑦𝑖02,𝑦𝑖03, and 
𝑦𝑖04  from each model, for i = 1, 2. 

b) If yi = 1, then predict the class label of x0 using 
models 𝐹𝑖01 , 𝐹𝑖12 , 𝐹𝑖13 , and 𝐹𝑖14  to obtain yi 𝑦𝑖01,𝑦𝑖12,𝑦𝑖13, and 
𝑦𝑖14 from each model, for i = 1, 2. 

c) If yi = 2, then predict the class label of x0 using 
models 𝐹𝑖02 , 𝐹𝑖12 , 𝐹𝑖23 , and 𝐹𝑖24  to obtain yi 𝑦𝑖02,𝑦𝑖12,𝑦𝑖23, and 
𝑦𝑖24 from each model, for i = 1, 2. 

d) If yi = 3, then predict the class label of x0 using 
models 𝐹𝑖03 , 𝐹𝑖13 , 𝐹𝑖23 , and 𝐹𝑖34  to obtain yi 𝑦𝑖03,𝑦𝑖13,𝑦𝑖23, and 
𝑦𝑖34 from each model, for i = 1, 2. 

e) If yi = 4, then predict the class label of x0 using model 
𝐹𝑖04 , 𝐹𝑖14 , 𝐹𝑖24 , and 𝐹  to obtain yi 𝑦𝑖04,𝑦𝑖14,𝑦𝑖24, and 𝑦𝑖34 from 
each model, for i = 1, 2. 

• Class x0 was predicted by majority vote based on the 
result of 5-class and 2-class GBMs. 

• Evaluate the pattern of errors from GBMs Fusion 
majority voting to disregard the pattern of errors. 

• Class 𝑥0  predicted using majority voting on the result 
of 5-class and 2-class GBMs but while disregarding the 
error pattern. 

Suppose x0 is some EEG signals that must be classified 
after the feature extraction and selection stage. 𝑥0 is classified 
using two 5-class GBMs, and suppose the result is class 4 from 
F1 and class 4 from F2. Further classification with twenty 2-
class GBM, because both results from F1 and F2 is class 4 then 
the model that will give output only the model  𝐹104, 𝐹114, 𝐹124, 
𝐹134, 𝐹204, 𝐹214, 𝐹224, and 𝐹234, the given output is class 4, class 
4, class 2, class 4, class 4, class 4, class 2, and class 4, 
respectively. The final prediction of class x0 after majority 
voting is class 4. However, because x0 has the original class 2, 
the prediction result of x0 is wrong. Therefore, the 8 GBMs 
models that give results of class 4 are ignored so that the 
majority voting results become class 2. 

I. Experimental Setup 
Experiments for this study have been conducted to validate 

the proposed method for detecting epilepsy using EEG signals 
in three cases. In the first case, two 5-class GBMs were trained 
with 𝐹1  and 𝐹2  to classify EEG signals. In the second case, 
twenty 2-class GBMs were trained with 𝐹1 and 𝐹2 to classify 
EEG into two classes, namely class 0-1, class 0-2, class 1-2, 
class 1-3, class 2-4, class 0-3, class 0-4, class 1-4, class 2-3, 
and class 3-4. In the third case, Enhanced GBM Fusion was 
utilized to classify EEG signals into five classes, and the results 
will be compared to those of previous studies. 
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This experiment was run on a mid-spec computer with a 
specification of 2.2GHz Intel(R) Core(TM) i7-8750H, 16GB 
RAM, NVIDIA GeForce GTX 1050 Ti GPU, and Windows 10 
Home Single operating system to ensure that the proposed 
method is implemented on everyday life. The proposed method 
uses the python programming language with several libraries, 
namely NumPy [21], DEAP [22], scikit-learn [23], and 
PyWavelets [24]. This experiment uses fold-cross validation in 
which the EEG data is randomly divided into ten sections with 
equal proportions for each section. 

IV. RESULT AND DISCUSSION 

A. Classification of Five Class GBM 
The accuracy of the 5-class classification using GBM with 

F1 and F2 has been summarized in TABLE II. The 
classification results using F1 have a higher average of 91.13%, 
compared to F2 with an average of 88.08%. The best result 
using F1 feature is using Daubechies 6 (Db6) family wavelet 
with a decomposition level of 8 with the accuracy score of 
91.99%. However, Db6 with a decomposition level of 8 needs 
more selected features to achieve the best accuracy than Symlet 

16 (Sym16) and Symlet 20 (Sym20). For F2 feature, the best 
result achieved is 93.6% by applying Biorthogonal 5.5 
(Bior5.5) with the decomposition level of 3 while having the 
least original feature and having the lowest decomposition 
level compared to the rest as in Table II. The F2 data has the 
same number of features after feature selection, while in F1 
data, more selected features are needed to get the highest 
accuracy results. 

As shown in Fig. 3, confusion matrix was utilized to 
evaluate EEG signals that were incorrectly classified by F1 
using Db6 wavelet with decomposition level 8 and F2 using 
bior5.5 wavelet with decomposition level 3. 5 classes model A-
B-C-D-E FFT-Sub-band-Wavelet had a better classification 
result in class A, B, C, and E, while from 5 classes model A-B-
C-D-E Wavelet had a better classification in class D. 

The experimental results showed that raising the 
decomposition level of DWT does not necessarily increase the 
classification accuracy of 5-class GBM. These results also 
demonstrated that conducting DFT as added feature extraction 
method prior to DWT to generate features set F2 does not 
always increase the accuracy of classification for 5-class GBM. 

TABLE II. SUMMARY OF FIVE CLASS GBM CLASSIFICATION 

Classifier 
Wavelet 

Original Feature Selected Feature Accuracy with selected Feature 
Family Level 

F1 Classifier 
 

Db6 8 63 29 91.99 

Sym16 5 42 21 90.39 

Sym20 5 42 24 91.00 

F2 Classifier 

Bior5.5 3 140 65 93.60 

Symll 5 210 65 89.20 

Db15 7 280 65 87.80 

    
     (a) Five Classes Model a-b-c-d-e.                       (b) Five Classes Model -a-b-c-d-e Fft-Subband-Wavelet. 

Fig. 3. Confusion Matrices of 5-Class GBM using each Features. 
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B. Classification of Two Class GBM 
The result of the classification of 2-class GBM using F1 

and F2 features have been summarized in Table III and Table 
IV, respectively. The wavelet family and decomposition level 
used in F1 and F2 are the same for each class classifier. In the 
experiment before using the feature selection, the accuracy 
results using F2 data have higher accuracy results with an 
accuracy of 95.08% compared to F1 data with an average of 
93.99%, as in TABLE III and TABLE IV. The only F1 feature 
before feature selection with higher accuracy against F2 is 
using 𝐹114 classifier using rbio2.4 wavelet family and 
decomposition level of 6 with an accuracy score of 90.73% 
against 𝐹214 with an accuracy of 90.04% by applying the 
same wavelet family and decomposition level. In the 
experiment using feature subset, the average accuracy of the F1 
and F2 features increased with an average accuracy of 99.19% 
in both data, with the highest accuracy being 100% and the 
lowest being 94%, as shown in TABLE III and TABLE IV, 
respectively. These results demonstrated that using feature 
selection most of the time can improve classification accuracy. 
The experimental results also showed that conducting 
frequency sub-band decomposition prior to DWT to generate 

features set F2 can improve the classification accuracy of 2-
class GBM. 

C. Enhanced GBM Fusion Classification 
Previously, the results of the 2-class model accuracy were 

obtained using F1 and F2, where the results from these models 
were combined and used in GBM Fusion and Enhanced GBM 
Fusion using majority voting. The classification results using 
GBMs Fusion resulted in an accuracy of 97.2% in the 
classification of 5 classes, with 14 misclassifications listed in 
Table V. Table V shows that the misclassification results 
mainly occur in the data with the highest majority voting value 
of 3, 5, or 8. This value will be used as a value of 0 during the 
enhanced GBM Fusion classification. The accuracy of 99.8% 
in the 5-class classification was also successfully achieved 
using Enhanced GBM Fusion by leaving one misclassification 
result at index 440 with confusion matrix as in Fig.4. This 
happened because the majority voting result in Enhanced GBM 
fusion at index 440 was 3 in the 5th row, which means the 
prediction result in the index 440 is class 4, which should be 
class 0. As shown in Fig. 4, all the EEG signals from class B, 
class C, class D, and class E were correctly predicted by 
Enhanced GBMs Fusion. Only one signal from class A was 
misclassified as a class E. 

TABLE III. SUMMARY OF TWO CLASS GBM CLASSIFICATION USING F1 

Classifier Family Level Original Feature Selected Feature Accuracy with Original Feature (%) Accuracy with Selected Feature (%) 

𝐹101 Db24 2 21 4 95,12 100 

𝐹102 Db5 4 175 78 93,87 98,5 

𝐹112 Db38 1 14 7 90,54 100 

𝐹113 Db10 2 105 63 98,03 99,49 

𝐹124 Sym15 5 210 106 98,46 94 

𝐹103 Db1 1 14 6 96,98 100 

𝐹104 Db18 2 21 12 92,5 100 

𝐹114 Rbio2.4 6 49 15 90,73 100 

𝐹123 Bior1.3 4 35 14 91,28 100 

𝐹134 Coif14 4 35 11 92,46 100 

Average Accuracy (%) 93.99 99.19 

TABLE IV. SUMMARY OF TWO CLASS GBM CLASSIFICATION USING F2 

Classifier Family Level Original Feature Selected Feature Accuracy with Original Feature (%) Accuracy with Selected Feature (%) 

𝐹201 Db24 2 21 4 95,65 100 

𝐹202 Db5 4 175 78 94,84 98,5 

𝐹212 Db38 1 14 7 92,96 100 

𝐹213 Db10 2 105 63 99 99,49 

𝐹224 Sym15 5 210 106 98,99 94 

𝐹203 Db1 1 14 6 98,98 100 

𝐹204 Db18 2 21 12 92,71 100 

𝐹214 Rbio2.4 6 49 15 90,04 100 

𝐹223 Bior1.3 4 35 14 94,68 100 

𝐹234 Coif14 4 35 11 93 100 

Average Accuracy (%) 95.08 99.19 
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TABLE V. CLASSIFICATION ERROR FROM GBM FUSION 

Index Model Expected 
Result 

Classification 
Result 

37 [ 0 0 2 0 8 ] 2 4 

150 [ 8 0 2 0 0 ] 2 0 

165 [ 8 0 2 0 0 ] 2 0 

192 [ 0 0 2 0 8 ] 2 4 

213 [ 0 0 8 0 2 ] 4 2 

292 [ 0 8 2 0 0 ] 2 1 

370 [ 0 8 0 2 0 ] 3 1 

397 [ 0 8 2 0 0 ] 2 1 

426 [ 0 8 0 2 0 ] 3 1 

437 [ 0 0 8 0 2 ] 4 2 

440 [ 2 0 5 0 3 ] 0 2 

452 [ 0 0 8 0 2 ] 4 2 

458 [ 0 0 8 0 2 ] 4 2 

487 [ 0 8 0 2 0 ] 3 1 

Table VI is comparison proposed method with the results 
of previous studies, the highest accuracy of five classes 
classification by the previous studies is 97.39% by Sunaryono 
et al. [4], which means that this study has an increase in the 
five-class classification by 2.41% from the best results in 

previous studies. The proposed method has the potential to 
classify five classes for the detection of epilepsy. However, this 
method is limited with the dataset that is used. The effect of 
this limitation that is this method still lack validation from 
other datasets. 

 
Fig. 4. Confusion Matrix of Enhanced GBM Fusion. 

TABLE VI. COMPARISON TABLE WITH PREVIOUS STUDIES 

Dataset Method Study Accuracy (%) This Study Accuracy (%) 

A-B 
GBM Fusion [4] 100 

100 
CNN+Scalogram [7] 95.5 

A-C 
GBM Fusion [4] 100 

98.5 
CNN+Scalogram [7] 96.5 

A-D 
GBM Fusion [4] 100 

100 
CNN+Scalogram [7] 100 

A-E 

MNL Network [13] 99.52 

100 

CNN+Scalogram [7] 99.5 

Symlet Wavelets, PCA, GBM-GSO [8] 100 

GBM Fusion [4] 100 

DWT, Fuzzy Approximate Entropy, SVML [25] 100 

FFT-based PCANet, SVM [14] 100 

RCMDE, SVM [12] 100 

B-C 
GBM Fusion [4] 100 

100 
CNN+Scalogram [7] 99 

B-D 
GBM Fusion [4] 100 99.49 
CNN+Scalogram [7] 100 

B-E 

GBM Fusion [4] 100 
100 Symlet Wavelets, and PCA, GBM-GSO [8] 100 

CNN+Scalogram [7] 100 
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FFT-based PCANet, SVM [14] 100 

MNL Network [13] 99.11 

C-D 
GBM Fusion [4] 94 100 
CNN+Scalogram [7] 85.71 

C-E 

MNL Network [13] 98.02 

98.99 
Symlet Waveletsand PCA, GBM-GSO [8] 98.4 

GBM Fusion [4] 100 

CNN+Scalogram [7] 98.50 

FFT-based PCANet, SVM [14] 100 

D-E 

FFT-based PCANet, SVM [14] 99 

100 

Symlet Wavelets, and PCA, GBM-GSO [8] 98.1 

LMD+GA+SVM [26] 98.1 

GBM Fusion [4] 99.49 

CNN+Scalogram [7] 98.50 

MNL Network [13] 97.63 

MDE, SVM [12] 96.5 

A-B-C-D-E 

MEMD + ANN [27] 87.2 

99.8 

GBM Fusion [4] 97.39 

ToC + DNN [28] 97.2 

CNN+Scalogram [7] 93.60 

SeizureNet [11] 95.84 

DWT-SVD-FkNN [9] 93.33 

1-D-DNN [10] 93.55 

MNL Network [13] 93.55 

V. CONCLUSION 
In this study, Enhanced GBM Fusion is proposed to be an 

automatic epilepsy detection method from EEG signal data. 
The proposed method obtains an accuracy value of 99.8% in 
classifying five classes A-B-C-D-E on a dataset from the 
University of Bonn. EEG signal data were decomposed using 
DWT and DFT as feature extraction methods. The decomposed 
signal is used to extract the crossing frequency feature and 
statistical feature. Genetic Algorithm is used as a feature 
selection method to get discriminatory features to improve the 
classification performance. For the whole experiment, the 
proposed method can improve the accuracy compared to 
normal GBM in classifying EEG signals. With the results that 
have been obtained, this study can be a reference for the 
medical world to detect epilepsy automatically so that people 
with epilepsy can be diagnosed accurately and quickly. 

The drawback of the proposed method is that the 
determination of patterns on Enhanced GBM Fusion to 
improve performance must be done by hard coding. The 
performance of the proposed method may not be comparable to 
that of other datasets. 
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